Todas las entradas de: JDomingo

Los «expertos» se caen del guindo

Ahora el Estado, las comunidades autónomas, las provincias, los ayuntamientos, los barrios, las comunidades de vecinos, las peñas, en fin, todo el mundo, se quiere realizar ensayos frente al COVID-19, rápidos o lentos, deprisa o despacio, a todos o algunos, necesarios o innecesarios. Ahora se hacen ensayos cuando los ensayos deberían haberse hecho hace cuatro meses, para detectar a los portadores y aislarlos.

Ahora la Organización Mundial de la Salud (OMS), el Gobierno español, el Ministerio de Sanidad, el Centro de Coordinación de Alertas y Emergencias Sanitarias (CCAES), etc., dicen que las mascarillas son útiles para prevenir la transmisión de la COVID-19 de manera efectiva en las zonas públicas. Una vez finalizada la prórroga del estado de alarma, previsiblemente a las 00:00 horas del día 21 de junio de 2020 las mascarillas serán obligatorias siempre que no resulte posible garantizar el mantenimiento de una distancia de seguridad interpersonal de entre 1,5 y 2 metros, cuando hace cuatro meses que deberían ser obligatorias en cualquier espacio público, abierto o cerrado, independientemente de si es posible o no garantizar el mantenimiento de una distancia de seguridad interpersonal de entre 1,5 y 2 metros1.

El 5 de junio la Organización Mundial de la Salud (OMS) cambiaba de rumbo y recomendaba que, en lugares con transmisión generalizada de coronavirus, todas las personas que no puedan mantener con otras la distancia interpersonal de dos metros utilicen mascarillas de tela. En una actualización de su guía de consejos sobre este elemento de protección, la organización considera que a medida que los países van levantando las medidas de confinamiento y las restricciones de movimiento es necesario que las personas las utilicen para protegerse en situaciones en las que no se puede aplicar la distancia social recomendada2,3.

 

 

Distancia, tiempo y barrera

Probablemente ninguno de los «expertos» del  CCAES presididos por Fernando Simón, que trabajan en la Dirección General de Salud Pública y asesoran en las fases de la «desescalada», ni ninguno de los expertos del Comité para elaborar el «plan de la desescalada» creado por el presidente del Gobierno, ni ninguno de los miembros del Comité de Científicos a cuyo frente está el propio Fernando Simón4,5, habrán asistido a alguno de los cursos de «Riesgos NBQ» de la Escuela Militar de Defensa NBQ. Si hubiesen asistido a uno de estos cursos de «Riesgos NBQ», o si hubiesen preguntado a un especialista en «Defensa NBQ», sabrían que una vez se manifiesta un peligro las medidas de protección a aplicar son, y por este orden:

  • Distancia: cuanto más lejos nos encontremos del punto de peligro tanto mejor. A veces la protección no aumenta linealmente con la distancia, sino que aumenta en función del cuadrado de la distancia. Por ello es importante el mantenimiento de una distancia de seguridad interpersonal de entre 1,5 y 2 metros (sería mejor una distancia mayor), pero dado que los infectados por coronavirus no se tiñen de color morado, no podemos detectarlos, y por tanto hay que considerar a todos los individuos como infectados.
  • Tiempo: cuanto menos tiempo estemos en contacto con el peligro tanto mejor. Al estar expuestos un menor tiempo la dosis recibida o incluso la probabilidad de resultar infectado es menor. Hay que salir del confinamiento y estar en zona de peligro el menor tiempo posible.
  • Barrera: cuando no es posible una protección adecuada en base a la distancia y al tiempo hay que recurrir a la barrera, esto es, al equipo de protección, y ahora no diferenciamos entre producto sanitario en el sentido del Reglamento UE/2017/745 (mascarillas, por ejemplo), y equipo de protección individual (EPI) en el sentido del Reglamento UE/2016/425″ (máscaras de filtración, por ejemplo). La «barrera» debe ser la apropiada en función de los numerosos factores a considerar, magnitud del peligro, distancia, tiempo de exposición, actividad a desarrollar, etc.. Cualquier barrera es mejor que nada.

 

 

Bayes y las mascarillas

Si consideramos que hay individuos sanos que no infectan, e individuos (asintomáticos, presintomáticos o sintomáticos) que infectan, y consideramos el usar o no mascarilla para cubrir la boca, nariz y barbilla, tendremos cuatro tipos de individuos:

 

Individuos que transmiten el virus

Individuos que no transmiten el virus

que utilizan mascarilla

La mascarilla protege a los demás usuarios de las partículas con virus emitidas por el usuario de la mascarilla durante su respiración

La mascarilla protege al usuario que la utiliza de las partículas con virus emitidas por los usuarios infectados durante su respiración

que no utilizan mascarilla

El individuo con carga vírica propaga el virus a través de las partículas con virus emitidas durante su respiración

El individuo no propaga el virus a través de las partículas emitidas durante su respiración

 

Las mascarillas, por su mayor o menor efecto barrera, es obvio que protegen de alguna manera del virus que se propaga a través de las partículas respiratorias. Ya se mencionó que si las mascarillas quirúrgicas ofrecen a los usuarios sanos que la llevan una protección del 75% frente a la contaminación exterior, y una protección a los individuos sanos del 50% cuando las utilizan los usuarios infectados. Si todos los individuos infectados y sanos empleasen mascarillas quirúrgicas la protección global aumentaría hasta aproximadamente un 87,5%4:

  • Si una persona infectada se encuentra frente a una persona sana, y ninguna de ellas lleva mascarilla, las gotitas con virus alcanzarán el rostro de la persona sana que acabará probablemente infectada.
  • Si la persona infectada lleva mascarilla, toca su mascarilla y se lleva la mano a la cara, seguirá igualmente infectada, pero al usar mascarilla tan solo el 50% de sus virus alcanzarán el rostro del usuario sano que no lleve mascarilla, pero aún así podríamos decir que éste sin llevar mascarilla gozaría de una protección del 50%.
  • Si la persona infectada no lleva mascarilla el 100% de sus virus alcanzarían el rostro de una persona sana pero si llevase mascarilla tan sólo el 25% de los virus atravesarían la mascarilla. Obviamente si toca su mascarilla y se lleva la mano a la cara, podrá resultar infectado pese a usar mascarilla.
  • Si tanto las personas sanas como las infectadas utilizasen mascarillas, la protección global de la que gozaría el usuario sano sería de aproximadamente un 87,5%, es decir tan sólo un 12,5% de los virus atravesarían su mascarilla.

Ahora que el número de infectados diarios detectados ha disminuido enormemente, y que la cantidad global de virus en circulación ha disminuido, es cuando el Gobierno español hace obligatorio (a partir de que finalice el estado de alarma) el uso de mascarillas en la vía pública, en espacios al aire libre y en cualquier espacio cerrado de uso público o que se encuentre abierto al público, siempre que no resulte posible garantizar el mantenimiento de una distancia de seguridad interpersonal de, al menos, 1,5 metros, así como en los transportes, como medida de prevención e higiene (El uso de mascarillas no es una medida de prevención e higiene, es una medida de protección)1.

 

 

Medida tardía e incompleta

La medida llega tarde pues si no hubiese existido un problema de suministro, consecuencia de una falta de planificación, y se hubiese impuesto el uso obligatorio de mascarillas a principios de febrero, cuando la OMS había declarado el 30 de enero la «Emergencia de Salud Pública Internacional»7, y para más de uno era evidente lo que se nos venía encima (José Antonio Nieto González, jefe de Prevención de Riesgos Laborales de la Policía8), o por lo menos a principios de marzo, cuando ya teníamos más de 100 casos detectados de COVID-19 y 1 muerto, y nuestros vecinos italianos ya tenían 2000 casos detectados y 52 muertos. La protección global ofrecida por las mascarillas habría conseguido entonces una disminución en la propagación del virus, y al final hubiésemos tenido un menor número de infectados y un menor número de muertos.

Es incompleta porque permite no usar mascarillas a los usuarios que mantengan una distancia de seguridad interpersonal de, al menos, 1,5 metros en espacios abiertos y exime de utilizar mascarillas en el ejercicio de deporte individual al aire libre, cuando la realización de esta actividad supone un mayor ritmo respiratorio, una mayor velocidad de circulación del aire respiratorio y una dificultad para mantener una distancia de seguridad apropiada.

El uso de mascarillas debería ser obligatorio en los espacios públicos independientemente de la distancia interpersonal, estén realizando o no algún tipo de deporte. Solo deberían de quedar eximidas las personas que presenten algún tipo de enfermedad o dificultad respiratoria que pueda verse agravada por el uso de la mascarilla o que, por su situación de discapacidad o dependencia, no dispongan de autonomía para quitarse la mascarilla, o bien presenten alteraciones de conducta que hagan inviable su utilización. Tampoco sería exigible la utilización de mascarillas en los supuestos de fuerza mayor o situación de necesidad o cuando, por la propia naturaleza de las actividades, el uso de la mascarilla resulte incompatible.

Resulta curioso un estudio, de fecha 30 de marzo de 2020, del equipo de respuesta COVID-19 del Imperial College de Londres, que se ha publicado en la revista Nature el 8 de junio de 2020, que estima el número de infecciones y el impacto de las intervenciones no farmacológicas sobre la COVID-19 en 11 países europeos. Mediante un modelo matemático  estiman que la aplicación de las intervenciones no farmacológicas (NPIs), habrían evitado hasta el 31 de mayo un total de 59 000 muertos entre los 11 países europeos, 16 000 muertos solo en España. El estudio no estima cuántas muertes se habrían evitado si las citadas intervenciones no farmacológicas  se hubiesen aplicado en su momento, por ejemplo, unos diez días antes9,10.

 

 

NPIs11

Las intervenciones no farmacológicas (NPI, Non-Pharmacological Interventions) incluyen todas las medidas o acciones, distintas del uso de vacunas o medicamentos, que pueden implementarse para retrasar la propagación de la transmisión de una epidemia en una población. En la etapa inicial de las epidemias y pandemias ocasionadas por virus, las NPI son a menudo las intervenciones más accesibles, debido al largo tiempo requerido para disponer de vacunas específicas y porque en la mayoría de los lugares afectados no existen grandes reservas de medicamentos antivirales. Por lo tanto, estas medidas de mitigación desempeñarán un papel importante en la reducción de la transmisión en entornos comunitarios.

Algunas NPI pueden retrasar el inicio de una epidemia, lo que podría ser particularmente importante si el retraso resultante es lo suficientemente largo como para permitir la distribución de vacunas específicas y reducir así el impacto de la epidemia. Una vez que ha comenzado una epidemia, las NPI también se pueden emplear para retrasar el pico de la epidemia, dando así  tiempo para distribuir las vacunas, o para que los intervinientes sanitarios se preparen mejor ante el previsible aumento de casos.

Al reducir la transmisión en la comunidad, la epidemia se extendería durante un período más largo pero tendría un pico epidémico más pequeño. Esto podría ser especialmente importante si los recursos o capacidades del sistema de salud son limitados (por ejemplo, en términos de camas de hospital y respiradores). Además, la morbilidad y la mortalidad se podrían reducir incluso aunque no se redujera el número total de infecciones a lo largo de la epidemia. El objetivo de algunas intervenciones puede ser reducir el número total de infecciones y, por lo tanto, reducir también el número total de casos graves, hospitalizaciones y muertes.

La OMS ha descrito hasta 18 recomendaciones cuya aplicación cada una de ellas con un impacto  diferente sobre las actividades. Al decidir acerca de la aplicación de las diferentes intervenciones, cada Estado Miembro de la OMS deberá tener en cuenta la viabilidad y la aceptabilidad de las intervenciones propuestas, además de su efectividad e impacto previstos.

La siguiente tabla enumera las 18 intervenciones ordenadas en función del menor o mayor impacto:

Impacto

Intervención

Leve

·       Higiene de manos

·       Etiqueta respiratoria

·       Mascarillas para personas sintomáticas

·       Limpieza de superficies y de objetos

·       Mayor ventilación

·       Aislamiento de personas enfermas

·       Consejos a la hora de viajar

Moderado

·       Evitar las aglomeraciones, y mantener distancia interpersonal

Alto

·       Mascarillas para el público en general

·       Medidas en los centros escolares y cierre de la actividad escolar

Extremo

·       Medidas en los lugares de trabajo y cierre de la actividad laboral

·       Restricciones en los viajes interiores

No recomendado

·       Instalación de luz ultravioleta en lugares cerrados y llenos de gente

·       Modificación de las condiciones de humedad

·       Seguimiento de los contactos

·       Cuarentena de las personas expuestas.

·       Controles en las entradas y salidas

·       Cierre de las fronteras

 

Las consecuencias de cada una de estas intervenciones deberían contribuir a reducir el impacto global de la epidemia o de la pandemia. Las NPI fuera de los entornos de atención médica se centran generalmente en reducir la transmisión mediante medidas de prevención (por ejemplo, higiene de manos y etiqueta social); reducción de la propagación en la comunidad (por ejemplo, aislando y tratando pacientes, cerrando escuelas y cancelando reuniones masivas); limitar la propagación internacional (por ejemplo, mediante el control a los viajeros); y mejorando la comunicación al público de los riesgos existentes.

 

 

Referencias

  1. «Real Decreto-ley 21/2020, de 9 de junio, de medidas urgentes de prevención, contención y coordinación para hacer frente a la crisis sanitaria ocasionada por el COVID-19.», Boletín Oficial del Estado Nº 163, 10 de junio de 2020, https://www.boe.es/boe/dias/2020/06/10/pdfs/BOE-A-2020-5895.pdf.
  2. «La OMS cambia de rumbo y aconseja ahora el uso de mascarilla generalizado», https://www.elconfidencial.com/mundo/2020-06-05/oms-aconseja-mascarilla-generalizado-coronavirus_2626851/
  3. «Advice on the use of masks in the context of COVID-19», WHO, 5 june 2020, https://apps.who.int/iris/rest/bitstreams/1279750/retrieve
  4. «El falso enigma de los expertos del coronavirus», 9 de mayo de 2020, https://www.vozpopuli.com/opinion/falso-enigma-expertos-coronavirus-simon-sanidad_0_1353464723.html
  5. «Más sobre el enigma del comité de Simón», 8 de junio de 2020, https://www.vozpopuli.com/opinion/comite-expertos-simon_0_1362164210.html
  6. Virus, dime, ¿Entras o sales?, J. Domingo, 15 mayo 2020, http://cbrn.es/?p=1794
  7. «Declaración sobre la segunda reunión del Comité de Emergencias del Reglamento Sanitario ‎Internacional (2005) acerca del brote del nuevo coronavirus (2019-nCoV)», OMS, 30 de enero de 2020, https://www.who.int/es/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
  8. «Cesan al jefe de Prevención de Riesgos Laborales de la Policía encargado del protocolo interno por el coronavirus», Europa Press, 14 de marzo de 2020, https://www.europapress.es/nacional/noticia-cesan-jefe-prevencion-riesgos-laborales-policia-encargado-protocolo-interno-coronavirus-20200314102440.html
  9. «Las medidas de aislamiento han salvado 450.000 vidas en España», 8 de junio de 2020, https://elpais.com/ciencia/2020-06-08/las-medidas-de-aislamiento-habrian-salvado-450000-vidas-en-espana.html
  10. «Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe», Flaxman, S. et al., Nature , 8 June 2020, https://www.nature.com/articles/s41586-020-2405-7_reference.pdf
  11. «Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza», World Health Organization, 2019, https://apps.who.int/iris/bitstream/handle/10665/329438/9789241516839-eng.pdf?ua=1

 

 

No todos los alcoholes son iguales

Para empezar, recordemos que en su artículo II, punto 3, la Convención para la prohibición de las Armas Químicas (CAQ) entiende por «precursor»1:

«Cualquier reactivo químico que intervenga en cualquier fase de la producción por cualquier método de una sustancia química tóxica. Queda incluido cualquier componente clave de un sistema químico binario o de multicomponentes.»

(A los efectos de la aplicación de la CAQ, los precursores respecto de los que se ha previsto la aplicación de medidas de verificación están enumerados en Listas incluidas en el Anexo sobre sustancias químicas.)

Y según el punto 4 de ese mismo artículo, se entiende por «componente clave de sistemas químicos binarios o de multicomponentes»1:

«El precursor que desempeña la función más importante en la determinación de las propiedades tóxicas del producto final y que reacciona rápidamente con otras sustancias químicas en el sistema binario o de multicomponentes.»

Los alcoholes son precursores de multitud de agentes químicos de guerra, y además son, en algunos casos, componentes de sistemas químicos binarios o de multicomponentes.

 

 

Los alcoholes y la CAQ1,2

A efectos de verificación la CAQ recoge en su anexo sobre sustancias químicas miles de sustancias químicas del tipo ésteres fosfóricos o ésteres fosfónicos, donde el resto alquílico del éster puede ser una cadena carbonada lineal, o más o menos ramificada, o incluso con ciclos, que no tenga más de 10 átomos de carbono:

1A.1

1A.2

1A.3

 

 

2B.4

Pese a la existencia de miles de ésteres en las Listas de la CAQ, tan solo unos pocos alcoholes están recogidos en ellas, lo que indica claramente que no todos los alcoholes son iguales:

2B.9 Quinuclidinol-3

CAS 1619-34-7

2B.11 N,N-dialquilaminoetan-2-oles

2B.13 Tiodiglicol

CAS 111-48-8

2B.14 Alcohol pinacolilico (3,3-dimetilbutan-2-ol)

CAS 464-07-3

 

3B.15 Etildietanolamina

CAS 139-87-7

3B.16 Metildietanolamina

CAS 105-59-9

3B.17 Trietanolamina

CAS 102-71-6

Todos los alcoholes listados tienen, además de sus fines no prohibidos por la CAQ, una aplicación más o menos directa para la síntesis de algunos agentes químicos de guerra, por ejemplo:

  • El quinuclidin-3-ol es junto con el ácido 2,2-difenil-2-hidroxiacético, precursor necesario del agente incapacitante benzilato de 3-quinuclidinilo, más conocido como agente BZ (CAS 6581-06-2), incluido en la Lista 2A.3.

  • El N,N-diisopropilaminoetanol es un precursor para la síntesis del O-2-diisopropilaminoetil metilfosfonito de O-etilo, agente QL (CAS 57856-11-8), precursor para la síntesis del agente neurotóxico VX (CAS 50782-69-9).

  • El tiodiglicol (CAS 111-48-8) reacciona con el cloruro de hidrógeno para formar sulfuro de bis (2-cloroetilo), el famoso agente vesicante conocido como iperita o “gas mostaza” (CAS 505-60-2).

  • El 3,3-dimetilbutan-2-ol, conocido como alcohol pinacolílico (CAS 464-07-3), es precursor del agente neurotóxico somán (CAS 96-64-0).

Se da la circunstancia de que muchos alcoholes, que son sustancias muy utilizadas para fines no prohibidos por la CAQ, no están incluidos, ni en las Listas de la CAQ, ni en las listas del Grupo Australia, y sin embargo son precursores para la síntesis de los ésteres organofosforados incluídos en las Listas.

Por ejemplo, ni el isopropanol, ni el ciclohexanol, ni el etanol están incluidos en las Listas de la CAQ, y tampoco están incluidos en el Grupo Australia, pero son precursores para la síntesis del sarín, ciclosarín y etilsarín, respectivamente:

 

 

Destrucción de las armas químicas1

En el anexo sobre la aplicación y la verificación, en su Parte IV(A) relativa a la destrucción de armas químicas y su verificación, en el artículo 2 se indica:

            …

    1. los casos de mezclas de dos o más sustancias químicas, se identificará cada una de ellas, indicándose los porcentajes respectivos, y la mezcla se declarará con arreglo a la categoría de la sustancia química más tóxica. Si un componente de un arma química binaria está constituido por una mezcla de dos o más sustancias químicas, se identificará cada una de ellas y se indicará el porcentaje respectivo;
    2. Las armas químicas binarias se declararán con arreglo al producto final pertinente dentro del marco de las categorías de armas químicas mencionadas en el párrafo 16. Se facilitará la siguiente información complementaria respecto de cada tipo de munición química binaria/dispositivo químico binario:

i) El nombre químico del producto tóxico final;

ii) La composición química y la cantidad de cada componente;

iii) La relación efectiva de peso entre los componentes;

iv) Qué componente se considera el componente clave;

v) La cantidad proyectada del producto tóxico final calculada sobre una base estequiométrica a partir del componente clave, suponiendo que el rendimiento sea del 100%. Se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto tóxico final específico equivale a la cantidad (en toneladas) de ese producto tóxico final calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;

Y en el artículo 18 de esta Parte IV(A) relativa a la destrucción de armas químicas y su verificación, se indica:

Para la destrucción de las armas químicas binarias se aplicará lo siguiente:

  1. A los efectos del orden de destrucción, se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto final tóxico específico equivale a la cantidad (en toneladas) de ese producto final tóxico calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;
  2. La exigencia de destruir una cantidad determinada del componente clave implicará la exigencia de destruir una cantidad correspondiente del otro componente, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario;
  3. Si se declara una cantidad mayor de la necesaria del otro componente, sobre la base de la relación efectiva de peso entre componentes, el exceso consiguiente se destruirá a lo largo de los dos primeros años siguientes al comienzo de las operaciones de destrucción;
  4. Al final de cada año operacional siguiente, cada Estado Parte podrá conservar una cantidad del otro componente declarado determinada sobre la base de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.

Esto supone que si se declarase la posesión de un componente clave de un sistema de munición química binaria, por ejemplo, si se declarasen 100 kg de DF (que con un peso molecular de 100,00 suponen 1000 moles), habría que destruir 1000 moles de un alcohol, por ejemplo, de 3,3-dimetil-2-butanol (CAS 464-07-3, Lista 2B.14), de 2-propanol (CAS 67-63-0, no listado), de 2-butanol (CAS 78-83-1, no listado), de 2,2-dimetil-1-propanol (CAS 75-84-3, no listado), o de cualquier otro de los muchos alcoholes no listados.

 

 

Guerra química

En guerra química la elección del alcohol viene condicionada por la toxicidad del agente y la disponibilidad o facilidad de síntesis del alcohol.

La siguiente tabla muestra la toxicidad en conejos, por vía intravenosa, para diferentes metilfosfonofluoridatos de O-alquilo, sarín, somán y ciclosarín, entre otros, y como puede observarse son bastante similares. En caso de requerirse un agente químico de guerra del tipo «metilfosfonofluoridato de O-alquilo» es probable que la obtención del mismo venga condicionada en gran medida por la disponibilidad del alcohol correspondiente3.

 

 

Grupo alquilo R1

Nombre del agente químico de guerra

LD50 iv en conejos (mg/kg)

CH3

Metilfosfonofluoridato de O-metilo

0,04

CH3CH2

Metilfosfonofluoridato de O-etilo

0,05

CH3CH2CH2

Metilfosfonofluoridato de O-propilo

0,03

(CH3)2CH-

Metilfosfonofluoridato de O-isopropilo, sarín, GB

0,02

CH3CH2CH2CH2

Metilfosfonofluoridato de O-butilo

0,05

CH3CH2CH(CH3)-

Metilfosfonofluoridato de O-(1-metilpropilo)

0,01

(CH3)2CH2CH-

Metilfosfonofluoridato de O-isobutilo

0,19

CH3CH2CH2CH(CH3)-

Metilfosfonofluoridato de O-(1-metilbutilo)

0,02

(CH3)2CH2CH(CH3)-

Metilfosfonofluoridato de O-(1,2-dimetilpropilo)

0,01

(CH3)3CCH2

Metilfosfonofluoridato de O-neopentilo, Metilfosfonofluoridato de O-(2,2-dimetilpropilo)

0,01

CH3CH2CH2CH2CH2CH2

Metilfosfonofluoridato de O-hexilo

0,15

(CH3)2CHCH2CH(CH3)-

Metilfosfonofluoridato de O-(1,3-dimetilbutilo)

0,02

(CH3)3CCH(CH3)-

Metilfosfonofluoridato de O-pinacolilo, Metilfosfonofluoridato de O-(1,2,2-trimetilpropilo), somán, GD

0,01

C6H11

Metilfosfonofluoridato de O-ciclohexilo, ciclosarín, GF

0,02

 

 

De los alcoholes, los ésteres

La cadena carbonada lineal, o más o menos ramificada, o incluso con ciclos, que no tenga más de 10 átomos de carbono, enlazada al átomo de fósforo a través de un átomo de oxígeno, se correspondería con el alcohol esterificado. Conforme aumenta el número de átomos de carbono del alcohol aumenta de manera importante el número de isómeros posibles. La siguiente tabla muestra los posibles alcoholes de C1 a C8, con su número CAS (no se incluyen los ciclos, ni los isómeros ópticos):

 C1

 

Metanol, CAS 67-56-1

C2

Etanol, CAS 64-17-5

C3

Propanol, CAS 71-23-8

Isopropanol, CAS 67-63-0

C4

1-butanol, CAS 71-36-3

2-butanol, CAS 78-83-1

1-metil-1-propanol, CAS 78-92-2

1,1-dimetil-1-propanol, CAS 75-65-0

C5

1-pentanol, CAS 71-41-0

2-pentanol, CAS 6032-29-7

3-pentanol, CAS 584-02-1

2-metil-1-butanol, CAS 137-32-6

3-metil-1-butanol, CAS 123-51-3

2-metil-2-butanol, CAS 75-85-4

3-metil-2-butanol, CAS 598-75-4

2,2-dimetil-1-propanol, CAS 75-84-3

C6

1-hexanol, CAS 111-27-3

2-hexanol, CAS 626-93-7

3-hexanol, CAS 623-37-0

2-metil-1-pentanol, CAS 105-30-6

3-metil-1-pentanol, CAS 589-35-5

4-metil-1-pentanol, CAS 626-89-1

2-metil-2-pentanol, CAS 590-36-1

3-metil-2-pentanol, CAS 565-60-6

4-metil-2-pentanol, CAS 108-11-2

3-metil-3-pentanol, CAS 77-74-7

4-metil-3-pentanol, CAS 565-67-3

2,2-dimetil-1-butanol, CAS 1185-33-7

2-etil-1-butanol, CAS 97-95-0

2,3-dimetil-1-butanol, CAS 49550-30-2

3,3-dimetil-1-butanol, CAS 624-95-3

2,3-dimetil-2-butanol, CAS 594-60-5

3,3-dimetil-2-butanol, CAS 464-07-3 (en Lista 2B.14 de la CAQ)

C7

1-heptanol, CAS 111-70-6

2-heptanol, CAS 543-49-7

3-heptanol, CAS 589-82-2

4-heptanol, CAS 589-55-9

2-metil-1-hexanol, CAS 624-22-6

3-metil-1-hexanol, CAS 13231-81-7

4-metil-1-hexanol, CAS 818-49-5

5-metil-1-hexanol, CAS 627-98-5

2-metil-2-hexanol, CAS 625-23-0

3-metil-2-hexanol, CAS 2313-65-7

4-metil-2-hexanol, CAS 2313-61-3

5-metil-2-hexanol, CAS 627-59-8

2-metil-3-hexanol, CAS 617-29-8

3-metil-3-hexanol, CAS 597-96-6

4-metil-3-hexanol, CAS 615-29-2

5-metil-3-hexanol, CAS 623-55-2

2,2-dimetil-1-pentanol, CAS 2370-12-9

3,3-dimetil-1-pentanol, CAS 19264-94-9

4,4-dimetil-1-pentanol, CAS 3121-79-7

2-etil-1-pentanol, CAS 27522-11-8

3-etil-1-pentanol, CAS 66225-51-2

2,3-dimetil-2-pentanol, CAS 4911-70-0

2,4-dimetil-2-pentanol, CAS 625-06-9

3,3-dimetil-2-pentanol, CAS 19781-24-9

4,4-dimetil-2-pentanol, CAS 6144-93-0

3,4-dimetil-1-pentanol, CAS 6570-87-2

2,3-dimetil-1-pentanol, CAS 10143-23-4

2,4-dimetil-1-pentanol, CAS 6305-71-1

3-etil-2-pentanol, CAS 609-27-8

3,4-dimetil-2-pentanol, CAS 64502-86-9

2,2-dimetil-3-pentanol, CAS 3970-62-5

2,4-dimetil-3-pentanol, CAS 600-36-2

3-etil-3-pentanol, CAS 597-49-9

2,3-dimetil-3-pentanol, CAS 595-41-5

2,2,3-trimetil-1-butanol, CAS 55505-23-2

2,3,3-trimetil-1-butanol, CAS 36794-64-6

2-etil-3-metil-1-butanol, CAS 32444-34-1

2-etil-2-metil-1-butanol, CAS 18371-13-6

2,3,3-trimetil-2-butanol, CAS 594-83-2

C8

1-octanol, CAS 111-87-5

2-octanol, CAS 123-96-6

3-octanol, CAS 589-98-0

4-octanol, CAS 589-62-8

2-metil-1-heptanol, CAS 60435-70-3

2-metil-2-heptanol, CAS 625-25-2

2-metil-3-heptanol, CAS 18720-62-2

2-metil-4-heptanol, CAS 21570-35-4

3-metil-1-heptanol, CAS 1070-32-2

3-metil-2-heptanol, CAS 31367-46-1

3-metil-3-heptanol, CAS 5582-82-1

3-metil-4-heptanol, CAS 1838-73-9

4-metil-1-heptanol, CAS 817-91-4

4-metil-2-heptanol, CAS 56298-90-9

4-metil-3-heptanol, CAS 14979-39-6

4-metil-4-heptanol, CAS 598-01-6

5-metil-1-heptanol, CAS 7212-53-5

5-metil-2-heptanol, CAS 54630-50-1

5-metil-3-heptanol, CAS 18720-65-5

6-metil-1-heptanol, CAS 1653-40-3

6-metil-2-heptanol, CAS 4730-22-7

6-metil-3-heptanol, CAS 18720-66-6

2,2-dimetil-1-hexanol, CAS 2370-13-0

2,2-dimetil-3-hexanol, CAS 4209-90-9

2,3-dimetil-1-hexanol, CAS 19550-02-8

2,3-dimetil-2-hexanol, CAS 19550-03-9

2,3-dimetil-3-hexanol, CAS 4166-46-5

2,4-dimetil-1-hexanol, CAS 3965-59-1

2,4-dimetil-2-hexanol, CAS 42328-76-7

2,4-dimetil-3-hexanol, CAS 13432-25-2

2,5-dimetil-1-hexanol, CAS 6886-16-4

2,5-dimetil-2-hexanol, CAS 3730-60-7

2,5-dimetil-3-hexanol, CAS 19550-07-3

3,3-dimetil-1-hexanol, CAS 10524-70-6

3,3-dimetil-2-hexanol, CAS 22025-20-3

3,4-dimetil-1-hexanol, CAS 66576-57-6

3,4-dimetil-2-hexanol, CAS 19550-05-1

3,4-dimetil-3-hexanol, CAS 19550-08-4

3,5-dimetil-1-hexanol, CAS 13501-73-0

3,5-dimetil-2-hexanol, CAS 66576-27-0

3,5-dimetil-3-hexanol, CAS 4209-91-0

4,4-dimetil-1-hexanol, CAS 6481-95-4

4,4-dimetil-2-hexanol, CAS 66576-28-1

4,4-dimetil-3-hexanol, CAS 19550-09-5

4,5-dimetil-1-hexanol, CAS 60564-76-3

4,5-dimetil-2-hexanol, CAS 66576-29-2

4,5-dimetil-3-hexanol, CAS 66576-30-5

5,5-dimetil-1-hexanol, CAS 2768-18-5

5,5-dimetil-2-hexanol, CAS 31841-77-7

5,5-dimetil-3-hexanol, CAS 66576-31-6

2-etil-1-hexanol, CAS 104-76-7

3-etil-1-hexanol, CAS 41065-95-6

3-etil-2-hexanol, CAS 24448-19-9

3-etil-3-hexanol, CAS 597-76-2

4-etil-1-hexanol, CAS 66576-32-7

4-etil-2-hexanol, CAS 66576-33-8

4-etil-3-hexanol, CAS 19780-44-0

2,2,3-trimetil-1-pentanol, CAS 57409-53-7

2,2,3-trimetil-3-pentanol, CAS 7294-05-5

2,2,4-trimetil-1-pentanol, CAS 123-44-4

2,2,4-trimetil-3-pentanol, CAS 5162-48-1

2,3,3-trimetil-1-pentanol, CAS 66576-25-8

2,3,3-trimetil-2-pentanol, CAS 23171-85-9

2,3,4-trimetil-1-pentanol, CAS 6570-88-3

2,3,4-trimetil-2-pentanol, CAS 66576-26-9

2,3,4-trimetil-3-pentanol, CAS 3054-92-0

2,4,4-trimetil-1-pentanol, CAS 16325-63-6

2,4,4-trimetil-2-pentanol, CAS 690-37-9

3,3,4-trimetil-1-pentanol, CAS 65502-58-1

3,3,4-trimetil-2-pentanol, CAS 19411-41-7

3,4,4-trimetil-1-pentanol, CAS 16325-64-7

3,4,4-trimetil-2-pentanol, CAS 10575-56-1

2-etil-2-metil-1-pentanol, CAS 5970-63-8

2-etil-3-metil-1-pentanol, CAS 66576-35-0

2-etil-4-metil-1-pentanol, CAS 106-67-2

3-etil-2-metil-1-pentanol, CAS 66576-34-9

3-etil-2-metil-2-pentanol, CAS 19780-63-3

3-etil-2-metil-3-pentanol, CAS 597-05-7

3-etil-3-metil-1-pentanol, CAS 10524-71-7

3-etil-3-metil-2-pentanol, CAS 66576-22-5

3-etil-4-metil-1-pentanol, CAS 38514-13-5

3-etil-4-metil-2-pentanol, CAS 66576-23-6

2-propil-1-pentanol, CAS 58175-57-8

2-(1-metiletil)-1-pentanol, CAS 18593-91-4

2-etil-3,3-dimetil-1-butanol, CAS 66576-56-5

2-etil-2,3-dimetil-1-butanol, CAS 66576-55-4

2,2-dietil-1-butanol, CAS 13023-60-4

3-metil-2-(1-metiletil)-1-butanol, CAS 18593-92-5

2,2,3,3-tetrametil-1-butanol, CAS 66576-24-7

 

De los 161 alcoholes de esta lista solo el 3,3-dimetil-2-butanol (alcohol pinacolílico), CAS 464-07-3 está en las Listas de la CAQ, concretamente en la Lista 2B.14.

Los alcoholes se usan como disolventes y diluyentes para pinturas (principalmente alcoholes C1-C6), como intermedios en la fabricación de ésteres y de toda una gama de compuestos orgánicos, como agentes de flotación, como lubricantes, y como combustibles o aditivos de combustible. Para fines industriales, a menudo se prefieren las mezclas isoméricas porque los alcoholes puros son demasiado caros. Además, las mezclas de alcoholes con diferentes números de átomos de carbono pueden ser ventajosas para ciertos fines. Por lo tanto, las cantidades de mezclas de alcohol disponibles en el mercado son similares a las cantidades de los alcoholes puros individuales.

Desde el punto de vista industrial los alcoholes más importantes son metanol, etanol, 1-propanol, 2-propanol (alcohol isopropílico), 1-butanol, 2-metil-1-propanol (alcohol isobutílico), los alcoholes plastificantes (C6 – C11) y los alcoholes grasos (C12 – C18), utilizados para detergentes.

 

 

Métodos de preparación de alcoholes4,5,6,7,8

Existen muchos y muy diversos métodos de laboratorio para la preparación de alcoholes, que aparecen descritos en los múltiples libros sobre química orgánica. A modo de resumen podemos citar los siguientes:

  1. Hidratación de alquenos. La reacción de hidratación sigue la regla de Markovnikov, es decir, el protón se adiciona al carbono menos sustituido del alqueno y el grupo hidroxilo se adiciona al carbono más sustituido del alqueno.

  1. Hidroboración seguida de oxidación. La hidroboración es una reacción en la cual un alqueno reacciona con un hidruro de boro para formar un organoborano que posteriormente es oxidado con peróxido de hidrógeno en medio básico para obtener un alcohol. La reacción de hidroboración sigue la regla anti-Markovnikov, es decir, el protón se adiciona al carbono más sustituido del alqueno y el grupo hidroxilo se adiciona al carbono menos sustituido del alqueno.

  1. Hidrólisis de los halogenuros de alquilo. La hidrólisis de los halogenuros de alquilo es una reacción de sustitución nucleófila que permite la obtención del correspondiente alcohol. La utilidad de esta reacción de sustitución viene limitada por la competencia de la reacción de eliminación de halogenuro de hidrógeno que produce el correspondiente alqueno.

  1. Hidrólisis de los halogenuros de alquilo. La hidrólisis de los halogenuros de alquilo es una reacción de sustitución nucleófila que permite la obtención del correspondiente alcohol. La utilidad de esta reacción de sustitución viene limitada por la competencia de la reacción de eliminación de halogenuro de hidrógeno que produce el correspondiente alqueno.
  2. Reacción de adición nucleófila de reactivos de Grignard al grupo carbonilo (aldehídos, cetonas, ésteres y acil derivados) y a epóxidos. Mediante este procedimiento se pueden obtener ácoholes primarios, secundarios y terciarios:
    • Alcoholes primarios. Cuando la adición se lleva a cabo sobre el metanal.

    • Alcoholes secundarios. Cuando la adición se lleva a cabo sobre cualquier otro aldehído:

    • Alcoholes terciarios. Cuando la adición se lleva a cabo sobre una cetona:

    • Reacciones con ésteres y halogenuros (haluros) de ácido. Los reactivos de Grignard reaccionan con estos derivados de ácido dando alcoholes terciarios, pero se requieren dos equivalentes del reactivo de Grignard por cada equivalente del derivado de ácido:

    • Reacciones con epóxidos. Normalmente con óxido de metileno, para así obtener alcoholes primarios:

 

  1. Reducción de compuestos carbonílicos. Para la reducción de los compuestos carbonílicos se suelen emplear hidruros, como el NaBH4 que es muy selectivo y no reduce ni los ácidos ni los ésteres, o el LiAlH4 que es un reactivo más enérgico que reduce también los ácidos, los ésteres y otros derivados de ácidos. Normalmente los aldehídos se reducen a alcoholes primarios y las cetonas a alcoholes secundarios. Los ácidos y ésteres se reducen a alcoholes primarios.

 

A escala industrial podemos citar los siguientes procesos:

  1. Síntesis a partir de monóxido de carbono e hidrógeno (para el metanol)
  2. Oxosíntesis (la mayor parte de las veces combinada con hidrogenación de los aldehídos formados inicialmente; alcoholes de C3 a C20)
  3. Hidrogenación de aldehídos, ácidos carboxílicos o ésteres.
  4. Condensación aldólica de aldehídos inferiores e hidrogenación de los alquenilos (C3→C6, C4→C8, C8→C16)
  5. Oxidación de compuestos de trialquilaluminio (proceso Ziegler)
  6. Oxidación de hidrocarburos saturados.
  7. Hidratación de olefinas (alcoholes de C2 a C4)
  8. Homologación de alcoholes
  9. Hidrocarbonilación mediante el proceso Reppe
  10. Hidrocarboximetilación
  11. Procesos de fermentación (alcoholes de C2 a C5)
  12. Proceso Guerbet

Probablemente los procesos industriales más importantes son la síntesis de metanol y la oxosíntesis, aunque la hidratación de etileno y de propeno a etanol y a 2-propanol, y la oxidación de los compuestos de trialquilaluminio (proceso Alfol o proceso Ziegler) también ha logrado una considerable importancia comercial. La fermentación, especialmente para la producción de etanol, ha vuelto a ser importante en ciertas regiones debido al aumento de precio del petróleo.

 

Síntesis a partir de monóxido de carbono e hidrógeno (para el metanol)4

Sólo el metanol se prepara a partir de gas de síntesis (El gas de síntesis, que contiene cantidades variables de monóxido de carbono (CO) e hidrógeno (H2), es un combustible gaseoso obtenido sometiendo ciertas sustancias ricas en carbono (hulla, carbón, coque, nafta, biomasa, etc.) a un proceso químico a alta temperatura):

CO + H2 ⇔ CH3OH

CO2 + H2 ⇔ CH3OH + H2O

CO2 + H2 ⇔ CO + H2O

 

Oxosíntesis4,9

Los alcoholes en el rango C3-C20 pueden prepararse mediante oxosíntesis, haciendo reaccionar olefinas con gas de síntesis (CO + H2) para formar aldehídos usando la reacción de hidroformilación, y luego hidrogenando el aldehído para obtener el alcohol:

R-CH=CH2 + CO + 2 H2 → R-CH2CH2CH2OH

Algunas veces se aplica una etapa intermedia para agregar dos aldehídos y obtener un aldehído con mayor número de átomos de carbono (reacción de condensación aldólica), antes de proceder a la hidrogenación. Una versión particular de la oxosíntesis es el proceso Shell, en el cual la fuerte actividad hidrogenante del catalizador, HCo(CO)3PR3, conduce a la hidrogenación directa en el reactor oxo del aldehído inicialmente formado.

Los principales alcoholes obtenidos mediante este proceso (oxo-alcoholes) son: 1-butanol (CAS 71-36-3), 2-metil-2-butanol (CAS ), 2-etil-1-hexanol (CAS 75-85-4), 2-propil-1-heptanol (CAS 10042-59-8), 7-metil-1-octanol (CAS 27458-94-2) y 8-metil-1-nonanol (25339-17-7)

 

Hidrogenación de aldehídos, ácidos carboxílicos o ésteres4

Los aldehídos se pueden hidrogenar en presencia de catalizadores homogéneos o heterogéneos. Generalmente se prefieren catalizadores heterogéneos que son efectivos tanto en fase gaseosa a temperaturas de 90-180 °C y presiones de 25 bar, como en fase líquida a temperaturas de 80-220 °C y presiones de hasta 300 bar. La temperatura de hidrogenación empleada en los distintos procesos industriales es un compromiso entre el menor consumo energético posible y la más larga vida útil del catalizador.

 

Condensación aldólica de aldehídos inferiores e hidrogenación de los alquenales4 (C3→C6, C4→C8, C8→C16)

En la industria, la única fuente de aldehídos para la condensación aldólica es la oxosíntesis. Después de eliminados los isoaldehídos y otros subproductos, se realiza la condensación catalizada por ácidos o bases. Dado que la reactividad de cada aldehído depende de la longitud de la cadena y del grado de ramificación, las condiciones de reacción deben adaptarse para cada aldehído en particular. Los aldehídos insaturados (alquenales), formados por eliminación de agua en los aldoles, se hidrogenan sobre catalizadores heterogéneos.

Mediante este método, se preparan 2-etilhexanol, 2-metilpentanol y cantidades limitadas de alcoholes isómeros C16 y C18 altamente ramificados.

 

Oxidación de compuestos de trialquilaluminio (proceso Ziegler)4

El etileno puede agregarse al trietilaluminio para formar una mezcla de compuestos de trialquilaluminio de mayor masa molecular. Estos productos pueden oxidarse con aire a loscorrespondientes alcóxidos de aluminio, que luego se hidrolizan a una mezcla de alcoholes primarios lineales con el mismo número de átomos de carbono que los grupos alquilo que constituyen el trialquilaluminio:

Al(CH2CH3)3 + 3x CH2=CH2 → Al((CH2CH2)xCH2CH3)3

Al((CH2CH2)xCH2CH3)3 + 3/2 O2 → Al(O(CH2CH2)xCH2CH3)3

Al(O(CH2CH2)xCH2CH3)3  + 3 H2O → Al(OH)3 + 3 HO(CH2CH2)xCH2CH3

Esta reacción conocida como proceso Ziegler (también como síntesis Ziegler-Alfol) es el fundamento de dos procesos comerciales, uno conocido como proceso Conoco (Conoco y Deutsche Texaco) que produce alcoholes entre C2-C28, prácticamente lineales en un 100%, empleando una temperatura lo más baja posible, y otro conocido como proceso Ethyl Corporation que produce predominantemente alcoholes entre C12-C14, lineales en un 95%.

Comparación de la composición de las mezclas de alcoholes del proceso Ziegler.

Nº átomos de carbono

Proceso Conoco

Proceso Ethyl Corporation

6

9,6%

1,4%

8

16,9%

3,2%

10

20,7%

7,7%

12

19,4%

34,5%

14

15,1%

26,3%

16

9,8%

16,7%

18

5,3%

8,9%

20

3,2%

1,3%

 

Oxidación de hidrocarburos saturados4

La oxidación de los hidrocarburos alifáticos con aire en presencia de ácido metabórico, HBO2, (oxidación de Bashkirov) produce ésteres de ácido bórico con un alto rendimiento. Estos se hidrolizan en un segundo paso a alcoholes secundarios en los que los grupos hidroxilo se distribuyen estadísticamente a lo largo de la cadena molecular.

Normalmente, se utiliza como producto de partida una mezcla de n-hidrocarburos con longitudes de cadena entre 10 y 16 átomos de carbono. La oxidación se lleva a cabo en la fase líquida a 150-170 °C en presencia de 4-5% en peso de ácido metabórico empleando una mezcla de nitrógeno y oxígeno (con aproximadamente un 3,5% de O2), a presión normal o ligeramente elevada.

El producto de partida y los subproductos de oxidación se eliminan mediante evaporación instantánea y se limpian mediante lavadores de gases alcalinos y de agua. Los ésteres de ácido metabórico en el fondo de la columna de evaporación instantánea  se hidrolizan mediante la adición de pequeñas cantidades de agua a 80- 00 °C. Después de la destilación fraccionada, se obtienen alcoholes con una pureza superior al 98%. El procesado finaliza con una hidrogenación sobre catalizadores heterogéneos de níquel para eliminar las sustancias coloreadas y olorosas.

Por ejemplo, la oxidación por este método del ciclohexano permite obtener una mezcla de ciclohexanol y ciclohexanona conocida como aceite KA. El ciclohexano que se obtiene en su mayor parte por  hidrogenación del benceno es oxidado en fase líquida con aire en presencia de catalizadores solubles de cobalto o ácido bórico para producir una mezcla de ciclohexanol y de ciclohexanona (aceite KA). El ciclohexanol puede ser oxidado a ciclohexanona, que se usa para producir caprolactama, un monómero para la producción de nylon-6 (policaprolactama). El aceite de KA puede convertirse en ácido adípico y hexametilendiamina, los monómeros para la producción de nylon 66 (poli-hexametilenadipamida).

 

Hidratación de olefinas (alcoholes de C2 a C4)4

Un método común para la producción de alcoholes inferiores es la hidratación de alquenos. La hidratación de alquenos es Markovnikov, es decir, el protón se adiciona al carbono menos sustituido del alqueno (carbono con más hidrógenos) de modo que se obtienen alcoholes secundarios y terciarios (excepto en el caso del etileno):

El mecanismo transcurre con formación de un carbocatión intermedio, y la velocidad de la reacción viene determinada por la estabilidad de dicho carbocatión (terciario> secundario> primario). Por ello, la hidratación del isobuteno se produce a temperatura ambiente en presencia de bajas concentraciones de protones debido a la relativa estabilidad del carbocatión terciario intermedio, mientras que la hidratación del etileno requiere temperaturas y presiones elevadas.

La hidratación se emplea para la preparación de etanol a partir de etileno y de alcohol isopropílico a partir de propeno. También se emplea en la producción de 2-butanol a partir de una mezcla de 1-buteno y 2-buteno (raffinato II) y de alcohol terc-butílico (2-metil-2-propanol) a partir de isobuteno (isobutileno ó 2-metilpropeno).

 

Homologación de alcoholes4

Una reacción de homologación, también conocida como «homologización», es cualquier reacción química que convierte el reactivo en el siguiente miembro de la serie homóloga. Una serie homóloga es un grupo de sustancias químicas similares que difieren entre sí en un átomo de carbono, generalmente un grupo -CH2-.

La homologación de alcoholes es la reacción de alcoholes con gas de síntesis en presencia de complejos sistemas catalíticos multicomponentes. Dependiendo de las condiciones de reacción, los productos resultantes son aldehídos o alcoholes que contienen un grupo -CH2– más que los materiales de partida:

Aunque la reacción se concibió originalmente para la síntesis de etanol a partir de metanol, el alcance se ha ampliado para incluir la producción de aldehídos homólogos (acetaldehído a partir de metanol), ácidos carboxílicos (ácido propiónico a partir de ácido acético), ésteres de ácidos carboxílicos (acetato de etilo a partir de acetato de metilo), así como la síntesis de estireno (mediante la homologación de alcohol bencílico a 2-feniletanol con posterior deshidratación).

El proceso no goza de gran utilización industrial porque la conversión y la selectividad, a pesar de los considerables avances, todavía son insuficientes y porque existen problemas con el reciclaje de los complejos catalizadores de homologación.

 

Hidrocarbonilación mediante el proceso Reppe4

La hidrocarbonilación de olefinas mediante el proceso Reppe (en honor al químico alemán  Walter Reppe) con monóxido de carbono y agua, y el uso de sales amónicas del dihidruro tetracarbonilo de hierro (H2Fe(CO)4) como catalizador, conduce a alcoholes con un átomo de carbono adicional. Al igual que en la oxosíntesis, también se forman productos de cadena ramificada (la relación molar de alcoholes de cadena lineal a ramificada es de aproximadamente 9:1).

El propeno reacciona a 90-110 °C y 5-20 bar para formar butanoles con rendimientos del 90%. Aproximadamente el 4% del propeno se hidrogena a propano.

La conversión de olefinas superiores requiere condiciones más extremas. El proceso no puede competir con la hidroformilación.

 

Hidrocarboximetilación4

La hidrocarboximetilación es una variante del proceso Reppe en el que las olefinas superiores reaccionan con monóxido de carbono y metanol en presencia de un catalizador de cobalto-piridina. Los productos son ésteres de ácidos carboxílicos que contienen un átomo de carbono más en la cadena madre que la materia prima olefínica. Los ésteres se pueden hidrogenar a los alcoholes. Puesto que estos productos pueden prepararse de manera más económica a partir de materias primas naturales, el proceso apenas tiene ahora importancia industrial.

 

Procesos de fermentación (alcoholes de C2 a C5)4

La fermentación, que es probablemente el proceso más antiguo para la fabricación de etanol, todavía se practica a gran escala. La fermentación de butanolacetona de las materias primas de carbohidratos ya no tiene importancia. En pequeña escala, los pentanoles se recuperan de los aceites de fusel (mezcla de alcoholes alifáticos de longitud de cadena C3, C4 y C5, en proporciones que varían según la procedencia. Normalmente contiene 2-metil-1-butanol, 3-metil-1-butanol (alcohol isoamílico), 2-metil-1-propanol (alcohol isobutílico) y n-propanol, en un medio etanólico).

 

Proceso Guerbet4

En el proceso Guerbet, los alcoholes primarios saturados se dimerizan en alcoholes primarios ramificados en posición a. Normalmente, la reacción se lleva a cabo con el alcohol a reflujo en presencia de un agente de condensación alcalino y un catalizador de hidrogenación-deshidrogenación, por ejemplo:

El agua y las pequeñas cantidades de hidrógeno producidas en la reacción se eliminan en continuo. Si el calentamiento se prolonga durante mucho tiempo también se forman alcoholes primarios a-ramificados triméricos.

El rendimiento de alcoholes diméricos es de aproximadamente el 80%. Se puede aumentar mediante el reciclaje de los residuos y la adición en porciones de catalizador nuevo. El sodio metálico, así como otras sustancias, se han propuesto como agentes de condensación. Para fines industriales, se prefieren los hidróxidos de metales alcalinos.

Debido a que los alcoholes con la típica ramificación en posición a se preparan más fácilmente por otros métodos, por ejemplo, el 2-etil-1-hexanol por hidroformilación de propeno para dar butanal y posterior condensación de aldol, la reacción de Guerbet no se ha establecido como un proceso industrial a gran escala.

 

 

Conclusión

  • No todos los alcoholes son iguales, pues algunos, muy pocos, están incluidos en las Listas incluidas en el Anexo sobre sustancias químicas de la CAQ o en la Lista del Rrupo Australia, mientras que la mayoría de los alcoholes no están incluídos en Lista alguna.
  • Sin embargo la CAQ incluye la exigencia de destruir la cantidad estequiométrica de un alcohol, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.
  • A la hora de preparar un agente químico de guerra mediante un proceso de síntesis a partir de un alcohol es probable que además de la toxicidad del producto final se tenga muy en cuenta la disponibilidad y pureza del alcohol a emplear en la síntesis, sobre todo cuando lo que prima son los efectos psicológicos sobre los efectos letales de la dispersión de un agente neurotóxico.

 

 

Referencias

  1. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción», https://www.opcw.org/sites/default/files/documents/2019/02/CWC_es.pdf
  2. «Grupo Australia», https://australiagroup.net/es/listas.html
  3. «Fluorine chemistry at the millennium-fascinated by fluorine», R.E. Banks, Elsevier Science Ltd., 2000
  4. «Ullmann’s Encyclopedia of Industrial Chemistry», «Alcoholes alifáticos», 7th ed, Wiley-VCH (Editor), 2011
  5. «Química orgánica», I.L. Finar, Ed. Alhambra, 3ª ed., 1975
  6. «Química orgánica superior», L.F.Fieser & M. Fieser, Ed. Grigalbo, 1966
  7. «Química orgánica», N.L. Allinger y otros, Ed. Reverté, 1973
  8. «Reacciones de síntesis de alcoholes», https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwi71YHJtsjhAhUp8uAKHT98DVQQFjAAegQIARAC&url=https%3A%2F%2Fwww2.ulpgc.es%2Fhege%2Falmacen%2Fdownload%2F4%2F4545%2FReacciones_de_los_Alcoholes.doc&usg=AOvVaw2sYf0-92GWbgom2704PDWq
  9. «Oxo alcohols», Wikipedia, https://en.wikipedia.org/wiki/Oxo_alcohol

 

 

 

Virus, dime, ¿Entras o sales?

Introducción

Las mascarillas, quirúrgicas o higiénicas, y las máscaras filtrantes no le preguntan al virus si entra o sale, para según su respuesta actuar de una u otra manera.

Circula un whatsapp sobre el COVID-19 que describe perfectamente la situación que viven las máscaras y las mascarillas: «Las máscaras no sirven de nada, pero sí sirven, si puedes póntela, o si no un foulard, o no te la pongas porque en realidad solo sirven si estas contagiado, pero puedes estar contagiado y no lo sabes, entonces sí, las máscaras sí sirven, póntela. Ah, qué no hay, pues no te la pongas, porque no sirve para nada».

Recordemos que las máscaras y las mascarillas son elementos de protección (producto sanitario o elemento del EPI), y no elementos de prevención. Cuando ya se han aplicado las otras dos medidas de protección (la mayor distancia posible y el menor tiempo de exposición), solo queda la barrera (máscaras o mascarillas, gafas, guantes, traje, botas, etc.). El lavado de manos, el toser en el codo, el usar pañuelos desechables, el no tocarse los ojos, la nariz o la boca, etc., son medidas preventivas que deben seguirse por todos los individuos, usen o no máscaras o mascarillas, y sean o no personal interviniente o público en general.

«El uso de mascarillas en personas sanas no tiene sentido». Así definía en febrero Fernando Simón, director del Centro de Coordinación de Alertas y Emergencias Sanitarias del Ministerio de Sanidad, el uso de estas protecciones que ahora el Gobierno ha hecho obligatorio para quienes viajen en transporte público para evitar contagios.1,2

La reiterada advertencia llevada a cabo por portavoces de gobiernos, de instituciones públicas, y de asociaciones de usuarios, acerca de que el uso de máscaras o mascarillas puede provocar en el usuario una falsa sensación de seguridad, se debe aplicar tanto al personal médico y de enfermería, policía, bomberos, etc., como al público en general. Estos mismos portavoces también han insistido en que las mascarillas quirúrgicas y las máscaras de filtración son para uso del personal sanitario, y en algún caso indican que las mascarillas quirúrgicas son para los individuos contaminados. Esta argumentación no es totalmente cierta, y está probablemente condicionada por la escasez y precio de las mismas.1,2,3,4,5,6,7,8,9

En el caso del COVID-19, se ha observado que hay muchos individuos infectados asintomáticos y pre-sintomáticos que pueden contagiar a individuos sanos, estimándose a estimar que el 30-50% de los contagios son debidos a individuos infectados asintomáticos.

La recomendación sobre si el público en general debe o no utilizar mascarillas ha ido variando a lo largo de la pandemia. Se ha pasado de la recomendación de que no sean usadas por el público en general y que sean solo para uso del personal sanitario e interviniente y de los infectados por COVID-19, a la recomendación de su uso, si no en todas las ocasiones, al menos en el transporte público y en los lugares cerrados. Sin embargo, en muchos países, como por ejemplo España, no se ha llegado a establecer el uso obligatorio de máscaras o mascarillas (o cualquier prenda que cubra nariz y boca) fuera de sus domicilios particulares para todos los individuos, medida que probablemente contribuiría en gran manera a la contención de la pandemia.10,11,12

 

 

Inhalación-exhalación

Debido a que nuestros pulmones tienen una superficie alveolar de contacto e intercambio muy grande es por lo que las vías respiratorias requieren de una especial protección frente a la posible entrada de un agente tóxico o infeccioso.

En la exhalación del aire, las gotas más grandes de 10 µm (con velocidades del orden de 1 m/s) se evaporan y quedan en suspensión, o sedimentan y caen al suelo a menos de 1,5 m de distancia. Si el aire se expulsa a gran velocidad consecuencia de la tos o del estornudo, el chorro de aire puede transportar estas gotas de más de 10 µm, que pueden tener incluso tamaños mayores de 100µm, a distancias de más de 2 m, en el caso de la tos, y hasta más de 6 m en el caso de los estornudos.13

Las gotas con un diámetro menor de 10 µm quedan suspendidas en el aire en forma de aerosol, y pueden ser transportadas por la ventilación o por las corrientes de aire, y ser inhaladas por las personas sanas. Los aerosoles, suspensiones de partículas sólidas o líquidas en un gas, se comportan como gases, y las partículas inhaladas pueden llegar a alcanzar los alvéolos pulmonares.13

También hay que presente el tipo de actividad que se está desarrollando pues el caudal de respiración está ligado a la misma, y cuanto mayor sea este caudal mayor será la velocidad de circulación del aire en las vías respiratorias (por ejemplo, una persona requiere 8 l/min estando de pie, 14 l/min andando a 3,2 km/h y 43 l/min corriendo):

Teniendo en cuenta esto, las distancias de protección requeridas aumentan en función de la actividad realizada (y recuerde que la primera medida de protección es mantener una distancia segura, la mayor posible). Además en caso de utilizar una barrera (por ejemplo, protección respiratoria) la eficiencia de la misma disminuye al requerirse un mayor caudal de respiración que supone una mayor velocidad del aire inhalado.

Conviene hacer notar que la filtración de aire se refiere a la retención de contaminantes (partículas) en forma de aerosol, mientras que la limpieza del aire se refiere a la eliminación o retención de los gases o vapores del aire contaminado.

Los contaminantes aerotransportados pueden ser gases, vapores, o aerosoles (pequeñas partículas sólidas y líquidas suspendidas en el aire). Es importante comprender que los sorbentes de los filtros de ciertas máscaras retienen gases y vapores, pero no aerosoles, y que los filtros (mascarillas y más caras de filtración) retienen los aerosoles, pero no los gases y vapores.

La eficacia de un filtro de partículas para retener aerosoles depende del tamaño de las partículas, del tipo de filtro y de las condiciones de funcionamiento. Cuando se diseña un filtro para partículas existen dos objetivos básicos a conseguir, por un lado una alta eficacia filtrante para retener las partículas más penetrantes (de 0,05 µm a 0,5 µm), y por otro comodidad para el usuario, mediante un diseño con una baja resistencia a la respiración y un material que no acumule el calor.

La mayoría de los filtros de partículas basan su eficacia en el uso de materiales fibrosos no tejidos. Las fibras se entrecruzan para formar una red de «tejido no tejido». Son los espacios que quedan entre las fibras lo que permite una transpirabilidad del filtro. Además, el material filtrante no funciona como un simple tamiz, las partículas no quedan atrapadas porque «no pasan» a través de los poros que deja el material filtrante, sino que las partículas quedan atrapadas en las fibras del filtro debido a diferentes mecanismos, como son la captura por intercepción, el impacto por inercia, la captura por difusión y la atracción electrostática. Los tres primeros se consideran mecanismos de filtración mecánica y se basan en que la partícula entra en contacto físico con la fibra del filtro, mientras que la atracción entre cargas de signo opuesto supone la base del mecanismo de filtración electrostática.

Las mascarillas, ya sean «higiénicas», quirúrgicas, FFP1, FFP2, N95 o FFP3 protegen frente a las partículas, y la protección será básicamente la misma independientemente del sentido en que viaje la contaminación, de fuera hacia dentro o de adentro hacia afuera (OJO, las mascarillas con válvula de exhalación no protegen de adentro hacia afuera).

Si los «expertos» dicen las mascarillas protegen al que las usa de la contaminación que generan otros individuos, entonces protegen a otros individuos de la contaminación generada por el que lleva la mascarilla. Análogamente, si una mascarilla protege a otros individuos al llevarla puesta un individuo contaminado, también protegerá al que la lleve puesta de la contaminación generada por otros individuos contaminados.

Es decir cualquier barrera es buena siempre que el usuario sea consciente de las limitaciones de su barrera y siga escrupulosamente las otras medidas de protección (distancia de al menos 2 metros entre individuos y tiempo de exposición frente a otros individuos lo más breve posible) y el conjunto de medidas de prevención, como son frecuente lavado de manos, toser en el codo o en un pañuelo, empleo de guantes, limpieza de superficies de contacto, limpieza de la suela de los zapatos, etc.)

Cuanto mayor es la protección ofrecida por la barrera, mayores suelen ser los requerimientos para su correcto empleo. Este aspecto es tan válido para el público en general como para el personal sanitario e interviniente.

 

 

De papel, el papel higiénico

No es la primera vez que fuentes diversas, en su afán de desincentivar el empleo de máscaras o de mascarillas, indican que éstas proporcionan al usuario una «falsa seguridad», sensación de seguridad que sería tanto mayor cuanto mayor es la eficiencia de filtración de la protección usada. Hacen además algunas declaraciones de muy dudosa credibilidad, como que «las mascarillas higiénicas son de papel, o que las mascarillas quirúrgicas están hechas de «un papel fino», o que las mascarillas quirúrgicas que se usan habitualmente en quirófano están diseñadas «de dentro hacia fuera para evitar la diseminación de microorganismos presentes en la boca, nariz o garganta».14,15

En cuanto a su diseño y a los materiales empleados para la construcción de las mascarillas quirúrgicas e higiénicas (no reutilizables y reutilizables) la norma UNE-EN 14683:2019+AC:2019, «Mascarillas quirúrgicas. Requisitos y métodos de ensayo» y las especificaciones UNE 0064 y UNE 0065 no fijan ni la naturaleza de los tejidos, ni sus especificaciones, ni el número de capas, con tal de que cumplan los requisitos de funcionamiento (criterios de aceptación). No obstante la norma y las especificaciones aportan cierta información y algunos ejemplos.16,17,18,19

Las mascarillas higiénicas no reutilizables (Especificación UNE 0064) y las mascarillas higiénicas reutilizables (Especificación UNE 0065) pueden emplear cualquier material o combinación de materiales con tal de que se verifique a través de ensayos (UNE-EN 14683:2019+AC:2019, «Mascarillas quirúrgicas. Requisitos y métodos de ensayo») que cumplen los requisitos dados en la especificación correspondiente.

La especificación UNE 0064-1 indica que la mascarilla higiénica no reutilizable confeccionada con 5 capas de los siguientes tejidos da presunción de conformidad con los requisitos de esta especificación:

  • 2 capas de tejidos no tejido spunbond de 40 g/m2; 100% polipropileno hidrófobo que constituyen la parte exterior de la mascarilla;
  • 2 capas de tejidos no tejido spunlace de 44 g/m2; 80% poliéster/20% viscosa que constituye la parte media de la mascarilla;
  • 1 capa de tejidos no tejido spunbond de 20 g/m2; 100% polipropileno hidrófobo que constituyen la parte interior de la mascarilla;

La especificación UNE 0065 indica varias mascarillas con diferentes composiciones con presunción de conformidad  con los requisitos de esta especificación, por ejemplo, mascarilla de 1 sola capa con tejido 80 % poliéster y 20 % poliamida, de 126 gr/m2, o mascarilla de 2 capas iguales (interior y exterior) de tejido 7532 AMS, tejido de calada de unos 125 gr/m2 de fibra Lyocell (fibra de celulosa), o mascarilla de 4 capas, de la siguiente forma:

  • 1 capa de 80% bambú y 20% poliéster, que constituye la parte exterior de la mascarilla;
  • 2 capas de tejido no tejido spunlace, 100% polipropileno, de 17 g/m2, que constituyen la parte media de la mascarilla;
  • 1 capa de 80% bambú y 20% poliéster % que constituye la parte interior de la mascarilla.

Las mascarillas quirúrgicas que son producto sanitario, se componen generalmente de una capa central que actúa como filtro, que se coloca, une o moldea entre dos capas de tela.

Ni las mascarillas higiénicas ni las mascarillas quirúrgicas son de «papel» ni parecen estar hechas de un «fino papel».

Además se diseñan normalmente con varias capas, de modo que la interior, en contacto con la cara, no debe producir reacciones adversas sobre esta y debe  absorber la humedad de la respiración del usuario. La parte central, con una o más capas, tiene como principal función la filtración del aire y suele emplear tejidos no tejidos (TNT). Por último la capa externa protege contra las gotas y salpicaduras de líquidos.20,21

 

 

Comparación de las especificaciones técnicas

Las normas de ensayo y especificaciones técnicas de las mascarillas y de las máscaras de filtración difieren en mayor o menor medida según su país de procedencia, e incluso las convenciones sobre los nombres de los productos pueden diferir.

China que es uno de los principales proveedores de mascarillas y máscaras de protección tiene normas y especificaciones similares al resto del mundo (Unión Europea, Estados Unidos, Corea del Sur, Japón, etc.) pero establece diferencias entre las protecciones faciales PARA uso médico y las protecciones faciales que NO son para uso médico.

Las siguientes tablas procedentes de diversos documentos comerciales y oficiales muestran las diferencias y equivalencias entre las especificaciones y ensayos exigidos para las mascarillas y máscaras filtrantes22,23,24:

Tabla con los requisitos clave, en función de la norma aplicada, para facilitar su comparación22,23,24

 

Tipo y norma

Requisito

N95 (NIOSH- 42CFR84)

FFP2 (EN149:2001)

KN95 (GB2626- 2006)

P2 (AS/NZ 1716:2012)

Korea 1st Class (KMOEL-2017-64)

DS(Japan JMHLW-Not. 214, 2018)

Eficacia de filtración del material filtrante

≥ 95% con NaCl a 85 l/min

≥ 94% con NaCl y aceite de parafina a 95 l/min

≥ 95% con NaCl a 85 l/min

≥ 94% con NaCl a 95 l/min

≥ 94% con NaCl y aceite de parafina a 95 l/min

≥ 95% con NaCl a 85 l/min

Fuga total hacia el interior (TIL)

N/A

≤ 8% (media aritmética)

≤ 8% (media aritmética)

≤ 8% (individual y media aritmética)

≤ 8% (media aritmética)

medida e incluida en  instrucciones de uso

Resistencia a la inhalación-máxima caída de presión

≤ 343 Pa a 85 l/min

≤ 70 Pa (a 30 l/min)

≤ 240 Pa (a 95 l/min)

≤ 500 Pa (a 95 l/min con obstrucción)

≤ 350 Pa a 85 l/min

≤ 70 Pa (a 30 l/min)

≤ 240 Pa (a 95 l/min)

 

≤ 70 Pa (a 30 l/min)

≤ 240 Pa (a 95 l/min)

≤ 70 Pa (c/válvula)

≤ 50 Pa (s/válvula)

 a 40 l/min

Resistencia a la exhalación-máxima caída de presión

≤ 245 Pa a 85 l/min

≤ 300 Pa a 160 l/min

≤ 250 Pa a 85 l/min

≤ 120 Pa a 85 l/min

≤ 300 Pa a 160 l/min

≤ 70 Pa (c/válvula)

≤ 50 Pa (s/válvula)

a 40 l/min

Fuga de la válvula de exhalación

Velocidad de fuga ≤ 30 ml/min a -245 Pa

Inspección visual 300 l/min durante 30 s

Despresurización a 0 Pa ≥ 20 s a -1180 Pa

Velocidad de fuga ≤ 30 ml/min a -250 Pa

Inspección visual 300 l/min durante 30 s

Despresurización a 0 Pa ≥ 15 s a -1,470 Pa

Contenido de CO2 en el aire de inhalación (espacio muerto)

N/A

≤ 1%

≤ 1%

≤ 1%

≤ 1%

≤ 1%

  

Tabla comparativa de ensayos de las diferentes normas chinas24

Especificación

GB 19083-2010

GB 2626-2006

GB 32610-2016

YY 0469-2011

YY/T 0969-2013

Tipo de mascarilla

Mascarilla de protección de uso médico

Equipo de protección respiratoria

Protección respiratoria de uso diario

Mascarilla quirúrgica

Mascarilla médica desechable

Finalidad

Uso médico. Para filtración de partículas en el aire, resistencia a gotículas, a sangre y otros fluidos

Protección frente a partículas, microorganismos, etc.

Protección respiratoria frente a partículas

Protección en procedimientos clínicos invasivos

Protección general en ambiente clínico

Eficacia de filtración bacteriana (BFE)

≥95%

≥95%

Eficacia de filtración de partículasa

N (ClNa):

Clase 1 ≥ 95%

Clase 2 ≥ 99%

Clase 3 ≥ 99,97%

P: No ensayo

 

 

 

N (ClNa):

KN90 ≥ 90%

KN95 ≥ 95%

KN99 ≥ 99%

P (aceite):

KP90 ≥ 90%

KP95 ≥ 95%

KP100 ≥ 99,97%

N (ClNa):

Clase I≥ 99%

Clase II ≥ 95%

Clase III≥ 90%

P (aceite):

Clase I ≥ 99%

Clase II ≥ 95%

Clase III≥ 80%

A 30 ml/min es ≥30%

 

Resistencia a la penetración de sangre sintética

No penetración de 2 mL a presión de 80 mmHg

No penetración de 2 mL a presión de 120 mmHg

Posible equivalencia con norma UNE

 

UNE-EN 149:2001

 

UNE-EN 14683:2019

 

a Partículas de 0,3 micras a 85 l/min de ClNa (N) y de aceite de parafina (P)

 

Tabla comparativa con las normas para mascarillas médicas24 

Especificación

YY 0469-2011

YY/T 0969-2013

UNE-EN 14683:2019

Tipo de mascarilla

Mascarilla quirúrgica

Mascarilla médica desechable

Mascarillas quirúrgicas

Finalidad

Protección en procedimientos clínicos invasivos

Protección general en ambiente clínico

Protección frente a agentes infecciosos

Eficacia de filtración bacteriana (BFE)

≥ 95%

≥ 95%

Tipo I ≥ 95%

Tipo II ≥ 98%

Tipo IIR ≥ 98%

Eficacia de filtración departículasa

A 30 ml/min es ≥ 30%

Presión diferencial

≤ 49 Pa a 8l/min

≤ 49 Pa a 8l/min

Tipo I < 40 Pa/cm2

Tipo II < 40 Pa/cm2

Tipo IIR < 60 Pa/cm2

a 8l/min

Resistencia a la  penetración de sangre sintética

No penetración de 2 mL a presión de 120 mmHg

Solo para tipo IIR-no penetración de 2 mL a una presión de 120 mmHg

Posible equivalencia con norma UNE

UNE-EN 14683:2019

 

 

a Partículas de 0,3 micras a 85 l/min de ClNa (N) y de aceite de parafina (P)

 

 

Virus, ¿entras o sales?

Resulta obvio que las mascarillas higiénicas y quirúrgicas, y las máscaras de filtración FFP y N95 usadas incorrectamente no ofrecen una correcta protección y pueden dar al usuario una falsa sensación de seguridad, pero si el objetivo declarado es «aplanar» la curva de infectados acumulados hay que ser positivos, y no afirmar categóricamente que su uso por el público en general no es efectivo. Como dice el proverbio, «Lo mejor es enemigo de lo bueno».13

La «ausencia de evidencia» acerca de si las mascarillas higiénicas y quirúrgicas utilizadas por usuarios sanos les protegen del COVID-19 «no es evidencia de ausencia». Sin embargo el mensaje mayoritario de que las mascarillas higiénicas y quirúrgicas no son efectivas puede haber enviado el mensaje equivocado de que son absolutamente inútiles.13

Un estudio llevado a cabo sobre mascarillas caseras, mascarillas quirúrgicas y máscaras FFP2 para ver su capacidad de retención de aerosoles con un rango de tamaño de partículas de 0,2 a 1 µm (que pueden alcanzar los alvéolos) encontró que las mascarillas quirúrgicas podían retener las partículas de tamaño mayor de 10 µm mientras que solo las máscaras FFP2 retenían con eficiencia las partículas con un tamaño inferior a 10 µm. Pero incluso con estas últimas partículas menores de 10 µm la moderada retención proporcionada por las mascarillas quirúrgicas es mejor que nada.25

 

 

 

Partículas que atraviesan la protección

Partículas liberadas por el infectado

Partículas producidas por el infectado

Partículas liberadas al entorno

Mascarilla casera

33

100

100

90

Mascarilla quirúrgica

25

100

100

50

Máscara FFP2

1

100

100

30

 

Si atendemos a los resultados de este estudio, la mascarilla casera, hecha con un trapo de cocina, ofrece al usuario sano que la lleva una protección del 67% frente a la contaminación exterior, y una protección a los individuos sanos del 10% cuando la utiliza un usuario infectado. Si todos los individuos infectados y sanos empleasen este tipo de mascarilla casera la protección global sería de aproximadamente un 70,1%.13,25

La mascarilla quirúrgica ofrece al usuario sano que la lleva una protección del 75% frente a la contaminación exterior, y una protección a los individuos sanos del 50% cuando la utiliza un usuario infectado. Si todos los individuos infectados y sanos empleasen mascarillas quirúrgicas la protección global aumentaría hasta aproximadamente un 87,5%.13,25

Por último, la mascarilla FFP2, la de mayor eficiencia de filtración, ofrece al usuario sano que la lleva una protección del 99% frente a la contaminación exterior, y una protección a los individuos sanos del 70% cuando la utiliza un usuario infectado. Si todos los individuos infectados y sanos empleasen mascarillas FFP2 la protección global sería de aproximadamente un 99,7%.13,25

Dicho de manera simple, las mascarillas caseras, higiénicas y quirúrgicas y las máscaras filtrantes (FFP y N95) no preguntan al virus si entra o sale, y contribuyen a la protección global tanto si las usan personas sanas, como si las usan personas enfermas.

El Ministerio de Consumo insiste, en una nota de prensa de fecha 14 de mayo de 2020, que por seguridad de toda la ciudadanía, el uso y adquisición de mascarillas y máscaras de filtración se hagan según las indicaciones y recomendaciones del Gobierno de España.26

La nota señala que, en el caso de las máscaras FFP2, es necesario que el usuario sea consciente de que éstas pueden dificultar la respiración más que las mascarillas higiénicas o quirúrgicas, por lo que personal no especializado puede tender a tocarlas y recolocarlas continuamente, con el consiguiente riesgo de contaminación. Por otro lado, al ser material principalmente destinado a profesionales, puede generar una falsa sensación de seguridad, que relaje el mantenimiento del resto de medidas de seguridad y prevención de imprescindible cumplimiento, como son la distancia física y el lavado de manos.26

Con este mensaje, muchas personas, sanas y enfermas, seguirán usando, mientras puedan conseguirlas, las máscaras FFP2 pues es sabido por todos que son las proporcionan la mayor protección, aún siendo conscientes que suponen una mayor dificultad respiratoria y que pueden generar una falsa sensación de seguridad.

El mensaje debería ser «Procure usar mascarillas higiénicas o quirúrgicas para no agotar los suministros de máscaras FFP2, que escasean y son necesarias para el personal sanitario».

 

 

¿Todos a favor de las máscaras y mascarillas?

Ahora entidades sanitarias y gobiernos han cambiado de opinión, y cuando menos recomiendan su uso, o al menos no lo desaconsejan, y en algunos casos establecen el uso obligatorio en el transporte e incluso en los lugares públicos.

La Organización Mundial de la Salud (OMS) y los Centros para el Control y la Prevención de Enfermedades (CDC, Centers for Disease Control and prevention) son las entidades más reacias a recomendar el uso de mascarillas para el público en general.

La OMS en su documento «Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza», del año 2019, recomendaba las medidas  de distanciamiento social y de «etiqueta respiratoria» (toser en el ángulo del codo, cubrirse la nariz y la boca con un pañuelo desechable al toser, no saludarse con la mano, ni dar besos y abrazos), pero también indicaba que podía ser recomendable que las personas asintomáticas utilizaran mascarillas para reducir la transmisión de la enfermedad en la comunidad, en casos de  epidemias o pandemias graves.  Aunque no había evidencia de que esto fuera efectivo para reducir la transmisión, existía un argumento razonable acerca de su potencial efectividad.27

Los CDC a principios de abril recomendaban usar mascarillas caseras de tela en los lugares públicos, donde las medidas de distanciamiento social son difíciles de mantener (por ejemplo, supermercados y farmacias), y especialmente en áreas de transmisión comunitaria significativa. También las recomendaban para frenar la propagación del virus, pues usando estas simples mascarillas las personas que pudieran tener el virus sin saberlo,  estarían dificultando la transmisión del virus a otros.

Pero el razonamiento es simple, si el uso por parte del público en general de mascarillas caseras hechas de tela contribuye a limitar la extensión de la pandemia, el uso de mascarillas o de máscaras de filtración que ofrecen más protección limitarán mejor la extensión de la pandemia.28

En éstas, un informe de la ECDC (European Centre for Disease Prevention and Control) fechado el 8 de abril de 2020, concluía lo siguiente29:

  • El uso de mascarillas médicas por parte de los trabajadores de la salud debe tener prioridad sobre el uso en la comunidad.
  • El uso de mascarillas o de máscaras por el público en general puede servir como un medio de control de la fuente para así reducir la propagación de la infección en la comunidad al minimizar la excreción de gotitas respiratorias de los individuos infectados que aún no han desarrollado síntomas o que permanecen asintomáticos. No se sabe en qué medida el uso de mascarillas o de máscaras por el público en general puede contribuir a una disminución en la transmisión, además de las otras contramedidas.
  • Se podría considerar el uso de de mascarillas o de máscaras por el público en general, especialmente cuando se accede a espacios cerrados o muy ocupados, como por ejemplo, supermercados y centros comerciales, o cuando se usa el transporte público.
  • Se podría considerar el uso de mascarillas higiénicas, especialmente si, debido a problemas de suministro, las mascarillas quirúrgicas y las máscaras de filtración deben ser priorizadas para su uso como equipo de protección personal por parte del personal sanitario. Esto se basa en pruebas indirectas limitadas que respaldan el uso de mascarillas higiénicas como medio de control de la fuente.
  • El uso de mascarillas o de máscaras por el público en general debe considerarse solo como una medida complementaria y no como un reemplazo del distanciamiento físico y de las medidas preventivas establecidas, por ejemplo, etiqueta respiratoria, higiene meticulosa de las manos y evitar tocarse la cara, la nariz, los ojos y la boca.
  • El uso adecuado de las mascarillas y de las máscaras es clave para que resulten efectivas, siendo recomendable la realización de campañas educativas.
  • Las recomendaciones sobre el uso de de mascarillas o de máscaras por el público en general deben estar vigilantes ante la aparición de evidencias, la situación del suministro y los posibles efectos secundarios negativos.

Y poco después, el Ministerio de Sanidad con fecha 20 de abril de 2020 publicaba unas recomendaciones sobre el uso de mascarillas en la comunidad en el contexto de COVID-19, donde como resumen indicaba30:

  • El uso de mascarillas en población general puede servir como un medio de control de la fuente de infección al reducir la propagación en la comunidad ya que se reduce la excreción de gotas respiratorias de individuos infectados que aún no han desarrollado síntomas o que permanecen asintomáticos.
  • Se podría considerar el uso de mascarillas en la comunidad, especialmente cuando se acude a zonas con mucha gente, espacios cerrados como supermercados, centros comerciales, o cuando se utiliza el transporte público, etc.
  • El uso de mascarillas médicas (quirúrgicas) por parte de los trabajadores sanitarios debe tener prioridad sobre el uso en la población general sana.
  • El uso de mascarillas en la comunidad debe considerarse solo como una medida complementaria y no como reemplazo de las medidas preventivas establecidas, por ejemplo, distanciamiento físico, etiqueta respiratoria, higiene de manos y evitar tocarse la cara, la nariz, los ojos y la boca.
  • El uso apropiado de las mascarillas es clave para la efectividad de la medida y puede mejorarse a través de campañas educativas.
  • Las recomendaciones sobre el uso de mascarillas en la comunidad deben tener en consideración las lagunas de evidencia, la disponibilidad y los posibles efectos secundarios negativos.

El Ministerio de Sanidad valora ahora la obligatoriedad de usar mascarillas en los espacios públicos y  abordará este tema con las comunidades autónomas, en el seno del Consejo Interterritorial del Sistema Nacional de Salud (CISNS).31

Las autoridades sanitarias vienen valorando «si hay que ir un paso más allá» en el uso de esta prenda de protección en la calle, además de en el transporte público, donde ya está regulado su utilización de forma obligatoria.31

 

 

Conclusión

Visto lo visto habrá que poner en circulación un whatsapp sobre el COVID-19 y las mascarillas que diga: «Las mascarillas contribuyen a limitar la extensión del virus, si puedes póntela, o si no un foulard, porque sirven si estas contagiado o si estás contagiado y no lo sabes o si estás sano. Ah, qué no hay, pues no hazte una mascarilla casera o quédate en casa»

 

 

Referencias

  1. «Fernando Simón: «No tiene sentido que los ciudadanos sanos usen mascarilla»», 26 de febrero de 2020https://www.heraldo.es/noticias/nacional/2020/02/26/fernando-simon-no-tiene-sentido-que-los-ciudadanos-sanos-usen-mascarilla-1360972.html
  2. «Lo que decía el Gobierno en febrero: «Usar mascarilla no tiene ningún sentido»», Pelayo Barro, OKDiario, 2 de mayo de 2020, https://okdiario.com/espana/lo-que-decia-gobierno-febrero-usar-mascarilla-no-tiene-ningun-sentido-5546797
  3. «FACUA advierte que llevar mascarilla por el coronavirus es innecesario», 26 de febrero de 2020, https://lahoradigital.com/noticia/25555/sanidad/facua-advierte-que-llevar-mascarilla-por-el-coronavirus-es-innecesario.html
  4. «Mascarillas y coronavirus: ¿qué recomienda la OMS?», 1 de marzo de 2020,https://www.cmmedia.es/noticias/espana/las-mascarillas-no-evitan-el-contagio-de-coronavirus-que-recomienda-la-oms/
  5. «La OMS reitera que recomienda el uso de mascarillas solo en enfermos y sus cuidadores», 6 de abril de 2020, https://www.infosalus.com/asistencia/noticia-coronavirus-oms-reitera-recomienda-uso-mascarillas-solo-enfermos-cuidadores-20200406181952.html
  6. «La OMS alerta ante el Coronavirus: «No compre mascarillas»», 27 de febrero de 2020, https://sevilla.abc.es/salud/sevi-alerta-ante-coronavirus-no-compre-mascarillas-202002261555_noticia.html?ref=https%3A%2F%2Fwww.google.com%2F
  7. «¿La mascarilla protege del coronavirus? Esto es lo que dice la OMS», 27 de febrero de 2020, https://okdiario.com/salud/mascarilla-protege-del-coronavirus-esto-lo-que-dice-oms-5220622
  8. «¿Y si nos equivocamos al no usar mascarilla? Por qué acabaremos todos imitando a Asia», 2 de abril de 2020, https://www.elconfidencial.com/tecnologia/ciencia/2020-04-02/mascarillas-uso-recomendable-debate-barrera_2530007/
  9. «El debate de las mascarillas: ¿hace falta que las lleve todo el mundo o no?», 3 de abril de 2020, https://www.laopinioncoruna.es/espana/2020/04/03/debate-mascarillas-falta-lleve-mundo/1491545.html
  10. «The US Surgeon General once warned against wearing face masks for the coronavirus but the CDC now recommends it», 2 de marzo de 2020, https://www.businessinsider.com/americans-dont-need-masks-pence-says-as-demand-increases-2020-2?IR=T
  11. «El debate de las mascarillas: ¿hace falta que las lleve todo el mundo o no?», 3 de abril de 2020, https://www.laopinioncoruna.es/espana/2020/04/03/debate-mascarillas-falta-lleve-mundo/1491545.html
  12. «El Gobierno obliga ahora a llevar mascarilla tras mes y medio resistiéndose a hacerlo», 2 de mayo de 2020, https://www.20minutos.es/noticia/4244932/0/gobierno-obliga-ahora-llevar-mascarilla-mes-medio-resistiendose-hacerlo/
  13. «COVID-19: why we should all wear masks — there is new scientific rationale», Sui Huang, 27th march 2020, https://medium.com/@Cancerwarrior/covid-19-why-we-should-all-wear-masks-there-is-new-scientific-rationale-280e08ceee71
  14. «CCOO considera una «insensatez» repartir mascarillas de dudosa validez y un solo uso, y crear «falsa seguridad» en la ciudadanía», 11 de mayo de 2020, https://www.ccoo.es/noticia:493647–CCOO_considera_una_%E2%80%9Cinsensatez%E2%80%9D_repartir_mascarillas_de_dudosa_validez_y_un_solo_uso_y_crear_%E2%80%9Cfalsa_seguridad%E2%80%9D_en_la_ciudadania&opc_id=8c53f4de8f8f09d2e54f19daf8d8ed95
  15. «Mascarillas y coronavirus: ¿qué recomienda la OMS?», 1 de marzo de 2020, https://www.cmmedia.es/noticias/espana/las-mascarillas-no-evitan-el-contagio-de-coronavirus-que-recomienda-la-oms/
  16. UNE-EN 14683:2019+AC:2019, «Mascarillas quirúrgicas. Requisitos y métodos de ensayo», AENOR
  17. Especificacion UNE0064-1:2020, «Mascarillas higiénicas no reutilizables-Requisitos de materiales, diseño, confección, marcado y uso-Parte 1-Para uso en adultos», AENOR
  18. Especificacion UNE0064-2:2020, «Mascarillas higiénicas no reutilizables-Requisitos de materiales, diseño, confección, marcado y uso-Parte 2-Para uso en niños», AENOR
  19. Especificacion UNE0065:2020, «Mascarillas higienicas reutilizables para adultos y niños-Requisitos de materiales, diseño, confección, marcado y uso», AENOR
  20. «Digan lo que digan …», J. Domingo, http://cbrn.es/?p=1764
  21. «Et voilà, la mascarilla «higiénica», J. Domingo, http://cbrn.es/?p=1781
  22. «Comparison of FFP2, KN95, and N95 and Other Filtering Facepiece Respirator Classes», 3M, https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiuwoW1x67pAhUy5OAKHYa5Cv8QFjAAegQIAhAB&url=https%3A%2F%2Fmultimedia.3m.com%2Fmws%2Fmedia%2F1791500O%2Fcomparison-ffp2-kn95-n95-filtering-facepiece-respirator-classes-tb.pdf&usg=AOvVaw2z4TC1hPHN24_dcVwQNC1V
  23. «Comparativas de especificaciones técnicas aplicables a mascarillas autofiltrantes (18.03.20)», Ministerio de Trabajo y Economía Social, https://www.insst.es/documents/94886/693030/Comparativa+especificaciones+t%C3%A9cnicas+Mascarillas+%2820.03.20%29/a48446b9-cfd6-4456-9303-8d75d85a02dd
  24. «Estándares de China relativos a mascarillas de protección», SEFH, https://gruposdetrabajo.sefh.es/gps/images/stories/documentos/COVID-19_Estandares_China_Mascarillas.pdf
  25. «Professional and Home-Made Face Masks Reduce Exposure to Respiratory Infections among the General Population», M. van der Sande, P. Teunis & R. Sabel, PLoS ONE 3(7): e2618, 9th July 2008, https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002618&type=printable
  26. «Consumo recuerda que las mascarillas higiénicas y quirúrgicas son las recomendadas para la población general», Moncloa, 14 de mayo de 2020, https://www.lamoncloa.gob.es/serviciosdeprensa/notasprensa/consumo/Paginas/2020/140520-mascarillas.aspx
  27. «Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza», WHO, 2019, https://apps.who.int/iris/bitstream/handle/10665/329438/9789241516839-eng.pdf?ua=1
  28. «Use of Cloth Face Coverings to Help Slow the Spread of COVID-19», CDC, 10th april 2020, https://www.cdc.gov/coronavirus/2019-ncov/downloads/DIY-cloth-face-covering-instructions.pdf
  29. «COVID-19-Using face masks in the community», ECDC, 8 April 2020, https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-use-face-masks-community.pdf
  30. «Recomendaciones sobre el uso de mascarillas en la comunidad en el contexto de COVID-19», Ministerio de Sanidad, 20 de abril de 2020, https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/documentos/Recomendaciones_uso_mascarillas_ambito_comunitario.pdf
  31. «Sanidad valora hoy con las CCAA hacer las mascarillas obligatorias en espacios públicos», Europa Press, 15 de mayo de 2020, https://www.elconfidencial.com/espana/2020-05-15/sanidad-comunidades-mascarillas-obligatorias_2596404/

Et voilà, la mascarilla «higiénica»

La solución francesa: la «mascarilla barrera»1,2,3

La epidemia de Covid-19 ha revelado la escasez de máscaras de protección respiratoria en muchos países, por ejemplo, en Francia y en España.

En una conferencia de prensa el 21 de marzo de 2020, el ministro francés de Salud, Olivier Véran, declaró que antes de la epidemia Francia «solo tenía un stock nacional de 117 millones de mascarillas quirúrgicas para adultos y no tenía stock estratégico nacional de máscara filtrantes FFP2.

Para compensar el déficit, AFNOR publicó con fecha 27 de marzo de 2020 una guía gratuita «AFNOR SPEC S76-001-Masques barrières-Guide d’exigences minimales, de méthodes d’essais, de confection et d’usage», que contiene consejos sobre cómo hacer y usar lo que ellos denominan «mascarilla barrera», destinada a personas no expuestas, para que puedan conseguir un mínimo de actividad social.

AFNOR proporcionaba así una norma gratuita para la fabricación de «mascarillas barrera», diseñada, y dirigida a fabricantes de máscaras y a individuos, para proporcionar una mascarilla con la que equipar a toda la población sana y complementar así el conjunto de sistemas de protección esenciales ante la epidemia de coronavirus. El documento propone los requisitos mínimos para la fabricación industrial y artesanal, los ensayos a realizar para garantizar la calidad de la «mascarilla barrera», los consejos de uso y mantenimiento de la misma, y los materiales preferidos, con dimensiones y tipos de bridas. Un apéndice proporciona también patrones, para imprimirlos y usarlos directamente.

La norma AFNOR SPEC S76-001indica que la «mascarilla barrera» está concebida para ser reutilizable, y que los materiales utilizados deben resistir los productos y los métodos de limpieza y secado especificados en la propia norma. Tras cada ciclo de lavado, se debe realizar una inspección visual de la «mascarilla barrera». Si se detecta cualquier daño (ajuste menos ceñido, deformación, desgaste, etc.), se debe considerar como no apta.

Por otro lado, también se indica que el diseño por parte de un fabricante de una «mascarilla barrera» de acuerdo con las prescripciones de esta guía AFNOR se lleva a cabo bajo su exclusiva responsabilidad.

En un comunicado de prensa, AFNOR especificaba que la «mascarilla barrera» respondía a «un nivel de rendimiento menos ambicioso que el establecido a nivel europeo para las mascarillas quirúrgicas y máscaras FFP2».

Su nivel de protección es mucho más bajo, pero sin embargo real, si se acompaña de las necesarias medidas de prevención (mantener una distancia de aproximadamente dos metros, lavarse las manos regularmente, usar pañuelos desechables, toser o estornudar en el codo o en un pañuelo desechable, y saludar sin estrechar la mano ni besar, entre otras).

Destinada al público en general, y en particular a cualquier persona sana y asintomática, la «mascarilla barrera» no es un producto sanitario en el sentido del Reglamento UE/2017/745, ni un equipo de protección individual (EPI) en el sentido del Reglamento UE/2016/425″.

 

La solución española: «la «mascarilla higiénica»4,5

A principios del mes de abril el Gobierno español establecía los requisitos mínimos que debían cumplir las denominadas «mascarillas higiénicas» en cuanto a los materiales que utilizan para su elaboración, confección, marcado y uso, una especificación que facilitaría su fabricación masiva y que se ponía a disposición de la sociedad de forma gratuita, siguiendo el modelo de organismos nacionales de normalización homólogos, en particular de nuestros colegas franceses de AFNOR.

La Asociación Española de Normalización (AENOR) publicaba primero la «Especificación UNE 0064-1. Mascarillas higiénicas no reutilizables. Requisitos de materiales, diseño, confección, marcado y uso. Parte 1: Para uso en adultos» y luego la «Especificación UNE 0064-2. Mascarillas higiénicas no reutilizables. Requisitos de materiales, diseño, confección, marcado y uso. Parte 1: Para uso en niños».

Poco después publicaba también la «Especificación UNE0065 Mascarillas higiénicas reutilizables para adultos y niños-Requisitos de materiales, diseño, confección, marcado y uso».

En la elaboración de la mismas han participado el Ministerio de Industria, Comercio y Turismo, el de Sanidad, el de Consumo y el de Trabajo y Economía Social, la Agencia Española del Medicamento y Producto Sanitario (AEMPS), el Instituto Nacional de Seguridad y Salud en el Trabajo (INSST), el Consejo Intertextil Español (CIE), la Federación Española de Tecnología Sanitaria (FENIN), y otras entidades privadas (fabricantes textiles, laboratorios y centros tecnológicos).

Según AENOR y el Ministerio de Consumo, esta mascarilla higiénica, no reutilizable, está destinada a personas adultas, sin síntomas, que no sean susceptibles de utilizar mascarillas quirúrgicas, ni máscaras filtrantes de protección contra partículas, según las medidas establecidas en el documento técnico «Prevención y control de la infección en el manejo de pacientes con COVID-19».

Las especificaciones UNE0064-1, UNE0064-2 y UNE0065 indican en su introducción que las «mascarillas higiénicas no deben considerarse un producto sanitario (PS) en el sentido de la Directiva 93/42 CE o del Reglamento UE/2017/745, ni un equipo de protección individual (EPI) en el sentido del Reglamento UE/2016/425.

Según definen las especificaciones citadas, la mascarilla higiénica es un producto que cubre la boca, nariz y barbilla, y está provista de un arnés de cabeza que puede rodear la cabeza o sujetarse en las orejas.

Las especificaciones UNE0064-1y UNE0064-2 indican que la mascarilla higiénica  es no reutilizable, es decir es un producto destinado a usarse en una sola persona, preferiblemente durante un procedimiento único, pudiendo usarse varias veces si el uso es en espacios de tiempo muy cortos y con uso cuidadoso. Salvo que se indique otra cosa, como por ejemplo en la especificación UNE0065, todas las mascarillas, higiénicas o quirúrgicas, así como las máscaras filtrantes de protección contra partículas (FFP o N95) son desechables, es decir, no reutilizables.

 

Comparando las mascarillas5,6,7,8

Las mascarillas higiénicas no reutilizables objeto de las especificaciones UNE0064-1y UNE0064-2 deben:

  • cubrir nariz, boca y barbilla,
  • estar fabricadas de un material filtrante adecuado,
  • estar confeccionadas con material adecuado que permita la respiración,
  • utilizar materiales que en contacto con la piel del usuario no presenten riesgos conocidos de irritación o efectos adversos para la salud, y
  • garantizar un ajuste adecuado con la cara.

Las mascarillas higiénicas no reutilizables fabricadas con los materiales y los métodos de confección indicados en estas especificaciones se han ensayado con respecto a los métodos de ensayo de la Norma UNE-EN 14683:2019+AC:2019, «Mascarillas quirúrgicas-Requisitos y métodos de ensayo», la norma que se aplica a las mascarillas quirúrgicas como tales.

Los requisitos de funcionamiento (criterios de aceptación) para las mascarillas quirúrgicas e higiénicas, ensayadas según UNE-EN 14683:2019+AC:2019 se resumen en la siguiente tabla: 

 

Mascarillas quirúrgicas

Mascarillas higiénicas no reutilizables

Mascarillas higiénicas reutilizables

Ensayo

Tipo I a

Tipo II

Tipo IIR

 

 

Eficacia de filtración bacteriana (BFE), (%)

≥ 95

≥ 98

≥ 98

≥ 95

≥ 90

Respirabilidad (Presión diferencial) (Pa/cm2)

< 40

< 40

< 60

< 60

< 60

Presión de resistencia a las salpicaduras (kPa)

No requerido

No requerido

³ 16,0

 

 

Limpieza microbiana (ufc/g)

≤30

≤ 30

≤ 30

 

 

 

a Las mascarillas de tipo I se deberían utilizar solamente para pacientes y otras personas para reducir el riesgo de propagación de infecciones, particularmente en situaciones epidémicas o pandémicas. Las mascarillas de tipo 1 no están previstas para ser utilizadas por profesionales sanitarios en un quirófano o en otro entorno médico con requisitos similares.

 

 

En cuanto a su diseño y a los materiales empleados para la construcción de las mascarillas quirúrgicas e higiénicas no se fija ni la naturaleza de los tejidos, ni sus especificaciones, ni el número de capas, con tal de que cumplan los requisitos de funcionamiento (criterios de aceptación). No obstante la norma y las especificaciones aportan cierta información y algunos ejemplos.

  • Materiales empleados para las mascarillas quirúrgicas

La mascarilla quirúrgica es un producto sanitario, que se compone generalmente de una capa que actúa como filtro, que se coloca, une o moldea entre capas de tela. La mascarilla quirúrgica no se debe desintegrar, romper o rasgar durante su utilización prevista. En la selección del filtro y de los materiales de la capa, se debe prestar atención a la limpieza.

La mascarilla quirúrgica debe estar dotada de un medio por el cual se pueda ceñir estrechamente sobre la nariz, boca y barbilla de quien la lleva puesta y que garantice que la mascarilla se ciñe estrechamente en los laterales.

Las mascarillas pueden tener formas y construcciones diferentes, así como características adicionales tales como un escudo facial (para proteger a quien la lleva puesta contra las salpicaduras o las gotitas) con o sin función antiniebla, o un puente nasal «tira twist» (para mejorar la adaptabilidad alrededor del contorno de la nariz).

 

  • Materiales empleados para las mascarillas higiénicas
  • Material para el cuerpo de la mascarilla higiénica

La mascarilla higiénica no reutilizable confeccionada con 5 capas de los siguientes tejidos da presunción de conformidad con los requisitos de esta especificación:

  • 2 capas de tejidos no tejido spunbond de 40 g/m2; 100% polipropileno hidrófobo que constituyen la parte exterior de la mascarilla;
  • 2 capas de tejidos no tejido spunlace de 44 g/m2; 80% poliéster/20% viscosa que constituye la parte media de la mascarilla;
  • 1 capa de tejidos no tejido spunbond de 20 g/m2; 100% polipropileno hidrófobo que constituyen la parte interior de la mascarilla;

 

«spunbond», tejido no tejido que transferido al área de calandrado, utiliza el calor y la presión para unir las fibras y establecer las propiedades físicas tales como la resistencia a la tracción y el alargamiento del producto final.

«spunlace», tejido no tejido obtenido por hidro-enmarañamiento, utilizando la energía cinética de los chorros de agua fina para enredar las fibras.

La mascarilla higiénica reutilizable se debe confeccionar con materiales que cumplan con los requisitos dados en esta especificación. Puede estar formada por una o varias capas (de un material o combinación de materiales), siempre y cuando la misma cumpla los criterios de aceptación de esta especificación, por ejemplo:

Mascarilla de 1 sola capa con tejido 80 % poliéster y 20 % poliamida, de 126 gr/m2.

Mascarilla de 2 capas iguales (interior y exterior) de tejido 7532 AMS, tejido de calada de unos 125 gr/m2 de fibra Lyocell (fibra de celulosa).

Mascarilla de 4 capas, de la siguiente forma:

  • 1 capa de 80% bambú y 20% poliéster, que constituye la parte exterior de la mascarilla;
  • 2 capas de tejido no tejido spunlace, 100% polipropileno, de 17g/m2, que constituyen la parte media de la mascarilla;
  • 1 capa de 80% bambú y 20% poliéster % que constituye la parte interior de la mascarilla.

Mascarilla de 1 sola capa con tejido 65% poliéster y 35% algodón, con ligamento plano de 100g/m², y acabado químico hidrófugo, 100 % libre de fluorocarbonos, que constituye la parte exterior e interior de la mascarilla.

No obstante, otros materiales o combinaciones de estos serían admisibles siempre que se verifique a través de ensayos que cumplen los requisitos dados en esta especificación.

No obstante, otros materiales o combinaciones de estos serían admisibles siempre que se verifique a través de ensayos que cumplen los requisitos dados en esta especificación

En el caso de combinaciones de varias capas de materiales, la capa filtrante debería colocarse en el medio y si la combinación es bicapa la capa filtrante debería colocarse como capa externa.

 

  • Material para los vivos

Para el remate de la mascarilla confeccionada con los materiales indicados en la especificación se debe utilizar:

  1. vivos de tejidos no tejido spunbond de 40 g/m2; 100% polipropileno hidrófobo;
  2. tira twist (pinza nasal).

Nada se indica

En todo caso, se deben utilizar materiales de composición similar a los materiales que componen el cuerpo de la mascarilla y tira twist (pinza nasal o clip nasal).

Se deben utilizar materiales de composición similar a los materiales que componen el cuerpo de la mascarilla, y si se considera necesario para su ajuste a la cara, tira twist (pinza nasal o clip nasal).

 

  • Material para los arneses de cabeza

Las mascarillas higiénicas no reutilizables se deben sujetar a la cabeza o a las orejas mediante una banda, cinta o cordón.

Los arneses para las mascarillas higiénicas no reutilizables para niños deben poder sujetarse sin generar nudos, extremos libres o elementos tridimensionales.

Las mascarillas higiénicas reutilizables se deben sujetar a la cabeza o a las orejas mediante una banda, cinta o cordón.

Los arneses para las mascarillas higiénicas reutilizables para niños deben poder sujetarse sin generar nudos, extremos libres o elementos tridimensionales

 

Las mascarillas higiénicas no reutilizables y reutilizables se han desarrollado para cuatro tallas, una para adultos y niños mayores de 12 años y tres tallas diferentes para niños, pequeña, de 3 a 5 años, mediana, de 6 a 9 años y grande, de 10 a 12 años, no existiendo tallas para las mascarillas quirúrgicas.

 

Condiciones de lavado para las mascarillas higiénicas reutilizables2,3,7,9

La mascarilla higiénica reutilizable debe poder aguantar al menos 5 ciclos de lavado y secado manteniendo sus prestaciones.

El fabricante debe de optar por un proceso de lavado que elimine el virus, por ejemplo 5 ciclos de lavado a 60 °C (programa 6N) y secado al aire (tipo A) según «UNE-EN ISO 6330:12 Procedimientos de lavado y de secado domésticos para los ensayos de textiles»:

  • El programa 6N utiliza agitación normal durante el calentamiento, lavado y enjuague, normal y los ciclos incluyen un lavado durante 15 minutos a una temperatura de 60 ± 3 °C, y 4 aclarados de 3 min, 3min, 2 min y 2 min.
  • El método A – Secado al aire (tendido en cuerda) indica que se retiren las piezas de prueba de la lavadora y se cuelgue cada pieza de prueba, desplegada con la longitud de la tela colocada verticalmente para evitar la deformación, al aire tranquilo en condiciones ambientales.

Tras este proceso, el fabricante debe poder garantizar que la mascarilla higiénica reutilizable cumple con los criterios especificados.

El Ministerio de Sanidad ha aprobado varios métodos de limpieza y desinfección para las mascarillas higiénicas reutilizables:

  1. Lavado y desinfección de las mascarillas con detergente normal y agua a temperatura entre 60 °C-90 °C (ciclo normal de lavadora).
  2. Sumergir las mascarillas en una dilución de lejía 1:50 con agua tibia durante 30 minutos. Después lavar con agua y jabón y aclarar bien para eliminar cualquier resto de lejía y dejar secar.
  3. Debido a las circunstancia especiales de crisis sanitaria ocasionada por el COVID-19 y a la urgencia de disponer de productos desinfectantes con actividad virucida para la desinfección de mascarillas higiénicas reutilizables, se ha establecido que se pueda utilizar, para este fin, cualquiera de los productos virucidas autorizados por el Ministerio de Sanidad para PT2 (uso ambiental), que han pasado la UNE-EN 14476:2014+A1:2015, «Antisépticos y desinfectantes químicos. Ensayo cuantitativo de suspensión para la evaluación de la actividad virucida en medicina. Método de ensayo y requisitos (Fase 2/Etapa 1)», de actividad virucida y que se encuentran registrados para uso por el público en general (estos productos que están autorizados en su modo de empleo para superficies, podrán utilizarse para la desinfección de mascarillas higiénicas reutilizables). Su uso será de acuerdo a las recomendaciones del fabricante, poniendo especial atención al uso diluido o no del producto y a los tiempos de contacto necesario para la actividad desinfectante. Una vez desinfectadas las mascarillas, se lavaran con abundante agua y jabón para eliminar cualquier resto químico y se dejaran

 

Descontaminación y reutilización de las máscaras filtrantes FFP y N9510,11,12,13

Ante la escasez de medios de protección para soportar la pandemia global por coronavirus, mucha gente se pregunta si las máscaras filtrantes de protección contra partículas (FFP o N95) desechables, que son más eficaces que las mascarillas quirúrgicas e higiénicas desechables, (aunque ya hay mascarillas higiénicas reutilizables mediante limpieza y desinfección), se podrían limpiar y desinfectar para su reutilización.

Las superficies de las máscaras filtrantes (y también de las mascarillas) pueden contaminarse al filtrar el aire inhalado por el usuario en zonas de exposición a aerosoles cargados de patógenos. Los agentes patógenos retenidos en los materiales de filtración pueden transferirse al usuario durante actividades tales como ajustase o quitarse la máscara. Se ha evaluado la persistencia del SARS-CoV-2 (el virus que causa COVID-19) en aerosoles, y en superficies de plástico, acero inoxidable, cobre y cartón, y parece que no sobrevive en el mejor de los casos, mucho más allá de las 96 horas. El SARS-CoV-2 es más estable en plástico (72 h) y en acero inoxidable (48 h) que en cartón (24 h) y en cobre (8 h). Una posible estrategia para mitigar la transferencia por contacto de los patógenos presentes en las superficies de las máscaras hacia los usuario durante la reutilización de las mismas, podría ser la dotación de 5 máscaras por usuario, de modo que utilice una cada día y al terminar la jornada la almacene en una bolsa de papel transpirable hasta su nuevo uso, de modo que transcurra un mínimo de cinco días entre cada uso.

Si hay escasez de máscaras filtrantes y no es posible disponer de 5 máscaras por usuario, habría que considerar su descontaminación para su reutilización posterior.

En la actualidad, las máscaras filtrantes se consideran de un solo uso y no existen métodos autorizados por el fabricante para su descontaminación antes de su reutilización. El 28 de marzo de 2020, la FDA (Food and Drug Administration) emitía una «Autorización de uso de emergencia» para la utilización del «Sistema de descontaminación de Battelle», que emplea peróxido de hidrógeno vaporizado para descontaminar «máscaras filtrantes compatibles con N95».El CDC (Centers for Disease Control and Prevention) y el NIOSH (National Institute for Occupational Safety and Health) no recomiendan la descontaminación de las máscaras filtrantes para su reutilización, como práctica habitual, ya que sería inconsistente con su uso aprobado, pero entienden que esta podría considerarse cuando hubiese escasez de máscaras filtrantes en tiempos de crisis.

Un método eficaz de descontaminación debe reducir la carga del patógeno, mantener la función de la máscara filtrante y no presentar peligro químico residual.

Estudios recientes sobre el rendimiento en el laboratorio (Fuga total hacia el interior, penetración del material filtrante por aerosoles y resistencia a la respiración, UNE-EN 149-2001+A1 y UNE-EN 13274-7:2008) y la integridad física de las máscaras filtrantes de protección contra partículas, parecen indicar que con ciertos métodos, una única descontaminación para su reutilización una sola vez, no afecta negativamente su rendimiento».

Recientemente se ha estudiado el efecto provocado sobre las máscaras filtrantes de tres ciclos de descontaminación empleando diversos métodos de descontaminación: irradiación ultravioleta germicida, óxido de etileno, plasma de peróxido de hidrógeno, peróxido de hidrógeno vaporizado, vapor generado por microondas, hipoclorito, peróxido de hidrógeno líquido e incubación con calor húmedo (pasteurización), e inmersión en agua desionizada como sistema de control.

Después de los tres ciclos de descontaminación las máscaras filtrantes objeto del estudio se evaluaron para detectar cambios en la apariencia física, olor y rendimiento de filtración en el laboratorio. Con excepción del tratamiento con plasma de peróxido de hidrógeno los otros siete métodos de descontaminación dieron como resultado niveles de penetración medios < 5% y valores iniciales de resistencia a la respiración ≤ 17,6 mmH2O  (1,73 mbar).  El daño físico en las máscaras filtrantes varía según el método de tratamiento.

Tabla resumen con ocho posibles métodos de descontaminación

Método de descontaminación

Condiciones experimentales y parámetros

Irradiación ultravioleta germicida (UVGI, UltraViolet Germicidal Irradiation)

Irradiación con una lámpara ultravioleta (UV-C, 254 nm, 40 W), durante 45 minutos a una intensidad de 1,8 mW/cm2 (La exposición continua de 45 minutos constituye los tres ciclos).

Óxido de etileno (EtO)

Exposición al óxido de etileno durante 1 hora (736,4 mg/L) seguida de aireación durante 12 horas.

Plasma de peróxido de hidrógeno (HPGP, Hydrogen Peroxide Gas Plasma)

Generador de plasma de H2O2 STERRAD® 100S, 59% de H2O2, tiempo de ciclo ~ 55 min (ciclo corto); 45 °C – 50 °C.

Peróxido de hidrógeno vaporizado (HPV,  Hydrogen Peroxide Vapor)

Generador Clarus® R HPV (que utiliza 30% H2O2) colocado en una sala de 64 m3. Concentración de la sala = 8 g/m3, permanencia de 15 min, tiempo de ciclo total de 125 min.

Vapor generado por microondas, (MGS, Microwave oven Generated Steam)

Horno comercial de microondas de 2,450 MHz con carrusel de vidrio giratorio, de 1100 W según el fabricante); 750 W/ft3 medido experimentalmente; exposición de 2 minutos a potencia de 10 (potencia máxima).

Hipoclorito

Inmersión durante 30 minutos en una solución de hipoclorito de sodio al 0,6% (una parte de lejía al 6% por nueve partes de agua desionizada).

Peróxido de hidrógeno líquido (LHP, Liquid Hydrogen Peroxide)

Inmersión durante 30 minutos en una solución de peróxido de hidrógeno al 6% (una parte de peróxido de hidrógeno al 30% por cuatro partes de agua desionizada).

Incubación con calor húmedo (pasteurización) (MHI, Moist Heat Incubation)

Incubación durante 30 minutos a 60 °C, con una humedad relativa del 80%. Después de la primera incubación, las muestras se retiraron de la incubadora y se secaron al aire durante la noche. Después de la segunda y tercera incubación, las muestras se retiraron de la incubadora y se secaron al aire durante 30 minutos con la ayuda de un ventilador

 

A la vista de todo lo expuesto, dada la escasez de máscaras filtrantes y la especulación de que son objeto, y pese a que son materiales desechables, podría considerarse  su descontaminación, no más de tres veces, mediante los mismos métodos de limpieza y desinfección recomendados por el Ministerio de Sanidad para las mascarillas higiénicas reutilizables.

 

Conclusión

Todo parece indicar que las mascarillas quirúrgicas desechables, las mascarillas higiénicas no reutilizables y reutilizables, y las máscaras filtrantes (FFP y N95), nuevas o limpias y descontaminadas para su reutilización protegen en mayor o menor grado. El usuario debe ser consciente de lo que utiliza, y de cuáles son las limitaciones de sus elementos de protección.

Nunca debería permitirse que en una situación de riesgo por COVID-19 los usuarios trabajen, hagan deporte, paseen o realicen las compras, sin una mínima protección respiratoria, bien sea para no contaminar o bien sea para no resultar contaminado.

 

Referencias

  1. «Un référentiel Afnor pour fabriquer des masques barrières», «S76-001 un estándar AFNOR para la fabricación de máscaras de barrera», https://www.faceaurisque.com/2020/04/02/un-referentiel-afnor-pour-fabriquer-des-masques-barrieres/
  2. AFNOR SPEC S76-001, «Masques barrières-Guide d’exigences minimales, de méthodes d’essais,de confection etd’usage», https://www.snof.org/sites/default/files/AFNORSpec-S76-001-MasquesBarrieres.pdf
  3. AFNOR SPEC S76-001, «Fabricación en serie y confección artesanal-Mascarillas-Guía de requisitos mínimos, métodos de ensayo, confección y uso», https://www.mincotur.gob.es/es-es/COVID-19/GuiaFabricacionEPIs/Especificacion%20Francesa/15_Norma_AFNOR_sobre_fabricacion_de_mascarillas.pdf
  4. «Gobierno publica cómo se deben hacer mascarillas higiénicas no reutilizables», https://www.lavanguardia.com/vida/20200409/48398280434/gobierno-publica-como-se-deben-hacer-mascarillas-higienicas-no-reutilizables.html
  5. «Especificación UNE0064-1 Mascarillas higiénicas no reutilizables-Requisitos de materiales, diseño, confección, marcado y uso-Parte 1-Para uso en adultos», https://www.mincotur.gob.es/es-es/COVID-19/GuiaFabricacionEPIs/Mascarillas%20higienicas.%20Especificacion%20UNE%20Mascarillas%20higienicas%20no%20reutilizables/1-Especificacion_UNE_0064-1_mascarillas_higienicas_no_reutilizables.pdf
  6. «Especificación UNE0064-2 Mascarillas higiénicas no reutilizables-Requisitos de materiales, diseño, confección, marcado y uso-Parte 2-Para uso en niños», https://www.mincotur.gob.es/es-es/COVID-19/GuiaFabricacionEPIs/Mascarillas%20higienicas.%20Especificacion%20UNE%20Mascarillas%20higienicas%20no%20reutilizables/2-Especificacion_UNE_0064-2_mascarillas_higienicas_no_reutilizables_uso_ninos.pdf
  7. «Especificación UNE0065 Mascarillas higiénicas reutilizables para adultos y niños-Requisitos de materiales, diseño, confección, marcado y uso», https://www.mincotur.gob.es/es-es/COVID-19/GuiaFabricacionEPIs/Especificacion%20UNE%20Mascarillas%20higienicas%20reutilizables/Especificacion_UNE_0065_mascarillas_higienicas_reutilizables.pdf
  8. «UNE-EN 14683-2019+AC Mascarillas quirúrgicas-Requisitos y métodos de ensayo», AENOR, fecha de edición: 2019-12-04
  9. «Limpieza y desinfección de mascarillas higiénicas reutilizables», Gobierno de España, Ministerio de Sanidad, https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/documentos/Limpieza_y_Desinfeccion_mascarillas_higienicas_reutilizables_pdf.pdf
  10. «Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1», N. van Doremalen, D. H. Morris, y otros, N Engl J Med 2020; 382:1564-1567)
  11. «Decontamination and Reuse of Filtering Facepiece Respirators», CDC, 9th April 2020, https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.html
  12. «Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators», D. J. Viscusi, M. S. Bergman y otros, Ann. Occup. Hyg., Vol. 53, No. 8, pp. 815–827, 2009, https://pdfs.semanticscholar.org/c7db/32a998827c03d9e99949f146d78f39307feb.pdf.
  13. «Evaluation of Multiple (3-Cycle) Decontamination Processing for Filtering Facepiece Respirators», M. S. Bergman, D. J. Viscusi y otros, Journal of Engineered Fibers and Fabrics Volume 5, Issue 4 – 2010, https://journals.sagepub.com/doi/pdf/10.1177/155892501000500405

 

 

Digan lo que digan …

El comienzo1,2

El 31 de diciembre de 2019, la Comisión Municipal de Salud y Sanidad de Wuhan (provincia de Hubei, China) informó sobre un agrupamiento de 27 casos de neumonía de etiología desconocida con inicio de síntomas el 8 de diciembre, incluyendo siete casos graves, con una exposición común a un mercado mayorista de marisco, pescado y animales vivos en la ciudad de Wuhan, sin identificar la fuente del brote. El mercado fue cerrado el día 1 de enero de 2020. El 7 de enero de 2020, las autoridades chinas identificaron como agente causante del brote un nuevo tipo de virus de la familia Coronaviridae, que fue denominado «nuevo coronavirus», 2019nCoV. Posteriormente el virus ha sido denominado como SARS-CoV-2 y la enfermedad se denomina COVID-19. La secuencia genética fue compartida por las autoridades chinas el 12 de enero. El 30 de enero la Organización Mundial de la Salud declaró el brote de SARS-CoV-2 en China Emergencia de Salud Pública de Importancia Internacional.

Según la información facilitada por el Centro de Control de Enfermedades de China, la mayoría de los casos notificados provienen de la provincia de Hubei (más de un 70%) y entre los casos notificados en China un 80% han presentado un cuadro leve. La proporción de fallecidos entre los casos confirmados ha oscilado entre el 2 y el 3%, siendo mayor en Hubei que en el resto del país, donde se ha notificado una proporción de 0,4% de fallecidos entre los confirmados. La mayoría de los casos detectados en China son mayores de 30 años, siendo la afectación en la población menor de 10 años muy escasa y con un cuadro clínico más leve. Además, se ha descrito una alta proporción de pacientes con co-morbilidades entre los casos graves y fallecidos.

Hasta el momento, se desconoce la fuente de infección y hay incertidumbre respecto a la gravedad y a la capacidad de transmisión. Por similitud con otros coronavirus conocidos se piensa que el SARS-CoV-2 se transmite principalmente por las gotas respiratorias de más de 5 micras y por el contacto directo con las secreciones de personas infectadas. Se están valorando otras posibles vías de transmisión.

Entre humanos la transmisión de este virus se produce generalmente por vía respiratoria, a través de las gotas de «flügge», gotitas respiratorias, que las personas producen cuando tosen, estornudan, al hablar o al tocar con las manos superficies contaminadas por el virus, y llevarlas a la nariz, la boca o los ojos, introduciendo así el virus en el organismo. Los mecanismos de transmisión entre humanos parecen ser similares a los del virus de la gripe, y por tanto las medidas de prevención son similares.

El período de incubación de este virus (cantidad de tiempo que transcurre desde el contacto con el virus hasta que aparecen los primeros síntomas) no se conoce con exactitud, aunque actualmente hay consenso de que puede ser de hasta 14 días. Hay alguna evidencia, no confirmada, de que el virus podría transmitirse antes del comienzo de los síntomas si se dan las condiciones para ello.

En general, los síntomas principales de las infecciones por coronavirus suelen ser inespecíficos:

  • Secreción y goteo nasal
  • Tos
  • Dolor de garganta y de cabeza
  • Fiebre
  • Escalofríos y malestar
  • Dificultad para respirar (disnea)

En casos más graves, la infección puede causar neumonía, síndrome respiratorio agudo severo, insuficiencia renal e incluso la muerte, según informa la OMS (Organización Mundial de la Salud).

Actualmente no existe un tratamiento específico frente al SARS-CoV-2. Basándose en la experiencia previa de brotes por otros coronavirus, actualmente se está empleando en algunos casos y de forma experimental el tratamiento con una combinación de inhibidores de la  proteasa (lopinavir/ritonavir) con o sin interferón β, o tratamiento con un inhibidor de la ARN polimerasa (remdesivir).

Las recomendaciones estándar de la OMS para prevenir la propagación de infecciones incluyen:

  • Lavarse las manos regularmente.
  • Cubrirse la boca y la nariz, con el codo o con pañuelos desechables, al toser y estornudar. Desechar los pañuelos inmediatamente después de su uso.
  • Uso de mascarillas, en aquellas situaciones definidas por las Autoridades Sanitarias.
  • Evitar el contacto cercano, inferior a 1 metro y prolongado por tiempo superior a 15 minutos, con cualquier persona que presente síntomas de enfermedades respiratorias, como tos y estornudos.
  • Evitar, en lo posible, las aglomeraciones.
  • Ante la información difundida por la OMS sobre posibilidad de expansión del virus, teniendo en cuenta la situación actual en España y sin menoscabo de las indicaciones realizadas por los responsables de Salud Pública, no es necesario adoptar ninguna medida especial de protección, en el momento actual, más allá de las generales, descritas anteriormente, cuando se interactúe con cualquier persona que presente síntomas de infección respiratoria, si no concurren otras circunstancias.

No obstante, se propone la adopción, si así lo indican las autoridades sanitarias, y sin perjuicio de otras actuaciones que pudieran llevarse a cabo, de las siguientes medidas preventivas entre el personal que pudiese estar en contacto con pacientes con Infección Respiratoria Aguda (IRA) que cumplan los criterios de caso en investigación de SARS‐CoV‐2:

  1. Uso de mascarillas quirúrgicas hasta la intervención de los servicios sanitarios.
  2. Utilización de guantes de nitrilo de un solo uso en caso de tener que entrar en contacto con personas o materiales potencialmente

 

 Defensa NBQ3

Cuando  se produce un incidente NBQ, y ahora hablamos de un incidente de tipo «B» (Biológico), como es el caso de la pandemia global por coronavirus, es necesario para una buena defensa la aplicación coordinada y secuencial los denominados «componentes de la Defensa NBQ», que son, por este orden, a saber:

  • Detección, identificación y vigilancia
  • Alerta e información
  • Protección física
  • Gestión del peligro
  • Contramedidas médicas

Estos componentes, que se aplican ante una situación de guerra, son también válidos a nivel civil ante una catástrofe NBQ de grandes dimensiones.

Sin embargo deberíamos mencionar primero algo previo o simultáneo al incidente, que muchas veces se pasa por alto, la inteligencia y planificación.

A principios de enero ya se sabía a nivel internacional de la existencia de lo que ahora llamamos COVID-19. En ese momento la «Autoridad» debería haber iniciado un proceso para saber todo acerca del peligro inminente del COVD-19, en este caso la aparición del primer caso en territorio español. Tomando como ejemplo lo ocurrido semanas antes en otros países con la propagación del COVID-19 se deberían haber estimado los posibles escenarios y abordar el peor de los escenarios posibles, debería haberse conocido con qué medios materiales y humanos se disponía, y con cuantos se podría llegar a disponer, se debería haber adquirido los medios de detección, descontaminación y tratamiento necesarios para cubrir ese peor de los escenarios, se debería haber planificado un conjunto progresivo de procedimientos de intervención, y debería haberse procedido a la adquisición inmediata del material necesario. Sin esta inteligencia y planificación podría presentarse el peor de los escenarios y colapsar todos nuestros sistemas por no estar convenientemente preparados.

  1. Detección, identificación y vigilancia

Existen en el mercado detectores y sistemas de identificación de sustancias químicas y agentes químicos de guerra, que permiten conocer si el agente químico está o no presente en el entorno, identificar la naturaleza de este y comprobar periódicamente si su concentración aumenta o disminuye en el tiempo. En el caso de la detección biológica tan solo están disponibles detectores para determinados agentes biológicos de guerra que utilizan ensayos de inmuno-análisis específicos para un determinado agente, o bien a sistemas basados en la reacción en cadena de la polimerasa (PCR).  El problema en el caso del COVID-19 es que no se dispone de equipos y reactivos para realizar el ensayo a todo aquel que pudiera estar infectado para saber si lo está o no. Una gran cantidad de individuos ha estado expuesto a personal infectado, asintomático, incubando el virus, e incluso afectados con síntomas, que desconoce si está o no infectado. Al no existir detectores para el COVID-19 la mejor solución es realizar ensayos al mayor número posible de individuos, con y sin síntomas, para poder aislar a los infectados y contener la expansión del virus.

  1. Alerta e información

La alerta e la información permiten a través de una cadena de mando la transmisión de la información a los recipientes apropiados. El proceso debe ser coordinado por una estructura jerárquica que permita la valoración a todos los niveles del impacto de las medidas adoptadas, siempre sobre la base de una información rápida, exacta y evaluada.

La comunicación al público y a los medios de comunicación debe ser ponderada, veraz y creíble.

  1. Protección física

El tercer componente de la defensa es la protección física. Sea cual sea el tipo de incidente se debe buscar para todos los individuos la mayor protección mediante la aplicación de la distancia, el tiempo y la barrera.

    • Cuanto mayor sea la distancia frente al peligro (el infectado, en este caso) menor exposición, y por ello menor dosis (menor probabilidad de resultar infectado).
    • Cuanto menor tiempo se pase junto al peligro (el infectado, en este caso), menor exposición, y por ello menor dosis (menor probabilidad de resultar infectado), y finalmente,
    • A mejor barrera protectora (por ejemplo, equipo de protección) menor exposición, y por ello menor dosis (menor probabilidad de resultar infectado). Pero hay algo evidente que las autoridades han evitado contar para evitar tener que dar embarazosas explicaciones, digan lo que digan mejor algún tipo de barrera que ninguna. Sobre este tema volveremos más adelante para tratar concretamente el tema de las mascarillas.

La protección individual y colectiva frente a cualquier agente NBQ presenta el inconveniente de que limita de algún modo la operatividad del personal interviniente en el incidente. Por este motivo es necesario previamente realizar una evaluación del riesgo que permita adoptar el nivel apropiado de protección física, basándose sobre todo en factores como material de protección disponible y la naturaleza del trabajo físico a realizar por el personal.

El equipo de protección individual (EPI) incluye un sistema de protección respiratorio frente a la inhalación del agente y un traje de protección frente al contacto con el agente, ya sea en forma de vapor, aerosol o en forma líquida. Además, se incluye diverso material complementario, como guantes, cubre-calzado, gafas, etc..

Recuerde que los cartuchos filtrantes de las máscaras NBQ contienen un primer filtro HEPA (High Efficiency Particulate Arresting filter) que impide el paso de partículas menores de 0,06 µm. Este filtro evita el paso de agentes biológicos de guerra y el de aquellos agentes químicos de guerra que se encuentren en estado sólido a temperatura ambiente. Si bien algunos agentes biológicos presentan tamaños inferiores a 0,06 µm y, por lo tanto, serían capaces de atravesar ese filtro, es preciso indicar que, cuando se utilizan los agentes biológicos como arma, es necesario obtener aerosoles con diámetros aerodinámicos de masa media (MMAD) de aproximadamente 1 µm. El segundo filtro es el de carbón activado, capaz de adsorber las moléculas gaseosas de los agentes químicos y además carbón activado lleva un tratamiento con sales de cromo o cobre que reaccionan con algunos agentes químicos e impiden su paso a través del filtro.

  1. Gestión del peligro

La gestión del peligro consiste en la adopción de precauciones antes, durante y después del incidente, para controlar la contaminación e impedir su propagación.

Cuando el personal o el material están son contaminados es necesario permanecer con el EPI durante cierto período de tiempo, lo cual supone una carga operacional y logística. Lo ideal es evitar entrar en contacto con la contaminación y, si éste se produce, proceder a la descontaminación tan rápidamente como sea posible.

La descontaminación es el proceso de absorción, destrucción o neutralización que hace inocuo o elimina los agentes químicos o biológicos en personas, objetos o áreas contaminadas. La descontaminación puede ser pasiva o activa, siendo la primera efectuada por los procesos naturales (luz solar, temperatura, humedad, etc.), sin la intervención humana, mientras la descontaminación activa supone el empleo de procesos químicos y/o mecánicos para eliminar o neutralizar los agentes.

  1. Contramedidas médicas

La doctrina NBQ incluye cuatro subcomponentes a este nivel: (1) profilaxis y pre-tratamiento; (2) contramedidas sanitarias; (3) tratamiento de bajas en ambiente NBQ; y (4) evacuación de bajas en ambiente NBQ.

El subcomponente «contramedidas sanitarias» incluye la escrupulosa aplicación de las medidas higiénicas, la vacunación post-exposición, el tratamiento con antibióticos o antivirales, el tratamiento antidótico y la restricción de movimiento (ROM, Restriction Of Movement) del personal que pueda estar afectado por agentes biológicos transmisibles.

 

Transmisión de las enfermedades infecciosas respiratorias4

El brote actual de COVID-19 demuestra claramente la carga que imponen las enfermedades infecciosas respiratorias en un mundo globalizado íntimamente conectado. Se han implementado políticas de mitigación y contención sin precedentes en un esfuerzo por limitar la propagación del COVID-19, incluidas restricciones de viaje, detección y evaluación de viajeros, aislamiento y cuarentena, y cierre de escuelas y centros de trabajo.

El  objetivo primordial de tales políticas es disminuir los contactos entre individuos infectados e individuos susceptibles, y desacelerar así  la tasa de transmisión. Aunque tales estrategias de distanciamiento social son críticas en el momento actual de la pandemia, puede parecer sorprendente que la comprensión actual de las rutas de transmisión de huésped a huésped en enfermedades infecciosas respiratorias se base en un modelo de transmisión de enfermedades desarrollado en la década de 1930 que, según los estándares modernos, parece demasiado simplificado. La implementación de recomendaciones de salud pública basadas en estos modelos más antiguos puede limitar la efectividad de las intervenciones propuestas.

En 1897, Carl Flügge demostró que los patógenos estaban presentes en gotitas espiratorias lo suficientemente grandes como para asentarse alrededor de un individuo infectado. Se pensó que la “transmisión de gotitas” por contacto con la fase líquida expulsada e infectada de las gotitas era la ruta principal para la transmisión respiratoria de enfermedades. Esta opinión prevaleció hasta que William F. Wells se centró en la transmisión de la tuberculosis en la década de 1930, y dicotomizó las emisiones de gotitas respiratorias en gotitas «grandes» y «pequeñas».

Según Wells, se emiten gotas aisladas al exhalar. Las gotas grandes se depositan más rápido de lo que se evaporan, contaminando la vecindad inmediata del individuo infectado. En contraste, las pequeñas gotas se evaporan más rápido de lo que se asientan. En este modelo, a medida que las pequeñas gotas pasan de las condiciones cálidas y húmedas del sistema respiratorio al ambiente exterior más frío y seco, se evaporan y forman partículas residuales hechas del material seco de las gotas originales. Estas partículas residuales se denominan núcleos de gotitas o aerosoles. Estas ideas dieron como resultado una clasificación dicotómica entre gotas grandes versus pequeñas, o gotas versus aerosol, que luego pueden mediar la transmisión de enfermedades respiratorias. Las estrategias de control de infección se desarrollaron en función de si una enfermedad infecciosa respiratoria se transmite principalmente a través de la ruta de gotitas grandes o pequeñas.

La dicotomía de las gotas grandes y pequeñas sigue siendo el núcleo de los sistemas de clasificación de las rutas de transmisión de enfermedades respiratorias adoptadas por la Organización Mundial de la Salud y otras agencias, como los Centros para el Control y la Prevención de Enfermedades. Estos sistemas de clasificación emplean varios cortes arbitrarios de diámetro de gota, de 5 a 10 μm, para clasificar la transmisión de host a host como gotas o rutas de aerosol. Dichas dicotomías continúan bajo la gestión actual del riesgo, las principales recomendaciones y la asignación de recursos para la gestión de la respuesta asociado con el control de infecciones, incluso para COVID-19. Incluso cuando se aplicaron políticas de máxima contención, la rápida propagación internacional de COVID-19 sugiere que el uso de límites de tamaño de gota arbitrarios puede no reflejar con precisión lo que realmente ocurre con las emisiones respiratorias, posiblemente contribuyendo a la ineficacia de algunos procedimientos utilizados para limitar la propagación de enfermedades respiratorias.

El trabajo reciente ha demostrado que las exhalaciones, los estornudos y la tos no solo consisten en gotas muco-salivares que siguen trayectorias de emisión semi-balísticas de corto alcance, sino que, principalmente, están formadas principalmente por una nube de gas turbulento multi-fásico (una nube) que atrapa el aire ambiental y atrapa y transporta dentro de sus racimos de gotas con un continuo de tamaños de gotas. La atmósfera localmente húmeda y cálida dentro de la nube de gas turbulento permite que las gotas contenidas evadan la evaporación durante mucho más tiempo de lo que ocurre con las gotas aisladas. En estas condiciones, la vida útil de una gota podría extenderse considerablemente por un factor de hasta 1000, de una fracción de segundo a minutos.

Debido al impulso hacia adelante de la nube, las gotitas que contienen patógenos se impulsan mucho más lejos que si se emitieran de forma aislada sin una nube de nubes turbulentas que las atrape y las lleve hacia adelante. Dadas las diversas combinaciones de la fisiología y las condiciones ambientales de un paciente individual, como la humedad y la temperatura, la nube de gas y su carga útil de gotitas con patógenos de todos los tamaños pueden viajar de 7 a 8 metros. El rango de todas las gotas, grandes y pequeñas, se extiende a través de su interacción y atrapamiento dentro de la nube de gas turbulento, en comparación con el modelo de gota dicotomizado comúnmente aceptado que no tiene en cuenta la posibilidad de una nube de gas caliente y húmedo. Además, a lo largo de la trayectoria, las gotas de todos los tamaños se asientan o se evaporan a velocidades que dependen no solo de su tamaño, sino también del grado de turbulencia y velocidad de la nube de gas, junto con las propiedades del entorno (temperatura, humedad y flujo de aire).

Las gotas que se asientan a lo largo de la trayectoria pueden contaminar las superficies, mientras que el resto permanece atrapado y agrupado en la nube en movimiento. Finalmente, la nube y su carga útil de gotas pierden impulso y coherencia, y las gotas restantes dentro de la nube se evaporan, produciendo residuos o núcleos de gotas que pueden permanecer suspendidos en el aire durante horas, siguiendo los patrones de flujo de aire impuestos por la ventilación o los sistemas de control climático. La evaporación de las gotas cargadas de patógenos en fluidos biológicos complejos es poco conocida. El grado y la velocidad de evaporación dependen en gran medida de la temperatura ambiente y las condiciones de humedad, pero también de la dinámica interna de la nube turbulenta junto con la composición del líquido exhalado por el paciente.

 

Las mascarillas, ese oscuro objeto de deseo5,6

Ante todo debe quedar claro que los diferentes tipos de mascarillas sólo proporcionan protección de acuerdo a sus características técnicas, y que la protección que ofrecen puede verse seriamente disminuida por su mejor o peor ajuste facial, el modo de ponérsela y quitársela y el uso al que destina. Las mascarillas no protegen frente a gases y vapores químicos

Las mascarillas forman parte de los equipos de protección individual (EPI). Su función es proteger de la exposición a contaminantes a través de las vías respiratorias y están íntegramente fabricadas con un material filtrante y constan de un clip o adaptador nasal y de unas gomas o cintas de sujeción. En ocasiones también disponen de válvulas de exhalación.

Están indicadas para la protección respiratoria del trabajador frente a partículas y aerosoles líquidos, como polvo, agentes biológicos, citostáticos y otros fármacos peligrosos. No protegen frente a gases y vapores químicos.

Existen diferentes tipos de mascarillas que van desde la más simple, la mascarilla quirúrgica hasta las mascarillas N95 y mascarillas FFP3 con válvula de exhalación.

  • La mascarilla quirúrgica se emplea para proteger usuario de salpicaduras de fluidos biológicos y para proteger a los demás de las partículas emitidas por el usuario durante su respiración.

  • Las mascarillas FFP (Filtering FacePiece) y NIOSH N95 están diseñadas para filtrar las partículas y aerosoles líquidos presentes en el entorno, impidiendo que sean inhalados por el usuario. Por supuesto NO protegen frente a gases y vapores tóxicos. En función de su diseño puede ser cónicas, horizontales (pico-pato) y verticales.

FFP2 horizontal (pico-pato) sin válvula de exhalación FFP2 vertical con válvula de exhalación FFP3 horizontal (pico-pato) con válvula de exhalación

La norma EN149:2001 «Filtering Halfmasks to protect against particles» (Mascarillas filtrantes para protección contra partículas), clasifica las mascarillas de protección respiratoria, de acuerdo con su eficacia de filtración y su valor de fuga hacia el interior, en tres clases:

  • FFP1, que retienen más del 80 % de las partículas, con una fuga hacia el interior <25 % y <22 %. Protegen en ambientes contaminados con hasta cuatro veces el valor límite umbral (TLV) de partículas.
  • FFP2, que retienen más del 92% de las partículas, con una fuga hacia el interior <11 % y <8 %. Protegen en ambientes contaminados con hasta 10 veces el TLV.
  • FFP3, que retienen más del 99% de las partículas, con una fuga hacia el interior <5 % y <2 %. Protegen en ambientes contaminados con hasta 50 veces el TLV.

Algunos fabricantes, para un rápido y fácil reconocimiento del nivel de protección, utilizan diferentes colores en el clip nasal o en la válvula, por ejemplo, azul oscuro (FFP1), azul celeste (FFP2) y blanco (FFP3).

La denominación «N95» de NIOSH significa que la mascarilla retiene al menos el 95% de las partículas de 0,3 µm o mayores, y la letra N indica que NO es resistente al aceite.

Las mascarillas pueden tener válvula de exhalación. La válvula facilita la respiración y evita la condensación; se recomiendan para largos periodos de uso. Como no filtran el aire exhalado por el usuario, las mascarillas con válvula no se deben usar en pacientes infectados.

Para el empleo de las mascarillas deben tenerse en cuenta ciertas medidas elementales de prevención:

  • Lavarse bien las manos con agua y jabón, antes y después de usar la mascarilla.
  • Comprobar la fecha de caducidad y que la mascarilla no presenta defectos ni en las bandas ni en el material filtrante, clip nasal, etc..
  • Colocarse la mascarilla. Los elementos de protección se deben colocar en el siguiente orden: bata, gorro, calzas, mascarilla, gafas y guantes.
  • Ajustar correctamente la mascarilla para conseguir una adecuada protección.
  • La barba y las patillas pueden impedir un ajuste correcto.
  • En caso de llevar gafas, hay que quitárselas para colocar y ajustar la mascarilla.
  • Cambiar la mascarilla:
  • Después de su uso.
  • En caso de que se humedezca, o sufra algún daño o alteración.
  • Si la resistencia a la respiración es excesiva.

 

Conclusiones

Desde el comienzo del brote de COVID-19 a finales de diciembre de 2019, pasando por la declaración de emergencia de salud pública de la OMS el 30 de enero de 2020 y la declaración de la OMS de pandemia global el 11 de marzo de 2020, hasta hace tan solo unos días, la percepción de la situación originada por el COVID-19 ha dado numerosos bandazos, indicando con ello falta de planificación y prevención, y además la actuación del Centro de Coordinación de Alertas y Emergencias Sanitarias no parece haber sido muy acertada.

La extensión del COVID-19 fuera de China comenzó a mediados de enero de 2020 con la aparición de los primeros casos en diferentes países: Tailandia (13 de enero de 2020), Corea del sur (20 de enero de 2020), Estados Unidos (21 de enero de 2020), Alemania (28 de enero de 2020), Japón (28 de enero de 2020), Emiratos Árabes Unidos (29 de enero de 2020), Italia (31 de enero de 2020), España (31 de enero de 2020), Grecia (26 de febrero de 2020), etc..7

El 13 de febrero de 202, el ministro de Sanidad, Salvador Illa, afirmaba en la cumbre europea ante sus homólogos de los Estados miembros que España disponía de material sanitario «suficiente» para hacer frente al coronavirus.8

A pesar de los mensajes enviados  el 24 de febrero de 2020 por Fernando Simón, director del Centro de Coordinación de Alertas y Emergencias Sanitaria, indicando que existía una probabilidad de infección muy baja, y que España iba a tener como mucho algún caso diagnosticado con una transmisión limitada y controlada, el 29 de febrero se agotaron las existencias de mascarillas en las farmacias de España.9

Sobre si las mascarillas deben emplearse sólo por el personal infectado y por el personal sanitario, y sobre si son útiles o no para prevenir el contagio entre individuos sanos, individuos asintomáticos e individuos infectados, las opiniones son muy diversas y han ido variando con el paso del tiempo.9,10,11,12,13,14,15,16

Resulta obvio que cualquier barrera es válida para la protección contra el COVID-19, pero dicha protección variará mucho dependiendo del tipo de barrera: pañuelo, bufanda, braga de cuello, mascarilla quirúrgica, mascarilla FFP1, mascarilla FFP2, mascarilla N95, mascarilla FFP3, máscara con filtro, máscara completa, etc., y de cómo emplee el usuario dicha barrera.

Está claro que si las mascarillas evitan que un individuo contaminado, contamine a los demás, y evitan también que el personal sanitario resulte contaminado cuando contacta con individuos contaminados, cualquier individuo que emplee algún tipo de mascarilla está evitando de alguna manera el contaminar al resto de los individuos más si está contaminado y el resultar contaminado por algún individuo contaminado.

Así que, digan lo que digan …, mejor algún tipo de barrera que ninguna.

 

Referencias

  1. «Procedimiento de actuación frente a casos de infección por el nuevo coronavirus (SARS-CoV-2)», actualizado a 27 de febrero de 2020, Ministerio de Sanidad.
  2. «Información sobre el coronavirus SARS-COV-2 para el personal municipal del Ayuntamiento de Madrid y sus organismos autónomos», Ayuntamiento de Madrid, Madrid Salud, https://cppm.es/wp-content/uploads/2020/03/informacion-sobre-el-coronavirus-sars-cov-2-para-el-personal-municipal-del-ayto-madrid-abr2020.pdf
  3. «Componentes de la defensa química y biológica en operaciones militares», René Pita Pita, Real Academia Nacional de Farmacia, 2005.
  4. «Turbulent Gas Clouds and Respiratory Pathogen Emissions-Potential Implications for Reducing Transmission of COVID-19», Lydia Bourouiba, JAMA Published online March 26, 2020
  5. «N95, sólo para partículas», J.Domingo, http://cbrn.es/?p=1072
  6. «Guía informativa nº 23-Mascarillas», Gobierno vasco, Hospital universitario de Donostia, https://www.osakidetza.euskadi.eus/contenidos/informacion/hd_publicaciones/es_hdon/adjuntos/GuiaSL23c.pdf
  7. «Así se ha ido expandiendo día a día la alerta por el coronavirus Covid-19: más de 2.300 muertos en China», https://www.elmundo.es/ciencia-y-salud/salud/2020/02/10/5e4121e5fdddffa4728b458a.html
  8. «Así defendió el ministro de Sanidad el 13-F que España tenía material sanitario «suficiente»», https://okdiario.com/espana/asi-defendio-ministro-sanidad-salvador-illa-13-f-que-espana-tenia-material-sanitario-suficiente-5420364
  9. «Los 7 errores de cálculo más graves del Gobierno con el coronavirus», https://www.economiadigital.es/politica-y-sociedad/los-7-errores-de-calculo-mas-graves-del-gobierno-con-el-coronavirus_20043462_102.html
  10. «Lo que no nos contaron de las mascarillas (y una solución a la italiana)», https://blogs.elconfidencial.com/espana/cronicavirus/2020-03-18/coronavirus-mascarillas-solucion-italia_2503876/
  11. ¿Es necesario el uso de mascarillas frente al Covid-19? , https://www.vozpopuli.com/branded/uso-mascarillas-necesario-coronavirus_0_1337867068.html
  12. «¿Mascarillas sí o no? El debate entre Oriente y Occidente», https://elpais.com/sociedad/2020-04-01/mascarillas-si-o-no-el-debate-entre-oriente-y-occidente.html
  13. «¿Y si nos equivocamos al no usar mascarilla? Por qué acabaremos todos imitando a Asia», https://www.elconfidencial.com/tecnologia/ciencia/2020-04-02/mascarillas-uso-recomendable-debate-barrera_2530007/
  14. «Sanidad cambia de rumbo y apunta ahora al uso generalizado de mascarillas», https://www.elconfidencial.com/espana/2020-04-03/sanidad-simon-estrategia-uso-mascarilla-coronavirus_2533687/
  15. «Por qué el Gobierno se está planteando el uso obligatorio de las mascarillas», https://www.vozpopuli.com/sanidad/Gobierno-planteando-uso-obligatorio-mascarillas_0_1342667051.html
  16. «Sanidad defendió que «no tiene ningún sentido» usar mascarillas y ahora lo pedirá a toda la población», https://www.elmundo.es/ciencia-y-salud/salud/2020/04/04/5e877f5d21efa0e34f8b45a7.html

 

 

 

Eran pocos, y parió la abuela

La Lista 1

La Lista 1 del anexo de verificación de la Convención sobre las Armas Químicas (CAQ) incluía, a la entrada en vigor de la misma el 29 de abril de 1997, seis familias de agentes químicos de guerra, dos toxinas consideradas como agentes químicos (saxitoxina y ricina), dos familias de precursores y dos precursores individuales (cloro sarín y cloro somán)1, a saber:

1A.1 Alquilfosfonofluoridatos de O-alquilo (agentes neurotóxicos) (más de 20 000 sustancias)
1A.2 N,N-dialquilfosforamidatos de O-alquilo (agentes neurotóxicos) (más de 50 000 sustancias)
1A.3 Alquilfosfonotiolatos de O-alquilo y S-2-dialquilaminoetilo (agentes neurotóxicos) (más de 200 000 sustancias)
1A.4 Mostazas de azufre (agentes vesicantes) (9 sustancias)
1A.5 Lewisitas (agentes vesicantes) (3 sustancias)
1A.6 Mostazas de nitrógeno (agentes vesicantes) (3 sustancias)
1A.7 Saxitoxina (1 sustancia)
1A.8 Ricina (1 sustancia)
1B.9 Fosfonildifluoruros de alquilo (4 sustancias)
1B.10 Alquilfosfonitos de O-alquilo y O-2-dialquilaminoetilo (más de 200 000 sustancias)
1B.11 Cloro sarín (1 sustancia)
1B.12 Cloro somán (1 sustancia)

Es decir la Lista 1 contenía más de 470 023 sustancias de las cuales solo unos cientos tienen recogidos sus espectros en la Base de Datos Analítica de la Organización para la Prohibición de las Armas Químicas (OPAQ)2.

 

El embarazoso tema de la modificación del anexo

En Salisbury3,4, el 4 de marzo de 2018, el disidente soviético Sergei Skripal, su hija Yulia Skripal y el oficial de policía Nicholas Bailey resultaron intoxicados con una sustancia química tóxica, identificada por los laboratorios de Reino Unido, y por los laboratorios designados de la OPAQ, como una sustancia neurotóxica de la familia de los agentes «novichok». La estructura química de dicho agente «novichok» no se ha hecho pública hasta el momento, pero si se ha hecho público que era una sustancia de gran pureza (pese a lo cual, ninguno de los tres afectados llegó a fallecer). En abril de ese mismo año, Reino Unido acusó a Rusia ante la OPAQ del envenenamiento. Más tarde, el 30 de junio de 2018, en Amesbury3,5, el Sr. Charles Rowley y la Sra. Dawn Sturgess resultaron intoxicados con la misma sustancia neurotóxica que la identificada en el incidente de Salisbury, y la Sra. Sturgess falleció a causa de dicha intoxicación.

Tras estos hechos, el 16 de octubre de 2018, las Representaciones Permanentes ante la OPAQ del Canadá, los Estados Unidos de América y los Países Bajos presentaron la «Propuesta conjunta relativa a una modificación técnica de la Lista 1 del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas», de conformidad con los párrafos 1, 4 y 5 del artículo XV de la Convención (S/1682/2018, de fecha 25 de octubre de 2018)6. La propuesta conjunta propone la inclusión en la Lista 1 de dos nuevas familias de agentes neurotóxicos7:

  1. Fluoruros fosforamídicos de P-alquilo (H o ≤ C10, incluido el cicloalquilo) N-(1-(dialquil (≤ C10, incluido el cicloalquilo)amino))alquilideno (H o ≤ C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

  1. Fosforamidofluoridatos de O-alquilo (H o ≤ C10, incluido el cicloalquilo) N-(1-(dialquil (≤ C10, incluido el cicloalquilo)amino))alquilideno (H o ≤ C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

El 30 de noviembre de 2018, la Representación Permanente de la Federación de Rusia ante la OPAQ presentó las «Propuestas para introducir adiciones en las listas de sustancias químicas del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas», de conformidad con los párrafos 1, 4 y 5 del artículo XV de la Convención (S/1696/2018, de fecha 7 de diciembre de 2018)6. Aunque la OPAQ no ha hecho pública las Propuestas rusas, tal y como hizo con la Propuesta Conjunta, éstas han sido reveladas por la Oficina de Industria y Seguridad del Departamento de Comercio de Estados Unidos, como resultado de sus actividades para recopilar información que permita evaluar el impacto en la industria de Estados Unidos de las Propuestas Rusas de modificación del Anexo sobre productos químicos de la CAQ8.

Las propuestas rusas suponen la inclusión en la Lista 1 de cinco nuevas familias de agentes neurotóxicos8:

  1. Fluoruros de P-alquilo (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamídicos y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

  1. O-alquil (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamidofluoridatos y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

 

  1. P-alquil (H o ≤ C10, incluidos cicloalquilos)-(bis((alquil (H or ≤ C10, incluidos cicloalquilos)alquil (H or ≤ C10, incluidos cicloalquilos)amino))metilen) fosfonamidofluoridates y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

 

  1. Dimetil-carbamoiloxipiridinas cuaternarias (más de 1000 000 sustancias):
    • 1-[N,N-dialquil(С≤10)-N-(n-(hidroxil, ciano, acetoxi)alquil(С≤10))amonio]-n-[N-(3-metil-carbamoxi-α-picolinil)-N,N-dialquil(С≤10)amonio]decano dibromuro (n=1-8)
    • 1,n-bis[N-(3-dimetilcarbamoxi-α-picolil)-N,N-dialquil((С≤10)amonio]-alcano-(2,(n-1)-diona) dibromuro (n=2-12)

  1. O-(1-alquil (H, Me) 2-alquil (H,Me) -2-cloroetil)-(((dihalo(F, Cl)metilen)amino)-oxi)fosforofluoridatos (12 sustancias).

En la sexagésima segunda reunión del Consejo Ejecutivo, éste estudió y adoptó, por consenso, la decisión titulada «Recomendación relativa a una modificación de la Lista 1 del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas»7, (EC-M-62/DEC.1, de fecha 14 de enero de 2019, en la que recomendó a todos los Estados Partes la adopción de la Propuesta Conjunta (La Federación Rusa se desvinculó del consenso9) 6.

Unos días más tarde, en la sexagésima tercera reunión del Consejo Ejecutivo, el Consejo examinó las Propuestas de la Federación Rusa, y no adoptó el proyecto de decisión en el que se recomendaba su adopción (EC-M-63/DEC/CRP.1, de fecha 19 de febrero de 2019). Sobre esta base, se consideró que el Consejo recomendaba que se rechazaran las Propuestas de la Federación Rusa6.

Antes de que expirase el periodo de 90 días, el 14 de abril de 2019, para formular objeciones a la decisión del Consejo Ejecutivo de aprobar la Propuesta Conjunta, el 14 de abril de 2019, la Secretaría recibió una objeción de un Estado Parte (Federación Rusa) a la recomendación del Consejo de que se adoptara la Propuesta conjunta (EC-M-62/NAT.5, de fecha 9 de abril de 2019)6. Conforme a lo indicado al apartado e) del párrafo 5 del artículo XV de la Convención, al recibirse una objeción a la recomendación del Consejo, debía ser la vigésimo cuarta Conferencia de Estados Parte la que debía adoptar una decisión, como cuestión de fondo, sobre la Propuesta Conjunta de modificación de la Lista 1 del Anexo sobre sustancias químicas de la CAQ1.

Como era de esperar, días más tarde y antes de que expirase, el 27 de mayo de 2019, el periodo de 90 días para formular objeciones, la Secretaría recibió una objeción de un Estado Parte (República de Burundi) a la recomendación del Consejo de rechazar las Propuestas de la Federación de Rusia (EC-M-63/NAT.4, de fecha 9 de abril de 2019)6. Como ya se ha indicado, conforme a lo indicado al apartado e) del párrafo 5 del artículo XV de la Convención, al recibirse una objeción a la recomendación del Consejo, debía ser la vigésimo cuarta Conferencia de Estados Parte la que debía adoptar una decisión, como cuestión de fondo, sobre las Propuestas rusas de modificación de la Lista 1 del Anexo sobre sustancias químicas de la CAQ1.

Tras las consultas celebradas entre la Federación de Rusia, los Estados Unidos de América, el Canadá y los Países Bajos, con la participación de la Secretaría (S/1758/2019, de fecha 3 de junio de 2019; S/1785/2019, de fecha 16 de agosto de 2019; y S/1789/2019, de fecha 26 de agosto de 2019), la Federación de Rusia presentó al Director General una «Propuesta modificada para introducir modificaciones en la Lista 1 del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas» (S/1796/2019, de fecha 24 de septiembre de 2019)6,10.

Así llegamos a este punto donde todo parece indicar que la embarazosa situación de la modificación de la Lista 1 del Anexo sobre sustancias químicas de la CAQ se resolverá cuando la Conferencia de Estados Parte examine y apruebe tanto el proyecto de decisión sobre la Propuesta conjunta (C-24/DEC/CRP.1, de fecha 20 de septiembre de 2019), como la Propuesta modificada de la Federación de Rusia (C-24/DEC/CRP.5, de fecha 1 de noviembre de 2019).

 

 

Y parió la abuela

El 27 de noviembre de 2019, durante la vigésimo cuarta conferencia, la Conferencia de Estados Partes daba a luz a dos mellizos, la modificación del anexo conforme a la Propuesta Conjunta de los Estados Unidos de América, el Canadá y los Países Bajos, de fecha 16 de octubre de 2018, y la modificación del anexo conforme a las Propuestas Rusas, de fecha 24 de septiembre de 20197,11.

La Propuesta Conjunta consiste como ya se ha indicado en dos grandes familias de agentes neurotóxicos:

  1. Fluoruros de P-alquil (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamídicos y sales alquilatadas o protonadas correspondientes.

Ejemplo: fluoruro de N-(1-(di-n-decilamino)-n-deciliden)-P-decilfosfonamídico (sin número CAS).

  1. O-alquil (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamidofluoridatos y sales alquilatadas o protonadas correspondientes.

Ejemplo: O-n-decil N-(1-(di-n-decilamino)-n-deciliden) fosforamidofluoridato (sin número CAS).

 

 

La Propuesta Rusa no se corresponde exactamente con la hecha pública por la Oficina de Industria y Seguridad del Departamento de Comercio de Estados Unidos. De las cinco familias indicadas en un primer momento se ha eliminado la última, correspondiente a los O-(1-alquil (H, Me)2-alquil (H,Me)-2-cloroetil)-(((dihalo(F, Cl)metileno)amino)-oxi)fosforofluoridatos. Además con excepción de la familia de los carbamatos las otras tres familias han reducido sustancialmente su tamaño10:

  1. O-alquil (Ме, Еt)-(1-(alquil (Me, Et)alquil (Me, Et)amino)etiliden) fosforamidofluoridatos:

Ejemplos:

Metil-(1-(dietilamino)etiliden)fosforamidofluoridato (sin número CAS)

Etil-(1-(dietilamino)etiliden)fosforamidofluoridato (sin número CAS)

Esta familia está incluida en la Propuesta Conjunta

 

  1. Metil-(1-(dietilamino)etiliden)fosfonamidofluoridato (sin número CAS)

Esta sustancia está incluida en la Propuesta Conjunta

  1. Metil-(bis(dietilamino)metilen)fosfonamidofluoridato (sin número CAS)

Esta sustancia no está recogida en la Propuesta Conjunta, y se correspondería con el agente A-242 descrito por Mirzayanov.

  1. Carbamatos (cuaternarios y bicuaternarios de dimetilcarbamoiloxipiridinas)

4.1 Cuaternarios de dimetilcarbamoiloxipiridinas:

Dibromuro de 1-[N,N-dialquil (С≤10) -N-(n-(hidroxil, ciano, acetoxi)alquil (С≤10)) amonio]-n-[N-(3-dimetil-carbamoxi-α-picolinil)-N,N-dialquil (С≤10)amonio]decano (n=1-8)

Ejemplo: Dibromuro de 1-[N,N-dimetil-N-(2-hidroxi)etilamonio]-10-[N-(3-dimetil carbamoxi-α-picolinil)-N,N-dimetilamonio]decano (CAS 77104-62-2)12.

 4.2 Bicuaternarios de dimetilcarbamoiloxipiridinas:

Dibromuro de 1,n-bis[N-(3-dimetilcarbamoxi-α-picolil)-N,N-dialquil( (С≤10) amonio]- alcano-(2,(n-1)-diona) (n=2-12)

Ejemplo: Dibromuro de 1,10-bis[N-(3-dimetilcarbamoxi-α-picolil)-N-etil-N-metilamonio]- decano-2,9-diona (CAS 77104-00-8)12.

 

Conclusiones

  • Está claro, no solo por el contenido de la Propuesta Conjunta, sino también por los considerandos que incluyen muchos documentos, y por las declaraciones realizadas por los Estados Unidos y Canadá en la Cuarta Conferencia de Revisión de la CAQ en noviembre de 2018, que dicha Propuesta Conjunta fue presentada para asegurar que todos los agentes «novichok», incluido el que se utilizó en los incidentes de Salisbury y Amesbury, fueran incluidos como agentes químicos de guerra en las Listas de la CAQ13. Se incluyen dos familias con millones de sustancias químicas por no hacerse pública la naturaleza de la sustancia tóxica utilizada en los incidentes citados. La idea que subyace en el fondo de la Propuesta Conjunta es acusar a la Federación Rusa de incumplir la CAQ. Sin embargo recordemos que los espectros de masas hechos públicos correspondientes al A-230 y al A-234 son aportaciones del centro militar estadounidense CBDCOM/ERDEC (Chemical Biological Defense Command/ Edgewood Research, Development and Engineering Center)14 a la librería de espectros de masas del NIST98.
  • Parece también que la Propuesta Rusa busca acusar a Estados Unidos al incluir una numerosa familia de carbamatos de gran toxicidad patentados por el Ejército de Estados Unidos a finales de la década de 196013.
  • Probablemente muchas de las sustancias incluidas ahora en la Lista 1 carecen de interés como agentes químicos de guerra, debido a que por su estructura y elevado peso molecular, son sólidos a temperatura ambiente y difícilmente utilizables por vía inhalatoria13.
  • Ninguna de las propuestas incluye a los precursores necesarios que deberían ser incluidos en Lista 1 o en Lista 2, dependiendo de su posible uso no prohibido por la CAQ13,14.
  • Debido a la falta de transparencia acerca de la estructura del «novichok» empleado en Salisbury y Amesbury, el número de sustancias químicas en la Lista 1 del Anexo sobre sustancias químicas ha aumentado exageradamente.

 

 

Referencias

  1. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción (CAQ)», disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf y en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc
  2. «Sampling and analysis in the CWC and the OPCW mobile laboratory» en «Chemical Weapons Convention chemicals analysis-Sample Collection, Preparation and Analytical Methods», Markku Mesilaakso, Wiley 2005.
  3. «Technical Assistance provided by OPCW related to toxic chemical incidents in Salisbury and Amesbury», https://www.opcw.org/media-centre/featured-topics/incident-salisbury
  4. «Note by the Technical Secretariat: Summary of the Report on Activities Carried Out in Support of a Request for Technical Assistance by the United Kingdom of Great Britain and Northern Ireland (Technical Assistance Visit TAV/02/18), s-1612-2018, https://www.opcw.org/sites/default/files/documents/S_series/2018/en/s-1612-2018_e___1_.pdf)
  5. «Note by the Technical Secretariat: Summary of the Report on Activities Carried Out in Support of a Request for Technical Assistance by the UK (Technical Assistance Visit TAV/03/18 and TAV/03B/18, «Amesbury Incident»)», s-1671-2018, https://www.opcw.org/sites/default/files/documents/2018/09/s-1671-2018%28e%29.pdf).
  6. «Annotated provisional agenda for the Twenty-Fourth Session of the Conference of the States Parties, 25 – 29 November 2019», C-24/INF.1/Rev.1, https://www.opcw.org/sites/default/files/documents/2019/11/c24inf01r1%28e%29.pdf)
  7. «Decision-Recommendation for a change to Schedule 1of the annex on chemicals to the Chemical Weapons Convention», EC-M-62/DEC.1 https://www.opcw.org/sites/default/files/documents/2019/01/ecm62dec01%2B%28e%29.pdf
  8. «Impact of Proposed Additions to the ‘Annex on Chemicals’ to the Chemical Weapons Convention (CWC) on Legitimate Commercial Chemical, Biotechnology, and Pharmaceutical Activities Involving ‘Schedule 1’ Chemicals (Including Schedule 1 Chemicals Produced as Intermediates),» Federal Register, Vol. 84, No. 157 (2019), <www.govinfo.gov/content/ pkg/FR-2019-08-14/pdf/2019-17256.pdf>
  9. «Report of the sixty-second meeting of the Executive Council», EC-M-62/2, https://www.opcw.org/sites/default/files/documents/2019/01/ecm6202%28e%29.pdf
  10. «Decision-Changes to Schedule 1 of the Annex on chemicals to the Chemical Weapons Convention», C-24/DEC.5, https://www.opcw.org/sites/default/files/documents/2019/11/c24dec05%28e%29.pdf
  11. «Technical change to Schedule 1(A) of the Annex on chemicals to the Chemical Weapons Convention», C-24/DEC.4, https://www.opcw.org/sites/default/files/documents/2019/11/c24dec04%28e%29.pdf
  12. Handbook of Chemical and Biological Warfare Agents-D. Hank Ellison 2Ed CRC Press 2008
  13. «Controlling Novichoks after Salisbury: revising the Chemical Weapons Convention schedules», Stefano Costanzi & Gregory D. Koblentz, The Nonproliferation Review, September 2019
  14. «Se les ve el plumero», J.Domingo, http://cbrn.es/?p=1403

 

El cacodilo no es un caimán

No, el cacodilo no es un caimán pero tiene sus peligros. El cacodilo, también conocido como dicacodilo, tetrametildiarsina o tetrametildiarsano, (CH3)2As-As(CH3)2, es un compuesto orgánico de arsénico que constituye una parte importante del líquido arsenical fumante de Cadet (llamado así en honor del químico francés Louis Claude Cadet de Gassicourt)1.

Sin embargo también se conoce como cacodilo al radical -As(CH3)2. El químico sueco Jöns Jakob Berzelius acuñó el nombre «kakodyl» (en alemán, «cacodyl» en inglés, y «cacodilo» en español) para el radical o grupo funcional «dimetilarsenilo», palabra que formó del griego kakodes (maloliente) e hyle (materia)1.

 

Todo empezó con las tintas invisibles2,3

En el siglo XVIII el empleo de tinta invisible era algo habitual y esencial en la actividad de los ministerios de asuntos exteriores de los grandes países, y la investigación sobre su composición era un campo muy activo que atraía la atención de muchos químicos. A los ojos de los estados, su secreto tenía un valor similar al de la piedra filosofal de los alquimistas. La investigación sobre las tintas invisibles y su adquisición era incluso una actividad estatal.

El químico y administrador francés Jean Hellot (1685-1766) que había trabajado en el campo de la tinción de la lana y el algodón, y en campo de las sales de bismuto, arsénico y cobalto, acabó interesado por el tema de las tintas invisibles, no solo por el interés científico y político que las mismas suscitaban, sino también por su interés económico. En 1737, Jean Hellot publicó dos artículos informando sus hallazgos acerca de las tintas invisibles (Hellot, J., Sur un Nouvelle Encre Simpatique. Parts I, II, Mém. Acad. Roy. Sci., 54-58, 101-120, 228-247, 1737). En su primer artículo, Hellot describió las propiedades de las tintas invisibles disponibles y las formas de hacerlas visibles. Estaba particularmente interesado en la tinta obtenida de un mineral rosa extraído de la mina de Schneeberg (Sajonia) en Alemania. Esta tinta era diferente de las otras conocidas en ese momento, pues se hacía visible (azul) por calentamiento e invisible nuevamente por enfriamiento, tantas veces como se deseara, sin ninguna adición y sin alteración del color. Después de experimentar con la sal alemana, Hellot probó varias clases de minerales de cobalto franceses (ya sea esmaltita o escuterudita (Co, Ni, Fe)As2-3, o cobaltita, CoAsS), sin éxito hasta que probó minerales con arsénico y bismuto y con arsénico y cobre, de la región de Dauphiné. Un procedimiento químico complejo, que implicaba la digestión con ácido caliente (HCl o HNO3), le permitió producir una sal que tenía las mismas propiedades que la mostrada por el mineral alemán. La digestión con HNO3 permitía un proceso más corto y simple, mientras que la digestión con HCl se caracterizaba por ser una reacción muy lenta, que requería calentar a temperaturas más altas y provocaba la liberación de vapores rojos picantes. La tinta de Hellot era básicamente una solución acuosa de cloruro o nitrato de cobalto, obtenida a partir de las sales presentes en minerales mixtos ricos en arsénico y bismuto. Una ventaja importante de la nueva tinta era que podía fabricarse en diferentes colores, como verde, azul, amarillo, rosa y carmín, dependiendo de cómo se tratara. Hellot descubrió que el color final de la tinta dependía de los otros metales presentes en el mineral, así como de las sales adicionales que se agregaban para estabilizar la solución (cloruro sódico, bórax, sulfato sódico o nitrato sódico).

El químico francés Louis Claude Cadet de Gassicourt también se interesó por el tema de las tintas invisibles, repitió el proceso de Hellot y decidió extender la investigación a la acción de otros ácidos sobre dicho mineral, así como sobre otros metales como el cobre. Los experimentos iniciales con ácido sulfúrico mostraron que el mineral apenas era atacado, un resultado, que Cadet creía debido a la presencia de derivados de azufre en el mineral. Por ello, decidió calcinar el mineral antes del tratamiento con el ácido, y observó la liberación de una gran cantidad de vapores blancos de azufre. Una vez que la emisión de humo finalizó, trató el residuo con ácido sulfúrico concentrado y observó que el líquido se volvía rosa pálido. Luego añadió agua y mantuvo el contenido caliente durante dos horas. El líquido final era rojo. Después de decantar y enfriar, diluyó el líquido transparente con seis partes de agua y agregó una parte de NaCl. La solución resultante resultó ser una tinta invisible, similar a la de Hellot, excepto que al calentarse se volvía azulada. Cadet atribuyó la diferencia al material extraño presente en el mineral, y lo extrajo en diferentes cantidades por tratamiento con ácidos (HNO3 o H2SO4).

Animado por estos resultados, Cadet repitió el procedimiento usando esta vez HCl. En este caso la reacción fue muy vigorosa, el líquido se tornó primero fuertemente rojo y luego verde esmeralda, y no emitió olor desagradable. Observó un hecho singular, el líquido, de color verde cuando estaba caliente, volvía a tornarse fuertemente rojo cuando se enfriaba, y este proceso podía repetirlo tantas veces como deseara.

El siguiente paso fue probar una mezcla de HCl y HNO3 (agua regia). Al calentar la mezcla con el mineral calcinado en un baño de arena se produjo una solución de color rojo intenso, que al enfriarse se volvió de color rojo vino claro. El líquido frío produjo en el papel una escritura violeta, que dejada secar adquirió primero un agradable color violeta y luego un color rojo carmín persistente. La adición de nitrato de potasio o cloruro de sodio convirtió el líquido en tinta invisible. A partir de estos resultados, Cadet concluyó que la combinación de HCl y HNO3 era absolutamente necesaria para producir una tinta invisible a partir de cobalto.

Cadet también estudió la posibilidad de producir una tinta invisible usando vinagre (ácido acético diluido). La digestión repetida del mineral calcinado con vinagre produjo un líquido que no dejó marcas en el papel, pero después de concentrada la disolución, ésta dejaba marcas de color rojo claro. La humectación de la escritura con trazas de HCl transformaba el color en verde azulado, que no desaparecía por completo.

El siguiente conjunto de experiencias fue el estudio de la influencia del sulfato cúprico en el comportamiento de la tinta invisible. Cadet descubrió que la adición de diferentes cantidades de una solución de esta sal permitía producir tinta en una variedad de tonos amarillos, que se volvían verdes al agregar más tinta. Cadet, al resumir sus resultados, indicó que creía que el material colorante en el cobalto no era otro que la parte metálica del mineral, porque no importaba cómo lo tratara con ácidos, siempre coloreaba la tinta. También creía que este semimetal era en realidad una combinación de «arsénico» (uno de los nombres dados al óxido arsenioso blanco, As2O3) con una tierra metálica, que no pudo identificar porque se evaporaba formando humos con olor a ajo, cuando entraba en contacto con el carbón en llamas.

 

Un experimento con «arsénico»3,4,5

En 1760 Cadet decidió, a la vista de los resultados anteriormente mencionados, realizar más experimentos con «arsénico». Puso una mezcla con partes iguales en peso de «arsénico» (As2O3) y de «terre foliee de tartre» (acetato de potasio) en un pequeño horno de reverbero conectado a un recipiente de vidrio, y lo calentó lentamente. El primer destilado era un líquido ligeramente coloreado con un olor extremadamente penetrante a ajo, seguido de un líquido rojo-marrón que llenaba el recipiente con un vapor espeso. Al continuar la destilación, aparecía como sublimado en el cuello de la retorta, un polvo negro que se parecía a lo que los alemanes llamaron «müscken gift» (fly poison, poison des mouches, veneno de moscas). También encontró algo de «arsénico» y de un material que ardía como el azufre cuando se exponía a la llama de una vela. En el cuello de la retorta también encontró en forma de pequeños cristales una pequeña cantidad de «arsénico». El residuo de la destilación resultó ser un material carbonoso (arsénico blanco, As2O3), que emitía un olor a ajo cuando se calentaba sobre carbón caliente. El primer líquido que destiló, reaccionaba con un álcali cáustico y producía una fuerte efervescencia y un olor a ajo tan intenso que resultaba imposible respirar. Según Cadet, el olor que quedaba en los recipientes impregnados con este líquido no podía eliminarse con vinagre u otros compuestos. El olor solo desaparecía después de exponer el recipiente al aire fresco durante varios meses. El líquido rojo-marrón que destilaba en último lugar depositó, después de algún tiempo, un sólido con un hermoso color amarillo, que Cadet supuso que era una sustancia metálica que había sido arrastrada durante la destilación y, que debido a su peso, había precipitado en la parte inferior del líquido. El destilado del experimento de Cadet resultó ser un líquido con dos capas que emitían humos blancos al exponerlas al aire, generando un fuerte olor a ajo, y no se incendiaban al exponerlos a la acción de una vela encendida. Cadet se sorprendió al descubrir que, al abrir el recipiente sellado con grasa y exponer los dos líquidos al aire, la grasa se inflamaba inmediatamente. El líquido recibió el nombre de «líquido arsenical humeante de Cadet», y aunque el propio Cadet no trabajó más en esta reacción, su «líquido arsenical humeante» atraería más tarde la atención de otros químicos.

Aunque Cadet no fue consciente de la naturaleza real de su líquido humeante su trabajo es históricamente la primera comunicación acerca de la síntesis de un compuesto organometálico.

 

El líquido arsenical humeante de Cadet3,6,7

Louis Bernard Guyton de Morveau (1737-1816), Hughes Maret (1726-1786) y Jean-François Durande (1777-1857), profesores de la Académie de Dijon, corroboraron los resultados de Cadet sobre la preparación y las propiedades de su líquido humeante.(Guyton de Morveau, L. B., Maret, H., Durande, J. F., Elémens de Chymie Théorique et Pratique, vol 3, page 41, Frantin, Dijon, 1777-1778). Repitieron el procedimiento de Cadet y luego lo modificaron al digerir el As2O3 con vinagre en vez de con acetato de potasio. Filtraron y evaporaron el líquido resultante y durante este proceso, la superficie del líquido quedó cubierta por una capa de solución salina blanca que parecía ser la misma que quedaba en el fondo del matraz. El primer destilado de la digestión de la mezcla de As2O3 y acetato de potasio, sometido al mismo procedimiento, era un líquido transparente con un penetrante olor a ajo. La segunda fracción era un líquido marrón rojizo que llenaba el matraz receptor con una espesa y opaca nube, y emitía un olor insoportable. Después de enfriado, este líquido continuaba humeando cada vez que se abría el matraz, extendiendo el mismo olor insoportable, e imposible de neutralizar. Además, al verter el líquido a otro recipiente, se inflamaba inmediatamente la grasa de sellado. Las mismas características mostraba el semisólido depositado por el líquido rojo en el fondo del matraz.

Guyton de Morveau, Maret y Durande informaron que, aunque estuvieron expuestos al olor penetrante durante algún tiempo, no notaron efecto negativo alguno duradero, excepto una irritación muy desagradable de la garganta.

El siguiente en investigar el líquido arsenical humeante fue el químico y farmacéutico francés Louis Jacques Thenard (1777-1857) quien concluyó que los gases emitidos durante la destilación de una mezcla de As2O3 y acetato de potasio contenían «l’hydrogène arsènique» (arsina, AsH3), dióxido de carbono e hidrocarburos. En la retorta quedaba carbonato potásico y por sublimación aparecían cristales de As2O3. El líquido aceitoso más denso tenía el hedor horrible y la inflamabilidad espontánea en el aire informada por Cadet. Después de oxidar con cloro el líquido más denso Thenard concluyó que se trataba de un compuesto de aceite, ácido acético y arsénico que se parecía al del estado metálico, y debería considerarse como «une espèce de savon à base d’acide et d’arsenic ou comme une sorte d’acetite oleo-arsènical» (un tipo de jabón de ácido y arsénico, o como un tipo de acetato oleoarsenical).

Posteriormente, otros químicos prominentes como el sueco Jöns Jacob Berzelius, los franceses Augusto Laurent, Jean-Baptiste-André Dumas, y Charles Fréderic Gerhardt estudiaron el mismo compuesto y desarrollaron varias teorías en cuanto a su constitución sin poder confirmar sus ideas con datos experimentales.

 

El exhaustivo trabajo de Bunsen5,6,7

La naturaleza detallada del líquido de Cadet y sus componentes fue aclarada por el químico alemán Robert Wilhelm Bunsen (1811-1899) que en 1837 comenzó un estudio sistemático y cuantitativo del líquido arsenical humeante de Cadet, que le llevó seis años. Los dos primeros trabajos de Bunsen discutieron la preparación y las propiedades de la alcarsina (R. W. Bunsen, Annalen 24, 271, (1837) y R. W. Bunsen, Annalen 31, 175 (1839)). Bunsen preparó una cantidad moderadamente grande del líquido de Cadet calentando lentamente, en un baño de arena, una retorta con aproximadamente un kilogramo de As2O3 y acetato potásico. En el destilado pudo apreciar un producto con tres capas. En la parte inferior había una cantidad no despreciable de arsénico reducido, por encima de éste había un líquido aceitoso marrón (al que denominó «alkarsin» (alcarsina), de las letras iniciales de alcohol («alk») y arsénico («arsin»), ya que consideraba que la sustancia contenía los elementos del alcohol, con el oxígeno reemplazado por arsénico), y en la capa superior había un líquido de aspecto acuoso que parecía una solución de alcarsina en acetona, agua y ácido acético. No se formó arsina, pero si se formaron dióxido de carbono, metano y etileno, y quedó como residuo carbonato potásico en el recipiente de reacción. Purificó cuidadosamente las muestras y, en base a su composición molecular, asignó a la alcarsina, la fórmula C5H12AsO. Esto fue luego confirmado de forma independiente por el químico francés Jean-Baptiste-André Dumas (1800-1884), que concluyó también que la alcarsina era un compuesto libre de oxígeno, de composición C4H12As2, y trató de explicar su formación por la acción del ácido acético sobre el arseniuro de hidrógeno.

Tras la aparición del primer artículo de Bunsen, el químico sueco Jöns Jacob Berzelius (1979-1848) se interesó por este compuesto. Consideró a la alcarsina como el óxido de un radical C4H12As2, al que llamó «kakodyl» (cacodyl, en inglés, cacodilo, en español) del griego, , pernicioso, malvado y  , olor, debido al desagradable olor de sus derivados.

Bunsen publicó tres artículos adicionales en los que describía las reacciones químicas de la alcarsina (R. W. Bunsen, Annalen 37, 1, (1841), R. W. Bunsen, Annalen 42, 14 (1842) y R. W. Bunsen, Annalen 46, 1, (1843)). Los productos obtenidos fueron postulados como derivados del radical C4H12As2, pues Berzelius consideraba esta especie como un radical compuesto, y había sugerido a Bunsen el nombre de «kakodyl», así que los compuestos fueron nombrados como derivados del cacodilo:

Sustancia Fórmula
Cacodilo, tetrametildiarsina (CH3)2As-As(CH3)2
Óxido de cacodilo, óxido de bis(dimetilarsina) (CH3)2As-O-As(CH3)2
Cloruro de cacodilo, clorodimetilarsina (CH3)2As-Cl
Bromuro de cacodilo, bromodimetilarsina (CH3)2As-Br
Yoduro de cacodilo, dimetilyodoarsina (CH3)2As-I
Cianuro de cacodilo, cianodimetilarsina (CH3)2As-CN
Sulfuro de cacodilo, sulfuro de bis(dimetilarsina) (CH3)2As-S-As(CH3)2
Disulfuro de cacodilo, disulfuro de bis(dimetilarsina) (CH3)2As-S-S-As(CH3)2
Ácido cacodílico, ácido dimetilarsínico (CH3)2As(O)OH

 

En 1842, Bunsen logró finalmente aislar el cacodilo al tratar el cloruro de cacodilo con zinc. Este experimento fue de gran importancia, ya que ayudó a aclarar la composición del líquido humeante de Cadet, cuando por aquel entonces, se estaban realizando numerosos experimentos para aislar los «radicales», compuestos que supuestamente eran capaces de existir de acuerdo con la teoría de Berzelius.

En 1843 publicó los resultados de su investigación sobre el ácido cacodílico, hasta entonces denominado «alkargen». Le asignó la fórmula C4H14As2O4 y describió varias de sus sales, así como algunas de las sales metálicas del ácido tiocacodílico. Bunsen estudió también la acción fisiológica de cacodilo y sus derivados.

La ecuación química «clásica» que describe la obtención del líquido humeante de Cadet:

4 CH3COOK + As2O3 + calor → (CH3)2As-O-As(CH3)2 + 2 K2CO3 + 2 CO2

no indica el mecanismo de reacción, ni explica la mezcla compleja de productos obtenidos:

55,9% de cacodilo, (CH3)2As-As(CH3)2

40,0% de óxido de cacodilo, (CH3)2As-O-As(CH3)2

2,6% trimetilarsina, (CH3)3As

1,3% pentametiltriarsina

0,2% pentametilciclopentaarsina

La constitución de cacodilo se convirtió entonces en un tema de interés. El químico inglés Edward Frankland (1825-1899), que había descubierto que el zinc reaccionaba con los haluros de alquilo para formar dialquilos de zinc, consideró que se trataba de un compuesto de arsénico y radicales metilo. Según él, su estructura sería análoga a la del disulfuro de arsénico, As2S2, mientras que el óxido de cacodilo y el ácido cacodílico se corresponderían con el trióxido de arsénico, As2O3, y al ácido arsénico, As(O)(OH)3, respectivamente. El químico alemán Adolph Wilhelm Hermann Kolbe (1818-1884) consideraba el cacodilo como un radical acoplado que consiste en dos equivalentes de metilo y uno de arsénico y, por lo tanto, estaba estrechamente relacionado con los dialquilos de zinc y de estaño. En 1854 los franceses Auguste André Thomas Cahours (1813-1891) y Jean Baptiste Leopold Alfred Riche (1829-1908) establecían definitivamente la estructura correcta del cacodilo, que obtuvieron junto con la trimetilarsina y el yoduro de tetrametilarsonio por acción del yoduro de metilo sobre arseniuro de sodio. También demostraron que el cacodilo reacciona con los haluros de alquilo de acuerdo con la reacción:

(CH3)2As-As(CH3)2 + 2RX → (CH3)2R2AsX + (CH3)2AsX

El químico alemán Adolf von Baeyer (1835-1917) también encontró que el óxido de cacodilo puro, (CH3)2AsOAs(CH3)2, no era inflamable, y que la inflamabilidad del líquido arsenical humeante de Cadet era debida al cacodilo.

 

El cacodilo como agente químico de guerra4,8

En 1855, el profesor de química escocés Lyon Playfair propuso a la Oficina de Guerra Británica y al Almirantazgo británico que se usaran en la Guerra de Crimea proyectiles con cianuro de cacodilo contra los barcos rusos, ya que los espacios cerrados de los barcos favorecerían un aumento de la concentración del agente resultando con ello más tóxico. El gobierno británico consultó al científico inglés Michael Faraday, que pensó que era una barbaridad, y por ello el gobierno rechazó la propuesta de Playfair9.

Las ideas de Playfair se filtraron al ejército ruso que rápidamente comenzó a probar los proyectiles de artillería cargados con cianuro de cacodilo. Hicieron pruebas sobre gatos atrapados en jaulas, pero los gatos no murieron, tan sólo sufrieron irritación ocular, y los rusos cancelaron el proyecto.

En la década de 1860, durante la Guerra Civil Americana, el capitán del ejército y ex profesor de química Edward Boynton propuso, sin éxito, utilizar el cacodilo como arma química, y posteriormente, antes de que Estados Unidos entrara en la Segunda Guerra Mundial, la Marina ensayó municiones cargadas con mezclas de cacodilo y difenilcianarsina, sin que haya evidencia de que las llegasen a emplear.

En sus esfuerzos por desarrollar nuevos y más efectivos explosivos y propulsores, los químicos alemanes Fritz Haber (1868-1934), Gerhard Just (1877-1944) y Otto Sackur (1880-1914) intentaron reemplazar los bromuros de xililo (T-Stoff), añadidos como sustancia irritante en los proyectiles de tipo-T, con otra sustancia que actuara también como irritante y como propulsor. Se pensó en usar el cloruro de cacodilo, que Robert Bunsen había sintetizado por primera vez en 1837, y que a causa de su poder irritante, mal olor y propiedades inflamables había sido objeto de escasa investigación. El 17 de diciembre de 1914, durante un experimento con el cloruro de cacodilo, se produjo en el laboratorio una gran explosión. Otto Sackur, murió poco después a causa de las heridas provocadas por la explosión y Gerhard Just, sobrevivió a la explosión pero perdió una de sus manos.

El interés de Haber en el cacodilo pudo haber sido provocado por Robert Bunsen. En 1887, Haber pasó el verano estudiando química en la Universidad de Heidelberg, donde Bunsen era profesor. En la década de 1840 Bunsen había pasado varios años investigando los compuestos de cacodilo cuando estaba en la Universidad de Marburg y había publicado varios artículos sobre el tema. En un experimento con cianuro de cacodilo una explosión estuvo a punto de matar a Bunsen, que acabó perdiendo la vista de su ojo derecho10.

Después del accidente, la investigación en el Kaiser-Wilhelm-Institut sobre el cloruro de cacodilo se abandonó, pero la explosión marcó un importante punto de inflexión, no sólo por sus trágicas consecuencias, sino porque con ello finalizaba la investigación sobre explosivos y se iniciaba la investigación de gases tóxicos. Durante la primera mitad del año 1915, Haber redirigió la investigación del Instituto hacia la búsqueda de gases de guerra para su empleo en la guerra de trincheras.

A partir de 1944, el Servicio de Guerra Química del Ejército de los EE. UU. (U.S. Army Chemical Warfare Service) inició un proyecto a gran escala para buscar sustancias químicas con actividad herbicida y desarrollar métodos para su aplicación militar. A finales del año 1945, se habían estudiado alrededor de mil sustancias químicas, resultando efectivas tan solo unas pocas, entre las que podemos destacar los ácidos 2,4-dicloro- y 2,4,5-tricloro-fenoxiacético (acrónimos 2,4-D y 2,4,5-T, respectivamente). En 1959 se eligieron formulaciones de 2,4-D y 2,4,5-T como defoliantes y el ácido cacodílico como desecante y disruptor metabólico de las plantas, sobre todo para su uso contra el arroz y el trigo.

En total, según estimaciones actualizadas, aproximadamente 73,78 millones de litros de diversos herbicidas fueron diseminados mediante aviones y helicópteros sobre un área de aproximadamente 26 000 km2, el 15 por ciento de la superficie terrestre de la República de Vietnam, y la mayoría de éstas áreas fueron fumigadas más de una vez. La mayor parte del área rociada era bosque costero o interior, mientras que aproximadamente el 10% era tierra de cultivo. Del volumen total pulverizado, aproximadamente un 61,9% fue «Agente Naranja» (una mezcla a partes iguales de los ésteres n-butílicos del 2,4-D (ácido 2,4-diclorofenoxiacético, CAS 94-75-7) y del 2,4,5-T (ácido 2,4,5-triclorofenoxiacético, CAS 93-76-5), y posteriormente una mezcla a partes iguales del éster butílico del 2,4-D y del éster isooctílico del 2,4,5-T), un 27,9% fue «Agente Blanco» (constituido por aproximadamente un 21,2% de sales de triisopropilamina con 2,4-D, un 5,7% de Picloram, agua y otros ingredientes inertes), un 6,4% fue «Agente Azul» (ácido cacodílico y su sal sódica, más ingredientes inertes), y un 2,6% fue «Agente Púrpura» (una mezcla constituida por un 50% de éster butílico del 2,4-D, un 30% de éster butílico del 2,4,5-T y un 20% del éster isobutílico del 2,4,5-T)11.

Estos herbicidas se implementaron como parte del programa de «negación de recursos (resource denial programme)» de los Estados Unidos para privar al Vietcong de alimentos mediante la defoliación de bosques y tierras cultivadas.

 

Referencias

  1. «Cacodilo», https://es.wikipedia.org/wiki/Cacodilo
  2. «Jean Hellot- A pioneer of chemical technology», J. Wisniak, Revista CENIC Ciencias Químicas, Vol. 40, No. 2, 111-121, (2009).
  3. «Louis-Claude Cadet de Gassicourt», J. Wisniak, Revista CENIC Ciencias Químicas, Vol. 42, No. 2-3, 1-11, (2011)
  4. «Cacodyl», Michael Freemantle, https://www.chemistryworld.com/podcasts/cacodyl/3010035.article?platform=hootsuite
  5. «Cadet’s Fuming Liquid-An historical survey», John S. Thayer, Chem. Educ.1966, Volume 43, Number 11, 594-595
  6. «Organic Arsenical Compounds», G. W. Raiziss & J. L. Gavron, American Chemical Society, Monograph series, 1923
  7. «Cadet’s Fuming Arsenical Liquid and the Cacodyl Compounds of Bunsen», Dietmar Seyferth, Organometallics, 20, 1488-1498, (2001)
  8. «One Hundred Years of Chemical Warfare: Research, Deployment, Consequences», B.Friedrich, D.Hoffmann, J.Renn, F.Schmaltz & M. Wolf, Springer, 2017
  9. «Chemical Warfare Agents, Chemistry, Pharmacology, Toxicology, and Therapeutics», J. A. Romano, B. J. Lukey & H. Salem 2ªEd
  10. «Bunsen without his burner», Colin A Russell, Phys. , 34(5), September, 321-326, (1999)
  11. «Information on chemical usage», Agent Orange Data Warehouse, http://www.workerveteranhealth.org/milherbs/new/chemuse.php

 

 

 

 

El anexo está de moda

Sí, parece increíble, pero el anexo sobre sustancias químicas, está de moda. A las recientes propuestas para su modificación llevadas a cabo por Canadá, Estados Unidos de América y Países Bajos, por un lado1, y por la Federación Rusa por otro2, podemos añadir el documento de la OPAQ, «The Science for Diplomats Annex on Chemicals», de fecha 12 de febrero de 20193. A la vista del contenido de este último, decidí escribir este artículo, cuyo contenido pongo a disposición de los lectores, en un documento libre, en formato pdf. Descargar El anexo sobre sustancias químicas de la CAQ está de moda

Recordemos que la Convención para la Prohibición de las Armas Químicas (CAQ) enumera, en tres Listas, las sustancias químicas tóxicas y sus precursores respecto de los que se prevé la aplicación de medidas de verificación con arreglo a lo previsto en las disposiciones del Anexo sobre verificación4.

En estas Listas se hace referencia a sustancias químicas individuales (con su propio número CAS), y a familias de sustancias químicas que contienen diversos grupos alquilo (que se indican entre paréntesis). Dentro de estas familias se entienden incluidas todas las sustancias químicas posibles que puedan obtenerse mediante todas las combinaciones posibles de los grupos alquílicos indicados entre paréntesis, en tanto no estén expresamente excluidas4.

Tenemos por un lado grupos alquilo que pueden tener hasta 10 átomos de carbono, incluidos ciclos (R1 < C10, incluido el cicloalquilo), y tenemos por otro lado grupos alquilo con no más de tres átomos de carbono (R2, R3, R4 = metilo, etilo, propilo e isopropilo) 4.

Familias de los alquilfluorofosfonatos de alquilo, alquilfosforamidocianidatos de alquilo, y alquilfosfonotiolatos de alquilo (R1 puede tener hasta 10 átomos de carbono, incluidos ciclos, y R2, R3 y R4 pueden ser grupos metilo, etilo, propilo o isopropilo)

Recordemos además que, a nivel atómico, muchos elementos químicos presentan isótopos naturales, y a nivel molecular, muchas moléculas presentan isómeros.

 

 

Isómeros5

Comencemos por los isómeros, que son de gran importancia para entender las familias de las Listas de la CAQ. Son isómeros aquellas sustancias químicas que teniendo la misma fórmula empírica o molecular, tienen distinta ordenación espacial de sus átomos (enlaces), y presentan por ello propiedades físicas y/o químicas diferentes5.

Generalmente la palabra isómero se emplea para designar aquellas sustancias químicas que están relacionadas entre sí:

  • por ser isómeros estructurales o de constitución, esto es, por tener distinta ordenación o naturaleza en sus enlaces, o
  • por ser isómeros de configuración o estereoisómeros, los cuales presentan distinta disposición tridimensional de los átomos.

Distintos tipos de isomería

 

Isomería plana5

Los grupos alquilo a los que se refieren las Listas de la CAQ son sustituyentes, formados por la separación de un átomo de hidrógeno de un hidrocarburo saturado (alcano o cicloalcano) de modo que éste pueda unirse a otro átomo o grupo de átomos.

Los alcanos son compuestos formados por carbono e hidrógeno que sólo contienen enlaces simples carbono – carbono. Cumplen la fórmula general CnH2n+2, donde n es el número de carbonos de la molécula.

Los alcanos son hidrocarburos, es decir, compuestos que solo contienen átomos de carbono e hidrógeno. La fórmula general para alcanos alifáticos (de cadena lineal o de cadena ramificada) es CnH2n+2​ y para cicloalcanos es CnH2n​ .También reciben el nombre de hidrocarburos saturados, ya que carecen de enlaces dobles o triples y, por tanto, todos sus átomos de carbono presentan hibridación sp3 (cuatro enlaces con distribución espacial tetraédrica) y carecen de grupos funcionales.

Los alcanos alifáticos, de fórmula empírica CnH2n+2, pueden ser de cadena lineal o de cadena ramificada, y los alcanos cíclicos o cicloalcanos, de fórmula empírica CnH2n pueden tener o no, una o más cadenas alquílicas de diferentes longitudes, en distintas posiciones.

Los alcanos se nombran atendiendo a la estructura del compuesto. Si la cadena es lineal, sin ramificaciones, para nombrarlos se utiliza un prefijo indicativo del número de átomos de carbono seguido de la terminación «ano». Si se trata de alcanos ramificados, es necesario determinar cuál es la cadena principal y nombrar cada ramificación, de manera similar a como se hace con los alcanos lineales, sustituyendo la terminación ano por la terminación «ilo» («il»).

Nº átomos de carbono Prefijo Nombre del alcano Nombre del grupo alquilo
1 Met Metano Metilo (metil)
2 Et Etano Etilo (etil)
3 Prop Propano Propilo (propil)
4 But Butano Butilo (butil)
5 Pent Pentano Pentilo (pentil)
6 Hex Hexano Hexilo (hexil)
7 Hep Heptano Heptilo (heptil)

Recordemos que en las Listas de la CAQ los grupos R2, R3,y R4 pueden ser grupos metilo, etilo, propilo e isopropilo, esto es:

metilo etilo propilo isopropilo (1-metiletilo)

 

Y que por otro lado tenemos que R1 es un grupo alquilo o cicloalquilo, que puede poseer hasta 10 átomos de carbono, por ejemplo:

isopropilo (1-metiletilo) isobutilo (2-metilpropilo) pinacolilo (1,2,2-trimetilpropilo)
ciclohexilo 4,4-dimetilhexilo 4-etilhexilo

 

Estereoisomería5,6,7

Los estereoisómeros se definen como isómeros que tienen la misma secuencia de átomos enlazados, pero con distinta orientación espacial. Se dividen en dos grandes grupos:

  • Los que se originan por la distinta orientación espacial de átomos o grupo de átomos alrededor de un enlace doble y que se denominan isómeros geométricos.
  • Los que se originan por la distinta orientación espacial de átomos o grupos de átomos alrededor de un centro asimétrico (generalmente un átomo de carbono tetraédrico con hibridación sp3, pero también un átomo de fósforo pentavalente). Estos estereoisómeros pueden ser a su vez:
    • Enantiómeros que se relacionan entre sí por ser imágenes especulares no superponibles.
    • Diastereoisómeros o diasterómeros, isómeros configuracionales que no son imagen especular uno del otro.

Los enantiómeros tienen entre sí las mismas propiedades físicas, excepto que desvían el plano de luz polarizada en sentidos opuestos. Los enantiómeros de una sustancia química interaccionan con los enantiómeros de otras sustancias químicas de diferente manera, consecuencia de su diferente quiralidad, y en consecuencia suelen mostrar diferentes comportamientos y efectos biológicos.

Los diestereoisómeros son estereoisómeros pero no son enantiómeros, es decir no son entre sí imágenes especulares. Los diestereoisómeros muestran diferencias en sus propiedades físicas y algunas diferencias en el comportamiento químico, aunque sus propiedades químicas y biológicas pueden ser similares.

Algunas sustancias químicas recogidas por las Listas muestran enantiómeros (por ejemplo el sarín) y otras también presentan diestereoisómeros (por ejemplo, el somán). La toxicidad de los enantiómeros y diastereoisómeros suele ser diferente, y por lo general los que desvían el plano de la luz polarizada hacia la izquierda, prefijo (-) o levógiros, presentan una mayor toxicidad. La mezcla racémica, una proporción molar 1:1 de cada enantiómero, se denota con el prefijo (±), y tiene una actividad biológica que es la contribución de la suma de los dos enantiómeros.

Las rutas normales de síntesis de los agentes químicos no suelen ser estereoselectivas y producen una mezcla racémica de estereoisómeros.

El sarín está recogido como ya hemos indicado en la Lista 1A.1, con el número CAS 107-44-8 y se entiende corresponde a una mezcla racémica. Sin embargo los dos enantiómeros del sarín no aparecen recogidos en la Lista 1A.1, y sin embargo cada uno de ellos tiene su propio número CAS:

sarín CAS 107-44-8

R-(-)-sarín CAS 6171-94-4

S-(+)-sarín CAS 6171-93-3

El BZ, recogido en la Lista 2A.3 con el número CAS 6581-06-2 es otro ejemplo de quiralidad. El BZ (bencilato de 3-quinuclidinilo) tiene un centro quiral y por ello tiene un enantiómero (R)-(-)-bencilato de 3-quinuclidinilo, número CAS 62869-69-6, y un enantiómero (S)-(+)- bencilato de 3-quinuclidinilo, número CAS 62869-68-5.

Aunque los efectos incapacitantes del enantiómero (R)-(-) son del orden de 20 veces mayores que los del enantiómero (S)-(+), ambos producen efectos incapacitantes, y dado que los procedimientos normales de síntesis producen una mezcla de ambos enantiómeros, tanto los enantiómeros individuales, como la mezcla están recogidos de manera implícita en la Lista 2A.3:

bencilato de 3-quinuclidinilo

CAS 6581-06-2

(R)-(-)-bencilato de 3-quinuclidinilo

CAS 62869-69-6

(S)-(+)-bencilato de 3-quinuclidinilo

CAS 62869-68-5

Es decir, tanto las sustancias químicas listadas, como cualquiera de sus estereoisómeros están incluidos de manera implícita en las Listas, y son por ello idénticos a efectos de declaración.

 

 

Isótopos6,7

La identidad de un átomo y sus propiedades vienen dadas por el número de partículas que contiene. Lo que distingue a unos elementos químicos de otros es el número de protones en el núcleo que tienen sus átomos. Este número se llama «número atómico» y se representa con la letra Z. Se coloca como subíndice a la izquierda del símbolo del elemento correspondiente. Por ejemplo, todos los átomos del elemento hidrógeno tienen 1 protón y su Z = 1, los de helio tienen 2 protones y Z =2, los de litio, 3 protones y Z = 3,…etc.

Si el átomo es neutro, su número de electrones coincide con su número de protones.

El «número másico» nos indica el número total de partículas que hay en el núcleo, es decir, la suma de protones y neutrones. Se representa con la letra A y se sitúa como superíndice a la izquierda del símbolo del elemento. Representa la masa del átomo medida en uma, ya que la de los electrones es tan pequeña que puede despreciarse.

Los isótopos son átomos del mismo elemento químico, con el mismo número de protones en el núcleo (mismo número atómico) pero diferente número de neutrones en el núcleo (diferentes masas atómicas). Isótopos del mismo elemento difieren en algunas de sus propiedades físicas, por ejemplo, en su masa, pero químicamente son prácticamente idénticos. Por tanto pueden utilizarse como trazadores en las investigaciones químicas y biológicas de una determinada sustancia química. En relación con la Convención, el etiquetado isotópico se utiliza para el desarrollo de métodos analíticos y para investigar los mecanismos de acción de sustancias químicos listadas en los procesos naturales.

La sustitución isotópica supone un cambio insignificante en la estructura de una molécula y dado que prácticamente no existen diferencias en el comportamiento químico entre una sustancia química listada y las sustancias químicas listadas marcadas isotópicamente todas ellas presentan los mismos peligros y por tanto todas ellas deben están incluidas en las Listas.

Las sustancias químicas incluidas en las Listas corresponden a estructuras químicas que contienen isótopos naturales y los números CAS asignados a estos agentes químicos asumen que contienen los isótopos naturales. La siguiente tabla muestra algunos de los elementos químicos de mayor interés en lo referente a las armas químicas, con sus pesos atómicos, y la masa y abundancia de sus isótopos naturales.

Elemento Peso atómico Isótopo masa Abundancia natural (%)
Hidrógeno 1,008 1H 1,007825 99,9885
2H 2,014102 0,0115
Carbono 12,011 12C 12,000000 98,93
13C 13,003355 1,07
Nitrógeno 14,007 14N 14,003074 99,636
15N 15,000109 0,364
Flúor 18,998 19F 18,998403 100,00
Oxígeno 15,999 16O 15,994915 99,757
17O 16,999132 0,038
18O 17,999161 0,205
Fósforo 30,974 31P 30,973762 100,00
Azufre 32,065 32S 31,972071 94,99
33S 32,971459 0,75
34S 33,967867 4,25
36S 35,967081 0,01
Cloro 35,453 35Cl 34,968853 75,76
37Cl 36,965903 24,24
Arsénico 74,922 75As 74,921597 100,00
Bromo 79,904 79Br 78,918337 50,69
81Br 80,916291 49,31

Los pesos atómicos se han calculado con las abundancias y masas de los isótopos recogidas en CRC Handbook of Chemistry and Physics, 90th edition.

Cada sustancia química listada, con su correspondiente número CAS, consiste en una mezcla de moléculas con diferentes isótopos en diferentes proporciones, fruto de esa abundancia isotópica natural.

Por ejemplo, la iperita, sulfuro de bis (2-cloroetilo), C4H8Cl2S, está recogida en la Lista 1A.4 con el número CAS 505-60-2 y tiene un peso molecular de 159,077.

Espectro de masas de la iperita CAS 505-60-2

Los picos que aparecen a m/e=158, m/e=160 y m/e=162 con esa relación de intensidad se deben fundamentalmente a los isótopos del cloro. En este grupo el pico más intenso con m/e=158 se debe al 12C41H835Cl232S.

Si sólo considerásemos los isótopos de azufre, sin tener en cuenta los isótopos de los demás elementos, teniendo en cuenta las abundancias anteriormente indicadas para él, habría aproximadamente un 94,99 % de moléculas con 32S, un 0,75 % de moléculas con 33S, un 4,25 % de moléculas con 34S y un 0,01 % de moléculas con 36S.

Algunas estructuras de la iperita marcadas isotópicamente ya tienen asignado número CAS individualizado:

  • Por ejemplo, la iperita marcada con 35S, un isótopo radiactivo del azufre, con un período de semidesintegración de 87,37 días, que se utiliza para el marcado isotópico, entre otros, de proteínas y ácido nucleicos, tiene el número CAS 6755-76-6.
  • La iperita marcada con deuterio, 2H, cuyo símbolo químico es D, también tiene diferentes números CAS, en función del número y lugar que ocupan los isótopos de deuterio en su molécula:

CAS 81142-27-0

CAS 81142-25-8

CAS 1558012-49-9

CAS 176327-97-2

Si sólo estuviesen recogidas en las Listas las sustancias químicas que tuviesen números CAS, se daría la paradoja de que la iperita con número CAS 505-60-2, mezcla de moléculas con diferentes isótopos naturales estaría recogida en la Lista 1A.4, mientras que otras moléculas de iperita marcadas isotópicamente no lo estarían, máxime cuando las propiedades químicas y toxicológicas de los isótopos son prácticamente idénticas.

Así pues el número CAS no puede ser el único indicador a utilizar para ver si una sustancia química está o no incluida en las Listas.

Sucede además que algunas mezclas de agentes químicos de guerra con ciertas propiedades especiales tienen asignado su propio número CAS, que como pueden suponer no está incluido en las Listas. Este es otro punto a tener en cuenta a la hora de ver si un número CAS o un producto químico está o no incluido en las Listas.

Iperita, HD, Lista 1A.4, CAS 505-60-2

HT

(mezcla de un 60% HD y un 40% T)

CAS 172672-28-5

T, Lista 1A.4, CAS 63918-89-8

 

Iperita, HD, Lista 1A.4, CAS 505-60-2

HL

(mezcla de un 37% HD y un 63% L)

CAS 378791-32-3

Lewisita1, L1, Lista 1A.5, CAS 541-25-3

El tema de los isótopos afecta no sólo a los agentes químicos incluidos en las Listas, sino también a los precursores incluidos en éstas. Sirva de ejemplo el sarín, agente químico de guerra recogido en la Lista 1A.1, con el número CAS 107-44-8. Sus principales precursores son el difluoruro de metilfosfonilo, DF, con número CAS 676-99-3 y el dicloruro de metilfosfonilo, DC, con número CAS 756-79-6, ambos casualmente reflejados como tales con sus números CAS en sus correspondientes Listas. Sin embargo ni el sarín deuterado, ni el DF deuterado, ni el DC deuterado aparecen reflejados explícitamente en las Listas, y sus propiedades químicas y toxicológicas son como ya hemos indicado prácticamente idénticas a las de las sustancias no deuteradas:

Lista 2B.4, CAS 676-97-1

Lista 1B.9, CAS 676-99-3

Lista 1A.1, CAS 107-44-8

CAS 104801-17-4

CAS 104801-20-9

CAS 104801-08-3

Tanto las sustancias químicas listadas, como cualquiera de sus variantes marcadas isotópicamente están incluidas de manera explícita o implícita en las Listas, y son por ello idénticas a efectos de declaración de las mismas7.

 

 

Referencias

  1. «Se les ve el plumero», Domingo, http://cbrn.es/?p=1403
  2. » Feliz Novichok y Próspero Año Nuevo 2019″, J. Domingo, http://cbrn.es/?p=1450
  3. «The Science for Diplomats Annex on Chemicals», OPAQ, 12 de febrero de 2019, https://www.opcw.org/sites/default/files/documents/2019/02/Science_For_Diplomats_Annex_on_Chemicals%20Feb2019_0.pdf
  4. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción (CAQ)», disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf y en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc
  5. «Imágenes especulares no superponibles», J. Domingo, http://cbrn.es/?p=322
  6. «Isótopos e isómeros, guerra química», J. Domingo, http://cbrn.es/?p=557
  7. «Response to the Director-General’s Request to the Scientific Advisory Board to Provide Further Advice on Scheduled Chemicals», OPCW, https://www.opcw.org/fileadmin/OPCW/SAB/en/sab-23-wp01_e_.pdf

 

 

 

A. Directrices para las listas de sustancias químicas

Directrices para la Lista 1

  1. Al examinar si se debe incluir en la Lista 1 una sustancia química tóxica o un precursor, se tendrán en cuenta los siguientes criterios:
    1. Se ha desarrollado, producido, almacenado o empleado como arma química según la definición del artículo II;
    2. Plantea de otro modo un peligro grave para el objeto y propósito de la presente Convención debido a su elevado potencial de empleo en actividades prohibidas por ella al cumplirse una o más de las condiciones siguientes:

      i) Posee una estructura química estrechamente relacionada con la de otras sustancias químicas tóxicas enumeradas en la Lista 1 y tiene propiedades comparables, o cabe prever que las tenga;

      ii) Posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;

      iii) Puede emplearse como precursor en la fase tecnológica final única de producción de una sustancia química tóxica enumerada en la Lista 1, con independencia de que esa fase ocurra en instalaciones, en municiones o en otra parte;

    3. Tiene escasa o nula utilidad para fines no prohibidos por la presente Convención.

 

Directrices para la Lista 2

  1. Al examinar si se debe incluir en la Lista 2 una sustancia química tóxica no enumerada en la Lista 1 o un precursor de una sustancia química de la Lista 1 o de una sustancia química de la parte A de la Lista 2, se tendrán en cuenta los siguientes criterios:
    1. Plantea un peligro considerable para el objeto y propósito de la presente Convención porque posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;
    2. Puede emplearse como precursor en una de las reacciones químicas de la fase final de formación de una sustancia química enumerada en la Lista 1 o en la parte A de la Lista 2;
    3. Plantea un peligro considerable para el objeto y propósito de la presente Convención debido a su importancia en la producción de una sustancia química enumerada en la Lista 1 o en la parte A de la Lista 2;
    4. No se produce en grandes cantidades comerciales para fines no prohibidos por la presente Convención.

 

Directrices para la Lista 3

  1. Al examinar si se debe incluir en la Lista 3 una sustancia química tóxica o un precursor que no esté enumerado en otras Listas, se tendrán en cuenta los siguientes criterios:
    1. Se ha producido, almacenado o empleado como arma química;
    2. Plantea de otro modo un peligro para el objeto y propósito de la presente Convención porque posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;
    3. Plantea un peligro para el objeto y propósito de la presente Convención debido a su importancia en la producción de una o más sustancias químicas enumeradas en la Lista 1 o en la parte B de la Lista 2;
    4. Puede producirse en grandes cantidades comerciales para fines no prohibidos por la presente Convención.

 

B. Listas de sustancias químicas

En las Listas siguientes se enumeran las sustancias químicas tóxicas y sus precursores. A los fines de aplicación de la presente Convención, se identifican en esas Listas las sustancias químicas respecto de las que se prevé la aplicación de medidas de verificación con arreglo a lo previsto en las disposiciones del Anexo sobre verificación. De conformidad con el apartado a) del párrafo 1 del artículo II, estas Listas no constituyen una definición de armas químicas.

(Siempre que se hace referencia a grupos de sustancias químicas dialquilatadas, seguidos de una lista de grupos alquílicos entre paréntesis, se entienden incluidas en la respectiva Lista todas las sustancias químicas posibles por todas las combinaciones posibles de los grupos alquílicos indicados entre paréntesis, en tanto no estén expresamente excluidas. Las sustancias químicas marcadas con un «*» en la parte A de la Lista 2, están sometidas a umbrales especiales para la declaración y la verificación, tal como se dispone en la Parte VII del Anexo sobre verificación.)

Cada Lista incluye dos sub-apartados A (Agentes químicos) y B (Precursores), y cada elemento de las Listas viene definido mediante una fórmula general para una familia química, o mediante la fórmula de un compuesto químico específico. Se incluye algún ejemplo para cada una de las familias definidas mediante una fórmula general, y las excepciones cuando las hay, así como los números CAS.

 

Lista 1

A. Sustancias químicas tóxicas:

1A.1    Alquil (metil, etil, propil o isopropil) fosfonofluoridatos de O-alquilo (< C10, incluido el cicloalquilo)

R1 < C10, incluido el cicloalquilo

R2 = metilo, etilo, propilo o isopropilo

Más de 20 000 sustancias químicas

Ejemplos:
GB, sarín: Metilfosfonofluoridato de O-isopropilo (107‑44‑8)

GD, somán: Metilfosfonofluoridato de O-pinacolilo (96‑64‑0)

GF, ciclosarín: Metilfosfonofluoridato de O-ciclohexilo (329-99-7)

GE, etilsarín: Etilfosfonofluoridato de O-isopropilo (1189-87-3)

1A.2    N,N‑dialquil (metil, etil, propil o isopropil) fosforamidocianidatos de O-alquilo (< C10, incluido el cicloalquilo)

R1 < C10, incluido el cicloalquilo

R2, R3 = metilo, etilo, propilo o isopropilo

Más de 50 000 sustancias químicas

Ejemplos:
GA, tabún: N,N‑dimetilfosforamidocianidato de O-etilo (77‑81‑6)

1A.3    S‑2‑dialquil (metil, etil, propil o isopropil) aminoetil alquil (metil, etil, propil o isopropil) fosfonotiolatos de O-alquilo (H ó < C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes.                                                                                       

R1 < C10, incluido el cicloalquilo

R2, R3, R4 = metilo, etilo, propilo o isopropilo

Más de 200 000 sustancias químicas

Ejemplos:
VX: S‑2‑diisopropilaminoetil metilfosfonotiolato de O‑etilo (50782‑69‑9)                 

 

VR: S‑2‑dietilaminoetil metilfosfonotiolato de O‑(2-metilpropilo) (159939-87-4)      

C-VX: S‑2‑dietilaminoetil metilfosfonotiolato de O‑butilo (468712-10-9) 

               

 1A.4    Mostazas de azufre:                                                                                   

1A.4.1   Clorometilsulfuro de 2‑cloroetilo (2625‑76‑5)

1A.4.2   H, HD, Gas mostaza: sulfuro de bis(2‑cloroetilo) (505‑60-2)

1A.4.3   Bis(2‑cloroetiltio)metano (63869‑13‑6)

1A.4.4   Sesquimostaza: 1,2‑bis(2‑cloroetiltio)etano (3563‑36‑8)

1A.4.5   1,3‑bis(2‑cloroetiltio)propano (63905‑10-2)

1A.4.6   1,4‑bis(2‑cloroetiltio)butano (142868‑93‑7)

1A.4.7   1,5‑bis(2‑cloroetiltio)pentano (142868‑94‑8)

1A.4.8   T, bis(2‑cloroetiltiometil)éter (63918‑90-1)

1A.4.9   Mostaza O: bis(2‑cloroetiltioetil)éter (63918‑89‑8)

1A.5    Lewisitas:

1A.5.1   L1, Lewisita 1: 2‑clorovinildicloroarsina (541‑25‑3)

1A.5.2   L2, Lewisita 2: bis(2‑clorovinil) cloroarsina (40334‑69‑8)

1A.5.3   L3, Lewisita 3: tris(2‑clorovinil) arsina (40334‑70-1)

1A.6    Mostazas de nitrógeno:

1A.6.1   HN1: bis(2‑cloroetil) etilamina (538‑07‑8)

1A.6.2   HN2: bis(2‑cloroetil) metilamina (51‑75‑2)

1A.6.3   HN3: tris(2‑cloroetil) amina (555‑77‑1)

1A.7    Saxitoxina (35523‑89‑8)

1A.8    Ricina (9009‑86‑3): Dos cadenas protéicas diferentes, A (una N-glicósido hidrolasa constituida por 267 aminoácidos) y B (una lectina constituida por 262 aminoácidos), de unos 32 kD y 34 kD, respectivamente, unidas por un puente disulfuro.

  

B. Precursores:

1B.9    Fosfonildifluoruros de alquilo (metilo, etilo, propilo o isopropilo)      

R1 < C10, incluido el cicloalquilo

R2, R3, R4 = metilo, etilo, propilo o isopropilo

4 sustancias químicas

Ejemplos:
DF: metilfosfonildifluoruro (676‑99‑3)

Etilfosfonildifluoruro (753-98-0)

Propilfosfonildifluoruro (690-14-2)

Isopropilfosfonildifluoruro (677-42-9)

1B.10   O-2‑dialquil (metil, etil, propil o isopropil) aminoetil alquil (metil, etil, propil o isopropil) fosfonitos de O-alquilo (H o <C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes

R1 < C10, incluido el cicloalquilo

R2, R3, R4 = metilo, etilo, propilo o isopropilo

Más de 200 000 sustancias químicas

Ejemplos:
QL: O-2‑diisopropilaminoetilmetilfosfonito de O-etilo (57856‑11‑8)

O-2‑diisopropilaminoetilmetilfosfonito de O-etilo (169662-66-2)

1B.11   Cloro sarín: metilfosfonocloridato de O-isopropilo (1445‑76‑7)

1B.12   Cloro somán: metilfosfonocloridato de O‑pinacolilo (704O-57‑5)

 

 

Lista 2

A. Sustancias químicas tóxicas:

2A.1    VG, amitón: Fosforotiolato de O,O-dietil S‑2‑(dietilamino) etil y sales alquilatadas o protonadas correspondientes (78‑53‑5)

2A.2    PFIB: 1,1,3,3,3‑pentafluoro‑2‑(trifluorometil) de 1‑propeno (382‑21‑8)

2A.3    BZ: Bencilato de 3‑quinuclidinilo (*) (6581‑06‑2)

B. Precursores:

2B.4    Sustancias químicas, excepto las sustancias enumeradas en la Lista 1, que contengan un átomo de fósforo al que esté enlazado un grupo metilo, etilo, propilo o isopropilo, pero no otros átomos de carbono.                                                                                                  

        R2 = metilo, etilo, propilo o isopropilo

Más de 1000 000 sustancias químicas

Ejemplos:
DC, dicloruro de metilfosfonilo (676‑97‑1)

Dicloruro de etilfosfonilo (1066-50-8)

Metildiclorofosfina (676-83-5)

Etildiclorofosfina (1498-40-4)

Metilfosfonato de dimetilo (756‑79‑6)

Etilfosfonato de dimetilo (6163-75-3)

Excepción:
Fonofos: etilfosfonotiolotionato de O‑etilo S‑fenilo (944‑22‑9)

2B.5    Dihaluros N,N‑dialquil (metil, etil, propil o isopropil) fosforamídicos

X = flúor, cloro, bromo, iodo

R2, R3 = metilo, etilo, propilo o isopropilo

Más de 20 sustancias químicas

Ejemplo:
Dicloruro de N,N-dimetilfosforamidico (677-43-0)

2B.6    N,N‑dialquil (metil, etil, propil o isopropil) fosforamidatos O,O´-dialquílicos (metílicos, etílicos, propílicos o isopropílicos)

R2, R3 = metilo, etilo, propilo o isopropilo

R4, R5 = metilo, etilo, propilo o isopropilo

100 sustancias químicas

Ejemplo:
N,N-dimetilfosforamidato de O-etilo y O-metilo (135505-94-1)

 2B.7    Tricloruro de arsénico (7784‑34‑1)

2B.8    Acido 2,2‑difenil‑2‑hidroxiacético (76‑93‑7)

2B.9    Quinuclidinol‑3 (1619‑34‑7)

2B.10   Cloruros de N,N‑dialquil (metil, etil, propil o isopropil) aminoetilo‑2 y sales protonadas correspondientes

R2, R3 = metilo, etilo, propilo o isopropilo

10 sustancias químicas

Ejemplo:
Cloruro de N,N‑dietil aminoetilo‑2 y sales protonadas correspondientes (100-35-6)

2B.11   N,N‑dialquil (metil, etil, propil o isopropil) aminoetanoles‑2 y sales protonadas correspondientes

R2, R3 = metilo, etilo, propilo o isopropilo

8 sustancias químicas

Ejemplo:
2-(N,N‑diisopropilamina)etanol y sales protonadas correspondientes (96-80-0)

Excepciones:
2-(N,N‑dimetilamina)etanol y sales protonadas correspondientes (108‑01‑0)

2-(N,N‑dietilamina)etanol y sales protonadas correspondientes (100-37‑8)

2B.12   N,N‑dialquil (metil, etil, propil o isopropil) aminoetanotioles‑2 y sales protonadas correspondientes

R2, R3 = metilo, etilo, propilo o isopropilo

10 sustancias químicas

Ejemplo:
2-(N,N‑diisopropilamina)etanotiol y sales protonadas correspondientes (5842-07-9)

2B.13   Tiodiglicol: sulfuro de bis (2‑hidroxietilo) (111‑48‑8)

2B.14   Alcohol pinacolílico: 3,3‑dimetilbutanol‑2 (464‑07‑3)

 

 

Lista 3

A. Sustancias químicas tóxicas:

3A.1    CG, fosgeno: dicloruro de carbonilo (75‑44‑5)

3A.2    CK, cloruro de cianógeno (506‑77‑4)

3A.3    AC, cianuro de hidrógeno (74‑9O-8)

3A.4    PS, cloropicrina: tricloronitrometano (76‑06‑2)

 

 

B. Precursores:

3B.5    Oxicloruro de fósforo (10025‑87‑3)

3B.6    Tricloruro de fósforo (7719‑12‑2)

3B.7    Pentacloruro de fósforo (10026‑13‑8)

3B.8    Fosfito trimetílico (121‑45‑9)

3B.9    Fosfito trietílico (122‑52‑1)

 

3B.10   Fosfito dimetílico (868‑85‑9)

3B.11   Fosfito dietílico (762‑04‑9)

 

3B.12   Monocloruro de azufre (10025‑67‑9)

3B.13   Dicloruro de azufre (10545‑99‑0)

 

3B.14   Cloruro de tionilo (7719‑09‑7)

3B.15   Etildietanolamina (139-87-7)

 

3B.16   Metildietanolamina (105-59-9)

3B.17   Trietanolamina (102‑71‑6)

El DC, un desconocido

Hace ya varios meses en un artículo titulado «El DF, un precursor clave»1 mencionaba la importancia del metilfosfonil difluoruro (CAS 676-99-3) como componente clave en la síntesis binaria del sarín. Los fosfonildifluoruros de alquilo (metilo, etilo, n-propilo e isopropilo) constituyen la familia 1B.9 de la CAQ, y son sustancias que ya no están comercialmente disponibles2.

metilfosfonil difluoruro

CAS 676-99-3

etilfosfonil difluoruro

CAS 753-98-0

propilfosfonil difluoruro

CAS 690-14-2

isopropilfosfonil difluoruro

CAS677-42-9

Los fosfonildicloruros de alquilo, son casi unos desconocidos, pero a diferencia de los fosfonildifluoruros son sustancias comercialmente disponibles (Sigma-Aldrich, Alfa-Chemistry). Son miembros de la familia más numerosa de las Listas de la CAQ, la familia 2B.4, que incluye aquellas sustancias químicas, excepto las enumeradas en la Lista 1, que contienen un átomo de fósforo al que está enlazado un grupo metilo, etilo, n-propilo o isopropilo, pero no otros átomos de carbono2.

El DC (DC es el acrónimo del metilfosforil dicloruro (CAS 676-97-1), es un importantísimo reactivo de síntesis utilizado por ejemplo para la síntesis del sarín. Los fosfonildicloruros de alquilo (metilo, etilo, n-propilo e isopropilo) están todos ellos incluidos en la Lista 2B.42:

metilfosfonil dicloruro

CAS 676-97-1

228052

Sigma-Aldrich

etilfosfonil dicloruro

CAS 1066-50-8

275964

Sigma-Aldrich

propilfosfonil dicloruro

CAS 4708-04-7

455873

Sigma-Aldrich

isopropilfosfonil dicloruro

CAS 1498-46-0

ACM1498460

Alfa-Chemistry

 No deben confundirse los «alkylphosphonous dichlorides», esto es, las dicloroalquilfosfinas, con los «alkylphosphonyl dichlorides» o «alkylphosphonic dichlorides», esto es, los fosfonildicloruros de alquilo:

«alkylphosphonous dichlorides»

dicloroalquilfosfinas

«alkylphosphonyl dichloride

«alkylphosphonic dichlorides»

fosfonildicloruros de alquilo

 

 

Síntesis de los agentes neurotóxicos3,4

La producción de los agentes neurotóxicos requiere materiales y equipos bastante sofisticados. La mayoría de las sustancias químicas que se requieren o se forman durante el proceso de producción son corrosivas, y requieren equipos especiales de producción, resistentes a la corrosión. Con la excepción del tabún (GA), fabricado por los alemanes durante la Segunda Guerra Mundial y por los iraquíes durante la guerra entre Irán y Iraq, la producción de los agentes neurotóxicos de la familia G implica tanto pasos de cloración como de fluoración. Ambos pasos requieren equipos de producción especiales y costosos. Los reactores, desgasificadores, columnas de destilación y equipos auxiliares tienen que estar hechos de aleaciones de níquel, cromo, titanio, circonio, etc, o/y recubiertos de vidrio o de fluoropolímeros. Además dada la toxicidad de las sustancias químicas que se manejan o producen se debe prestar especial atención a los sistemas de confinamiento y ventilación3.

Existen varios métodos para la producción de algunos de los agentes neurotóxicos de la familia G, y la mayoría de estos métodos emplean en alguna etapa el metilfosfonil dicloruro (DC). EEUU en su momento, llegó a diseñar y construir plantas para la producción de DC mediante cuatro procesos diferentes, dos de los procesos para la producción y almacenamiento del sarín (GB), un tercer proceso, mejorado para minimizar los residuos, también para la producción y almacenamiento del sarín y un cuarto proceso para la producción de los componentes de los sistemas binarios. La Unión Soviética por su  parte utilizó un proceso diferente para de producción de DC, e Iraq utilizó un proceso similar al empleado por EEUU para la producción de los componentes de los sistemas binarios3.

Síntesis del sarín (Procedimiento con fluoruro sódico)4

 

El DC y el DF son los precursores más importantes de los metilfosfonofluoridatos de alquilo (sarín, soman, ciclosarin, etc. La mezcla Di-Di reacciona con alcohol isopropílico para producir sarin, mediante un procedimiento bien documentado5.

Síntesis del sarín (Procedimiento preferido) 4

Síntesis del sarín (Procedimiento modificado con fluoruro sódico) 4

Síntesis del ciclosarín (Procedimiento con fluoruro sódico) 4

Síntesis del somán (Procedimiento con fluoruro sódico) 4

El DC es un material relativamente fácil de almacenar y transportar, de modo que no es necesaria su producción en el mismo lugar en el que va a llevarse a cabo la síntesis del producto final, y como es bastante estable, es posible su almacenamiento, con muy poco deterioro, por periodos de tiempo del orden de 30 años3.

Las instalaciones para la producción de DC en cantidades significativas desde el punto de vista militar pueden tener tamaños muy diferentes, desde instalaciones muy grandes hasta instalaciones muy modestas que caben en una habitación de tamaño normal. Ya se ha indicado que los procesos para la producción de DC requieren equipos especiales resistentes a la corrosión, generalmente reactores y tanques de almacenamiento revestidos de vidrio, pero no requieren equipos tan costosos como los que se requieren para la producción de los agentes neurotóxicos en etapas posteriores3.

En el proceso actual de producción de algunos agentes neurotóxicos de la serie G, el DC parcialmente fluorado (una mezcla transitoria denominada coloquialmente Di-Di) se hace reaccionar con la parte alcohólica, y el producto final se desgasifica, y generalmente se destila. Esta es la etapa tóxica de la reacción, que requiere especial atención a los sistemas de confinamiento y ventilación, con filtración del aire, y que por las condiciones altamente corrosivas de las sustancias químicas involucradas, requiere equipos altamente resistentes y muy costosos (por ejemplo de Hastelloy C). La mayoría de los alcoholes involucrados en la producción de los agentes de la serie G tienen un empleo comercial a gran escala y no están en las Listas de la CAQ, excepto el alcohol pinacolílico, necesario para la producción del GD, que tiene un uso farmacéutico muy limitado, y se encuentra recogido en la Lista 2B.143.

Para la producción de los agentes V no se emplea el DC pero se requiere la obtención de la correspondiente dicloro alquilfosfina, familia de sustancias recogidas también por la CAQ en su Lista 2B.4.

 

 

El DC, un desconocido6,7,8,9

El DC o metilfosfonil dicloruro, también es conocido como óxido de diclorometilfosfina, dicloruro metilfosfónico o ácido metilfosfonodicloridico. Es un sólido de bajo punto de fusión y olor acre, de fórmula empírica CH3Cl2OP y estructura tetraédrica. Tiene un peso molecular de 132,93, con punto de fusión de 28-34 °C, punto de congelación de 32,74 °C8, punto de ebullición de 59-60 °C a 11mmHg de presión (165,3 °C a 760mmHg9), punto de inflamabilidad  >110 °C, densidad  1,456 g/cm3 a 25 °C8, índice de refracción n35D = 1,45698, temperatura de punto triple 32,99 °C9, y calor de fusión 18,08 J/mol9.

Cuando se calienta hasta su descomposición, emite humos tóxicos de cloruro de hidrógeno y óxido de fósforo. Sensible a la humedad, reacciona con el agua, de manera exotérmica, para producir ácido metilfosfónico (MPA, Methyl Phosphonic Acid) y ácido clorhídrico, por lo que se recomienda mantenerlo alejado de la húmedad, evitar su contacto con el agua, y almacenarlo en recipientes adecuados, herméticamente cerrados.

A efectos de comercio y transporte, su número EC es 211-634-4 y su número ONU es 9206. La guía GRE-2016 le asigna la guía de respuesta número 137 «sustancias – reactivas con el agua – corrosivas»10pero también aparece en la literatura con otros números ONU, por ejemplo UN 339011 UN 29287.

Con UN 3390 6.1/PG 111 se hace referencia a un líquido tóxico por inhalación, corrosivo, N.E.P. (materia no especificada en otra parte, del inglés, N.O.S., Not Otherwise Specified), con una concentración letal CL50 £ 1000 mL/m3 y una concentración de vapor saturado £ 10 CL50. El código 6.1 se refiere a la clase de peligro (sustancias tóxicas) y PG 1 se refiere al grupo de embalaje I (materias muy tóxicas)12.

Con UN 29287 se hace referencia a un sólido tóxico, corrosivo, orgánico, N.E.P., incluido en la clase de peligro 6.1.

Al ser una sustancia que reacciona con el agua produciendo gases tóxicos la GRE-2016 recoje las siguientes distancias de aislamiento inicial y de acción protectora10:

DERRAMES PEQUEÑOS

(De un envase pequeño o una fuga pequeña de un envase grande)

DERRAMES GRANDES

(De un envase grande o de muchos envases pequeños)

UN NOMBRE DEL MATERIAL Primero AISLAR en todas las direcciones Luego, PROTEJA a las personas en la dirección del viento, durante el Primero AISLAR en todas las direcciones Luego, PROTEJA a las personas en la dirección del viento, durante el
DÍA NOCHE DÍA NOCHE
9206 Dicloruro metilfosfónico 30 m 0,1 km 0,2 km 30 m 0,4 km 0,5 km

El DC (CH3POCl2) es un precursor del sarín y de otros metilfosfonofluoridatos de alquilo (agentes químicos de guerra, incluidos en la Lista 1A.1 de la CAQ), y está incluido en la Lista 2B.4 de la CAQ. Puede presentarse como tal o en ciertos casos puede presentarse en forma de «mezcla Di-Di» (mezcla con difluoruro de metilfosfonilo, DF)5.

 

 

Reacciones de los dicloruros alquilfosfónicos13

Los dicloruros alquilfosfónicos son precursores químicos de gran importancia ya que son materiales de partida esenciales para una amplia gama de compuestos organofosforados13.

El DC es, como ya hemos visto, precursor necesario para la síntesis del sarín, soman, ciclohexilsarin y otros metilfosfonofluoridatos de O-alquilo incluídos en la Lista 1.A1 de la CAQ, y los otros tres alquilfosfonil dicloruros (etilfosfonil, propilfosfonil e isopropilfosfonil) serían también precursores para la síntesis de los diversos etil-, propil- e isopropil-fosfonofluoridatos de O-alquilo incluídos en la Lista 1.A1 de la CAQ.

Los dicloruros alquilfosfónicos, reaccionan enérgicamente con agua para producir los correspondientes ácidos alquilfosfónicos14:

Los dicloruros alquilfosfónicos se pueden convertir en alquilfosfonocloridatos por tratamiento con un mol de alcohol y un mol de una base terciaria (por ejemplo, trietilamina). Con dos moles de alcohol y dos moles de amina terciaria se obtienen los alquilfosfonatos de dialquilo13:

Mediante esta reacción es posible preparar metilfosfonato de dietilo, libre de etilfosfonato de dietilo, a partir de etanol y dicloruro de metilfosfónico (en la reacción de Arbuzov con yoduro de metilo y fosfito de trietilo se forma también etilfosfonato de dietilo)13:

La reacción de Arbuzov, llamada así en honor a su descubridor, el químico ruso Aleksandr Erminingeldovich Arbuzov, proporciona un método muy útil para obtener compuestos organofosforados pentavalentes a partir de compuestos organofosforados trivalentes, y también para introducir el enlace fósforo-carbono. En su forma más simple, la reacción consiste en calentar un trialquil fosfito con el correspondiente yoduro de alquilo13:

En la reacción del fosfito trietílico con yoduro de metilo se forma sobre todo metilfosfonato de O,O-dietilo y algo de etilfosfonato de O,O-dietilo, consecuencia de la formación de yoduro de etilo13:

En la reacción del fosfito de O,O-dimetilo y O-etilo con yoduro de metilo el producto formado es casi exclusivamente metilfosfonato de O-etilo y O-metilo13:

 

 

Síntesis del DC

Los dicloruros alquilfosfónicos fueron preparados por primera vez en 1873 por los químicos alemanes August Wilhelm von Hofmann y August Michaelis10.

El DC puede obtenerse mediante la reacción de Michaelis-Becker a partir de dietilfosfito y posterior cloración con PCl515:

También mediante la reacción de Arbusov a partir de trimetil fosfito y posterior cloración con PCl515:

Otra posibilidad, empleada por Alemania durante la II Guerra Mundial, y también luego por Estados Unidos, es la pirólisis del dimetil fosfito y posterior cloración con PCl55,15:

La reacción de los ésteres alquilfosfónicos con el pentacloruro de fósforo no es una reacción tan simple como muestran las reacciones indicadas. Por ejemplo, al tratar el DMMP con PCl5, no solo se forma CH3POCl2 (DC), sino que también se forman otros productos como por ejemplo, (CH3O)POCl2, cuya separación resulta muy difícil16:

La cloración del ácido metilfosfónico (MPA) también produce CH3POCl2 (DC)16, de modo que otra posible ruta de síntesis podría ser la hidrólisis del DMMP para producir MPA, que por reacción con PCl5 conduciría al DC16:

Los dicloruros alquilfosfonotióicos, RPSCl2, tratados con SOCl2, a presión y a 150 °C durante varias horas, producen los correspondientes dicloruros alquilfosfónicos con un excelente rendimiento16:

Así, el dicloruro metilfosfonotióico (CAS 676-98-2) tras su calentamiento, durante 8 horas a 150 °C, y a presión, con  cloruro de tionilo, SOCl2 (CAS 7719-09-7), produce dicloruro metilfosfónico (DF) con un rendimiento prácticamente del 100%16:

También se puede obtener DC mediante oxidación de la metildiclorofosfina, por ejemplo con cloruro de sulfurilo, SO2Cl2 (CAS 7791-25-5), de acuerdo con la siguiente reacción5,17:

El DC también se puede sintetizar a partir de diversos metilfosfonatos, como el DMMP, mediante la cloración con cloruro de tionilo, SOCl2 (CAS 7719-09-7). Se pueden utilizar diversas aminas para catalizar este proceso, obteniéndose diferentes rendimientos (por ejemplo, un 94,4% con dimetilformamida y un 99,2% con N-formilpiperidina)5,18:

Los ingleses tras los interrogatorios a los científicos alemanes que habían participado en el descubrimiento de los agentes neurotóxicos, se mostraron muy interesados en la síntesis de los dicloruros alquilfosfónicos, como precursores de tales agentes. Una de las sugerencias más atractivas para su síntesis fue la posibilidad de condensar tricloruro de fósforo con un cloruro de alquilo y convertir el producto de adición resultante en el intermedio deseado, de acuerdo con la ecuación:

De este modo el DC puede obtenerse mediante la reacción del tricloruro de fósforo, con cloruro de metilo y el tricloruro de aluminio, en un proceso conocido como reacción de Kinnear-Perren (KP), en honor a los dos químicos que la descubrieron:

Este método de síntesis fue desarrollado en 1952 por A. M. Kinnear y  Edward Arthur Perren, trabajando en el Establecimiento Experimental de Defensa Química (CDEE) de Porton Down, en Salisbury, Reino Unido. Cinco documentos técnicos clasificados de Kinnear y Perren, depositados en Porton Down entre 1948 y 1950, se condensaron en un único documento que apareció en la literatura abierta un poco más tarde, en 195219. Este documento entró en impresión un año después de que una publicación similar de J. P. Clay, del Hunter College, en Nueva York, describiera el mismo proceso20. Parece que la prioridad del descubrimiento se debe a Kinnear y Perren, y que el trabajo de Clay contribuyó a desarrollar el proceso y confirmar su validez (por esta razón, algunos químicos prefieren referirse a este proceso como la reacción de Clay-Kinnear-Perren).

 

 

Referencias

  1. «El DF, un precursor clave», J.Domingo, http://cbrn.es/?p=944
  2. «Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction», https://www.opcw.org/sites/default/files/documents/cwc/cwc_en.pdf
  3. «Synthesis of Nerve Agents», http://fas.org/programs/bio/chemweapons/production.html
  4. «The Preparatory Manual of Chemical Warfare Agents-A laboratory manual», Jared Ledgard, The Paranoid Publications Group, 2003
  5. «Precursors of Nerve Chemical Warfare Agents with Industrial Relevance: Characteristics and Significance for Chemical Security», J. Quagliano, Z. Witkiewicz, E. Sliwka & S. Neffe, ChemistrySelect 2018, 3, 2703 – 2715
  6. «Handbook Of Chemical And Biological Warfare Agents», Hank Ellison
  7. «Methylphosphonic dichloride Safety Data Sheet», AlfaAesar, https://www.alfa.com/es/content/msds/british/A14790.pdf
  8. «Properties, Interaction and Esterification of Methylphosphonic Dihalides», B. M. Zeffert, P. B. Coulter, and Harvey Tannenbaum, J. Am. Chem. Soc., 1960, 82 (15), pp 3843–3847
  9. «Thermodynamic Properties of Some Methylphosphonyl Dihalides From 15 to 335°K», George T. Furukawa, Martin L. Reilly, Jeanette H. Piccirelli, and Milton Tenenbaum, Journal of research of the National Bureau of Standards-A. Physics and Chemistry, Vol. 68A, No.4, July-August 1964
  10. «Guía de respuesta en caso de emergencia», GRE2016, https://www.tc.gc.ca/media/documents/tmd-fra/SpanishERGPDF.pdfGRE2016
  11. «FDS Dicloruro metilfosfónico», Sigma Aldrich 228052 https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=ES&language=es&productNumber=228052&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F228052%3Flang%3Des
  12. «HAZMAT Class 6 Toxic and infectious substances», https://en.wikipedia.org/wiki/HAZMAT_Class_6_Toxic_and_infectious_substances
  13. «Best Synthetic Methods-Organophosphorus (V) Chemistry», «2.3 Alkylphosphonic dichlorides», C. M. Timperley, Academic Press, 2015.
  14. «The Thermochemistry of Organic Phosphorus Compounds-Part 1-Heats of Hydrolysis and Oxidation», E. Neale & L. T. D. Williams, J. Chem. Soc., 1955,0, 2485-2490
  15. «The Chemistry of Organophosphorus Pesticides-reactivity, synthesis, mode of action & toxicology», C. Fest & K.-J. Schmidt, Springer-Verlag, 1973
  16. «A New Method for the Synthesis of Phosphonic Dichlorides», L. Maier, Helvetica Chimica Acta, Vol. 56, Fasc. 1 (1973) – Nr. 42
  17. «Ullman’s Encyclopaedia of Industrial Chemicals»-«Phosphorus Compounds, Organic», J. Svara, N. Weferling, T. Hofmann, Wiley-VCH, 2008
  18. «Organic phosphorus compounds 90. A convenient, one-step synthesis of alkyl- and arylphosphonyl dichlorides», Ludwig Maier, Phosphorus, Sulfur, and Silicon and the Related Elements, 1990, 47, 3–4, pp. 465–470.
  19. «Formation of Organo-phosphorus Compounds by the Reaction of Alkyl Chlorides with Phosphorus Trichloride in the Presence of Aluminium Chloride», A. M. Kinnear & E. A. Perren, Chem. Soc. 1952, 3437-3445
  20. «A new method for the preparation of alkane phosphonyl dichlorides», John P. Clay, J. Org. Chem. 1951, 16, 892-894.

 

 

 

 

 

 

 

 

 

 

 

Feliz Novichok y Próspero Año Nuevo 2019

En un artículo reciente1 se argumentaba que la propuesta técnica conjunta de Canadá, Estados Unidos de América y Países Bajos para la actualización del Anexo sobre sustancias químicas de la Convención sobre Armas Químicas (CAQ), además de escasa y sesgada, parecía tener como único objetivo la inclusión en la Lista 1A de la CAQ, de las sustancias A-230 y A-234, también conocidas como «novichoks». Puesto que parece que en los incidentes de Salisbury (atentado contra Sergey Skripal e hija) y de Amesbury (contaminaión y fallecimiento de Dawn Sturgess) se utilizó la sustancia conocida como «novichok» A-234, con esta propuesta se trataría de inculpar solapadamente a la Federación Rusa de su autoría, y de violar la CAQ al mantener un programa de armas químicas no declarado.

En su discurso «Statement by H.E. Ambassador Kenneth D. Ward permanent representative of the United States of America to the OPCW at the fourth special session of the Conference of the States Parties to review the operation of the Chemical Weapons Convention» (RC-4/NAT.7, de fecha 27 de noviembre de 2018) el embajador destacaba, en varios puntos, las acciones que habían llevado a cabo para combatir el incumplimiento de la CAQ, y en el segundo de estos puntos destacaba la propuesta de actualización de los listas de la CAQ y el objetivo de la misma2:

«Segundo, actualización de los listas de la Convención sobre Armas Químicas: el mes pasado, los Estados Unidos, Canadá y los Países Bajos presentaron al Director General una propuesta técnica para actualizar el Anexo sobre sustancias químicas de conformidad con el Artículo XV, párrafo 5 de la Convención. Específicamente, buscamos agregar a las Listas dos familias de productos químicos que incluyen el agente químico novichok utilizado en Salisbury y que se cobró una vida en Amesbury. Los novichoks son agentes nerviosos de uso militar, sin «finalidad no prohibida» por la Convención. Hacemos un llamamiento a todos los Estados Partes para que apoyen la propuesta técnica de cambio para que estas atroces sustancias químicas puedan agregarse, sin demora, a la Lista 1 del Anexo sobre Sustancias Químicas y, por lo tanto, estén sujetas al estricto régimen de verificación de la Convención.»

 

La propuesta conjunta

Recordemos que la propuesta técnica conjunta de Canadá, Estados Unidos de América y Países Bajos para la actualización del Anexo sobre sustancias químicas de la Convención sobre Armas Químicas (CAQ), es incluir dos nuevas familias de agentes químicos a la Lista 1A:

N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos o P-alquil-N-fluorofosfonil amidinas N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo o О-alquil-N-fluorofosforil amidinas

A-230 (actualmente incluido en la Lista 2B.4)

A-234 (no incluido en Lista alguna)

Como la propuesta considera que R1, R2 y R3 son cadenas carbonadas que pueden tener hasta 10 átomos de carbonos, no solo como cadenas más o menos ramificadas, sino también como anillos, el número de sustancias que constituirían cada una de estas familias sería superior a 200 000. Además la propuesta no menciona la inclusión de los precursores de estas dos nuevas familias.

 

La propuesta rusa

En este absurdo e infructuoso diálogo de «y tú más», que se mantiene en la Organización para la Prohibición de las Armas Químicas (OPAQ), la Federación Rusa ha presentado otra propuesta técnica de actualización del Anexo sobre sustancias químicas de la CAQ. La propuesta rusa parece contemplar la inclusión de cinco nuevos agentes químicos o/y familias de agentes químicos en la Lista 1A:

N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos (P-alquil-N-fluorofosfonil amidinas)

N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo (О-alquil-N-fluorofosforil amidinas)
N-(bis-dialquilamino)alquiliden alquilfluorofosfonamidatos (Р-alquil-N-fluorofosfonil guanidinas)
O-(cloroalquil)-(((dihalometilen)amino)oxi) fosforofluoridatos
Derivados del dimetilcarbamato de piridin-3-ilo

 

Situación actual de las propuestas

Si ambas propuestas siguen el procedimiento establecido en el párrafo 5 del Artículo XV de la CAQ relativo a «Enmiendas»3, el Director General ya habrá comunicado las mismas a todos los Estados Partes, al Consejo Ejecutivo y a los Depositarios. No más tarde de 60 días después de haber recibido las propuestas, y evaluadas éstas para determinar todas sus posibles consecuencias respecto de las disposiciones de la CAQ, comunicará esta información a todos los Estados Partes y al Consejo Ejecutivo. La propuesta conjunta fue presentada a mediados del mes de octubre y la propuesta rusa a finales del mes de noviembre, así que pronto deberían conocerse las informaciones sobre dichas propuestas.

Después el Consejo Ejecutivo examinará las propuestas a la vista de toda la información disponible, incluido el hecho de si las propuestas satisfacen los requisitos del párrafo 4 del Artículo XV, y 90 días después, a más tardar, de haber recibido las propuestas, notificará su recomendación a todos los Estados Partes para su examen, junto con las explicaciones correspondientes.

Tanto si el Consejo Ejecutivo recomienda a todos los Estados Partes la adopción o el rechazo de alguna de las propuestas, éstas se considerarán aprobadas o rechazadas si, transcurridos 90 días desde la recepción de la comunicación, ningún Estado Parte objeta a ellas. En la situación actual de la OPAQ no parece probable una situación de consenso, de modo que probablemente algún Estado Parte objetará a las mismas.

Si así sucediese, esto es, si las recomendaciones del Consejo Ejecutivo recibiesen la objeción de algún Estado Parte, tendría que ser la Conferencia la que adoptara una decisión sobre las propuestas como cuestión de fondo en su próximo período de sesiones, incluido el hecho de si las propuestas satisfacen los requisitos del párrafo 4 del Artículo XV.

Según el párrafo 18 del artículo VIII de la CAQ relativo a la Organización4, la Conferencia adoptará sus decisiones sobre cuestiones de procedimiento por mayoría simple de los miembros presentes y votantes. Las decisiones sobre cuestiones de fondo deberán adoptarse, en lo posible, por consenso. Si no se llega a un consenso cuando se someta una cuestión a decisión, el Presidente aplazará toda votación por 24 horas y, durante ese período de aplazamiento, hará todo lo posible para facilitar el logro de un consenso e informará a la Conferencia al respecto antes de que concluya ese período. Si no puede llegarse a un consenso al término de 24 horas, la Conferencia adoptará la decisión por mayoría de dos tercios de los miembros presentes y votantes, salvo que se especifique otra cosa en la presente Convención. Cuando esté en discusión si la cuestión es o no de fondo, se considerará que se trata de una cuestión de fondo, salvo que la Conferencia decida otra cosa por la mayoría exigida para la adopción de decisiones sobre cuestiones de fondo.

Como puede apreciarse, habida cuenta de las diferentes posiciones que se vislumbran entre los Estados Parte, la solución probablemente tardará mucho tiempo en llegar.

  

La propuesta de la Federación Rusa, escasa y sesgada

En la tabla siguiente se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov y los compuestos descritos por Hosseini, así como su situación actual y futura dentro de las Listas de la CAQ con la propuesta de la Federación Rusa. El lector puede compararla con la propuesta conjunta que aparece en el artículo «Se les ve el plumero»1.

En la tabla siguiente se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov6 y los compuestos descritos por Hosseini, así como su situación actual y futura dentro de las Listas de la CAQ.

  Listas actuales Listas futuras
Mirzayanov

Lista 2B.4 A-230

Lista 1A.* A-230

Mirzayanov

Lista 2B.4 A-242

Lista 1A.*** A-242

Hosseini

Lista 2B.4 CAS 2074608-43-6

Lista 1A.*** CAS 2074608-43-6

Mirzayanov

No listado A-232

Lista 1A.** A-232

Mirzayanov

No listado A-234

Lista 1A.** A-234

Mirzayanov

No listado A-262

No listado A-262

Hosseini

Lista 2B.4 CAS 2096401-97-5

Lista 2B.4 CAS 2096401-97-5

Hosseini

Lista 2B.4 CAS 2096401-99-7

Lista 2B.4 CAS 2096401-99-7

Hosseini

Lista 2B.4 CAS 2096402-01-4

Lista 2B.4 CAS 2096402-01-4

Hosseini

Lista 2B.4 CAS 2096402-03-6

Lista 2B.4 CAS 2096402-03-6

Hosseini

Lista 2B.4 CAS 2096402-05-8

Lista 2B.4 CAS 2096402-05-8

Como puede verse, todos los agentes «novichok» descritos por Mirzayanov (excepto el A-262) y algunos de los compuestos descritos por Hosseini  que ahora pertenecen todos ellos a la Lista 2, pasarían a pertenecer con la propuesta a la Lista 1.

Aunque no están recogidos en la tabla, los agentes «novichok» descritos por Hoening (O-(cloroalquil)-(((dihalometilen)amino)oxi) fosforofluoridatos) pasarían ahora a pertenecer también a la Lista 1.

El A-262 no pertenecería a lista alguna, y algunos compuestos descritos por Hosseini ahora pertenecientes a la Lista 2 no quedarían afectados por la inclusión de estas nuevas listas, y seguirían perteneciendo a la Lista 2.

Está propuesta también está sesgada pues no recoge otras familias de sustancias químicas organofosforadas, inhibidoras de la acetilcolinesterasa y extremadamente tóxicas, como por ejemplo, los agentes de volatilidad intermedia (IVAs, Intermediate Volatility Agents).

También es una propuesta escasa pues aunque propone la inclusión de cinco nuevos agentes químicos o/y familias de agentes químicos en la Lista 1A,  no contempla la inclusión de sus precursores.

 

Conclusión

A la propuesta rusa también se le ve el plumero, ya que tampoco recoge ciertas sustancias tóxicas que no tienen un «uso no prohibido por la CAQ» (como los agentes IVA), y tampoco recoge los posibles precursores de las nuevas familias que se desean incluir en la Lista 1.

La ampliación del Anexo sobre sustancias químicas de la CAQ debe realizarse pensando en cómo conseguir un mundo libre de armas químicas, y no pensando en otras cosas.

Hoy es 24 de diciembre de 2018, así que: «Feliz Navidad y Próspero Año Nuevo 2019»

 

Referencias

  1. «Se les ve el plumero», J.Domingo, http://cbrn.es/?p=1403
  2. «Statement by H.E. Ambassador Kenneth D. Ward permanent representative of the United States of America to the OPCW at the fourth special session of the Conference of the States Parties to review the operation of the Chemical Weapons Convention»,RC-4/NAT.7, de fecha 27 de noviembre de 2018, https://www.opcw.org/sites/default/files/documents/2018/11/rc4nat07%28e%29.pdf
  3. «Enmiendas», Artículo XV de la CAQ, https://www.opcw.org/es/convencion-sobre-las-armas-quimicas/articulos/articulo-xv-enmiendas
  4. «La Organización», Artículo VIII de la CAQ, https://www.opcw.org/es/convencion-sobre-las-armas-quimicas/articulos/articulo-viii-la-organizacion