Archivo de la etiqueta: agentes químicos de guerra

El tamaño sí importa

Sistemas dispersos1

Se definen como sistemas dispersos aquellos que se encuentran formados por una sustancia fina­mente dividida y distribuida en otra. La sustancia que se distribuye se denomina dispersoide o fase interna, y la otra fase, la que recibe a la sustancia, se denomina medio de dispersión, fluido o fase externa.

Las propiedades de los sistemas dispersos varían sobre todo con el tamaño de las partículas dispersas, y según el tamaño de las mismas podríamos establecer tres categorías:

  • dispersiones, tamaño de partícula superior a 100 nm (1 µm),
  • coloides, tamaño comprendido entre 100 nm (1 µm) y 1 nm (0,001 µm),
  • soluciones, tamaño inferior a 1 nm (0,001 µm).

Aunque las propiedades dependen fundamentalmente del tamaño de las partículas disper­sas, también influye su naturaleza y la del fluido que actúa como dispersante.

Tipos de dispersiones coloidales:

Fase dispersa

(dispersoide o fase interna)

Medio de dispersión

(dispersante o fase externa)

Denominación

Líquido

Gas

Aerosol de gotas líquidas, niebla

Sólido

Gas

Aerosol de partículas sólidas, humo

Gas

Líquido

Espuma

Líquido

Líquido

Emulsión

Sólido

Líquido

Solución o suspensión

Gas

Sólido

Espuma sólida

Líquido

Sólido

Emulsión sólida, gel

Sólido

Sólido

Suspensión sólida, aleación

Se dice que un sistema disperso es estable cuando con el paso del tiempo la fase dispersa se mantiene uniformemente distribuida en la fase dispersante. La estabilidad de los sistemas depende del equilibrio de las fuerzas a las que está sometida la fase dispersa, siendo los principales fenómenos que intervienen en ello la sedimentación/cremado, la agregación y la coalescencia.

Las partículas de la fase dispersa se encuentran sometidas a las fuerzas de gravedad, empuje y roza­miento, esta última originada cuando las partículas se mueven dentro del fluido o fase dispersante. Las dos primeras actúan en dirección vertical (para la gravedad natural) y en sentidos opuestos, y provocan un movi­miento en el sentido de la fuerza que predomine. Al movimiento en el seno del fluido se opone siempre la fuerza de rozamiento. Stokes estudió la acción de las fuerzas sobre partículas esféricas, llegando a determinar la veloci­dad máxima (velocidad límite) que pueden alcanzar, la cual viene dada por la fórmula:

donde, g es la fuerza de la gravedad, ρp es la densidad de la partícula, ρf es la densidad del fluido, Dp es el diámetro de partícula y ηf es la viscosidad del fluido

Si ρp > ρf, se produce el depósito de las partículas en el fondo del fluido, y el proceso se denomina sedimentación. Si ρp < ρf, se producirá un depósito en la parte superior del fluido, y este fenómeno se denomina flotación o cremado.

En caso de que las partículas no sean esféricas, que es lo más habitual, esto habría que tenerlo en cuenta mediante un coeficiente de forma, y además la ecuación de Stokes sólo es válida en determinadas condiciones, conocidas como «régimen laminar».

Las moléculas del fluido se mueven de forma caótica, dependiendo la velocidad, dirección y espacio recorri­do de los choques entre ellas, de su concentración y de la temperatura. Cuando existen partículas pequeñas dispersas, las moléculas chocan elásticamente con ellas provocando el mismo movimiento caótico, que recibe el nombre de «movimiento browniano».

La cantidad de movimiento transferida en los choques depende de la masa de las partículas. Las grandes apenas se ven influenciadas, pero a medida que disminuye el tamaño este afecto aumenta hasta llegar a incluso a un punto en el que las fuerzas producidas por los choques prevalecen sobre las de sedimentación y las partículas se mantienen dispersas.

Si la dispersión inicial se realiza en un pequeño volumen de fluido o fase dispersante, alcanzando una determinada concentración, y el sistema disperso se pone en contacto con otro sistema disperso de menor concentración, o con la propia fase dispersante libre de fase dispersa, las partículas de la fase dispersa, debido al movimiento browniano, tienden a ocupar todo el volumen puesto a su disposición, por lo que se dispersan hasta que la concentración en todo el sistema es la misma; a este fenómeno se le denomina «difusión».

 

 

Gases, vapores y aerosoles1

Aunque los gases, los vapores y los aerosoles se comportan de manera muy similar en muchos aspectos, en otros lo hacen de manera completamente diferente.

Un gas y un vapor no son exactamente lo mismo, el vapor es un tipo de gas, pero no viceversa. Un gas es un estado de la materia. Si se comprime un gas isotérmicamente (sin cambiar la temperatura), éste nunca pasa al estado líquido a presiones elevadas, mientras que este cambio de fase sí ocurre en un vapor. Los sólidos y los líquidos pueden pasar al estado gaseoso, generando vapores, dependiendo de su punto de sublimación o de su punto de ebullición, respectivamente, aumentando la presión de vapor de los mismos. La presión de vapor es la presión que ejerce la fase gaseosa o vapor sobre la fase líquida en un sistema cerrado a una temperatura determinada, en la que la fase líquida y el vapor se encuentran en equilibrio dinámico. Su valor es independiente de las cantidades de líquido y vapor presentes mientras existan ambos. Este fenómeno también lo presentan los sólidos, de modo que cuando un sólido pasa al estado gaseoso sin pasar por el estado líquido (proceso denominado sublimación) también hablamos de presión de vapor.

Dependiendo del tipo y cantidad de gas o de vapor liberado en el aire, se puede generar o no una situación de atmósfera (aire+agente) tóxica o/y explosiva. La toxicidad depende de la concentración del agente tóxico y del tiempo de exposición a la atmósfera tóxica, mientras que las condiciones de atmósfera explosiva pueden alcanzarse entrando por el límite inferior de explosividad (LEL) al aumentar la concentración del gas, vapor o aerosol, o entrando por el límite superior de explosividad (UEL) al diluir la concentración del gas, vapor o aerosol.

Los gases, vapores y aerosoles pueden afectar nuestra salud por inhalación o contacto, pero la inhalación es con mucho la vía principal y la más peligrosa.

Los aerosoles son dispersiones coloidales en las que se dispersa un sólido o un líquido en una fase gaseosa continua. Se distinguen dos tipos principales de aerosoles en la ciencia coloidal y en la nanotecnología:

  • aerosoles sólidos (aerosoles de partículas sólidas), para partículas sólidas dispersas en un gas, y
  • aerosoles líquidos (aerosoles de gotitas de líquido), para gotitas de líquido dispersas en un gas.

Frecuentemente se utiliza el término aerosol para referirse a productos empleados en forma de aerosol mediante su liberación de un envase a presión a través de un fino orificio que produce un aerosol o una espuma.

Las partículas de un aerosol pueden ser tan pequeñas como 1 nm (0,001 µm) y las gotas de un aerosol pueden ser tan grandes como aproximadamente 100 μm.

Los aerosoles de partículas sólidas o gotitas de líquido a veces se distinguen por su mecanismo general de creación:

  • aerosoles primarios, los creados por la dispersión de partículas, agregados o gotas (polvo, neblina), o mediante reacciones químicas (hollín), y emitidos desde una fuente, o
  • aerosoles secundarios, los creados en la atmósfera por condensación de gases con formación de sólidos o líquidos (por ejemplo, humo, vapores, neblina).

En general, las partículas gruesas de un aerosol, como, por ejemplo, el polvo del suelo, las gotas de las nubes y las partículas biológicas, se producen mediante procesos mecánicos. Las partículas o gotitas de un aerosol formadas a partir de la fase gaseosa suelen tener un tamaño más pequeño y, a menudo, tienen un diámetro inferior a 1 µm. Estas partículas finas provienen generalmente de fuentes de emisión industriales o se forman en la atmósfera.

En la práctica, los aerosoles tienen rangos de tamaño que van desde grupos moleculares en la nanoescala (1 nm y mayores), hasta polvos y nubes que contienen gotitas de aerosol que exceden los límites del rango clásico de tamaño coloidal y que pueden alcanzar hasta los 100 µm.

En los temas referentes a los aerosoles se distinguen frecuentemente los siguientes tipos:

  • polvo: aerosoles de partículas sólidas (de aproximadamente más de 0,5 µm de diámetro) resultado de la desintegración mecánica de partículas más grandes.
  • humos: aerosoles de partículas sólidas (de menos de 1 µm de diámetro) que surgen de la condensación de los vapores de una reacción química o física (como la evaporación y la condensación).
  • niebla: aerosoles de gotitas de líquido. En algunas definiciones, la niebla se caracteriza por un rango de tamaño de gota particular, mientras que, en otras, la niebla se refiere a la niebla que tiene una concentración de gotas lo suficientemente alta como para oscurecer la visibilidad.
  • niebla con humo (smog): aerosoles de gotitas líquidas o partículas sólidas que comprenden contaminación del aire (con diámetros inferiores a aproximadamente 2 µm).
  • humo: aerosoles de gotitas líquidas o partículas sólidas que resultan de procesos térmicos como combustión o descomposición térmica.
  • bioaerosoles: partículas en el aire que son de origen biológico, como células bacterianas dispersas y esporas de hongos, fragmentos de insectos u otros animales y partículas portadoras de virus.

El comportamiento y la trayectoria de los aerosoles se ven fuertemente afectados por la naturaleza, tamaño y aerodinámica de las partículas, sus interacciones y los efectos provocados por las condiciones meteorológicas. Conocer el comportamiento de los aerosoles es de vital importancia tanto en la generación de los mismos para aprovechar sus beneficios, como para defendernos de sus inconvenientes.

Las partículas de los aerosoles están influenciadas por su tamaño, su densidad, su naturaleza, el viento, la temperatura, la humedad relativa, etc., pudiendo disminuir o aumentar su tamaño, flotar o sedimentar, permaneciendo más o menos tiempo suspendidas en el aire.

 

 

Sedimentación de los aerosoles2,3

Una partícula esférica inmersa en un fluido se mueve bajo la acción de las siguientes fuerzas: el peso, el empuje (se supone que el cuerpo está completamente sumergido en el seno de un fluido), y una fuerza de rozamiento que es proporcional a la velocidad de la partícula esférica (suponemos que el flujo se mantiene en régimen laminar).

El peso «P» de la partícula esférica es el producto de su masa por la aceleración de la gravedad «g», y puesto que su masa es el producto del volumen de una esfera de radio R por la densidad de la partícula esférica ρp:

Por otro lado, de acuerdo con el principio de Arquímedes, el empuje «E» es igual al producto del volumen del cuerpo sumergido por la densidad del fluido «ρf«, y por la aceleración de la gravedad «g»:

La fuerza de rozamiento «Fr» que experimenta un cuerpo moviéndose en un fluido es proporcional a su velocidad «v», y su expresión se denomina ley de Stokes:

donde ηf es la viscosidad del fluido.

La ecuación del movimiento será, por tanto:

La velocidad límite, se alcanza cuando la aceleración «a» es cero, es decir:

Despejamos la velocidad límite vlim:

Como puede apreciarse la velocidad límite para una partícula suspendida en el aire es directamente proporcional a su densidad y proporcional al cuadrado de su tamaño.

Puesto que la ecuación del movimiento para la esfera sumergida en un fluido es:

donde F es la diferencia entre el peso y el empuje, F=P-E, y k=6πRη

Integramos la ecuación del movimiento para obtener la velocidad de la partícula esférica en función del tiempo:

Obtenemos:

Y como:

Tendremos:

Esta ecuación nos dice que se alcanza la velocidad límite vlim después de un tiempo teóricamente infinito. Si representamos v en función del tiempo t la gráfica tienen una asíntota horizontal en v=vlim.

Como , una nueva integración nos da:

Dado que la exponencial tiende a cero rápidamente a medida que transcurre el tiempo, vemos que, al cabo de un cierto tiempo, el espacio recorrido «x» por la partícula esférica será proporcional al tiempo t.

Las diferencias entre el movimiento de un cuerpo en caída libre (sin flotación ni resistencia a la velocidad) y cuando cae en el seno de un fluido viscoso (con flotación y resistencia a la velocidad) se pueden resumir en el siguiente cuadro:

Caída libre

En el seno de un fluido viscoso

  • La velocidad es proporcional al tiempo
  • La velocidad tiende hacia un valor constante
  • El espacio recorrido es proporcional al cuadrado del tiempo
  • El espacio recorrido es proporcional al tiempo.

Cuanto más densas y más grandes sean las partículas más fácil y rápidamente sedimentarán las mismas y menos afectadas serán por las condiciones meteorológicas. Las partículas pequeñas y de poca densidad flotan con facilidad, están más tiempo suspendidas y el viento puede desplazarlas grandes distancias (e incluso evaporarlas) antes de que se depositen.

En ausencia de otras fuerzas y fenómenos que puedan alterar el tamaño de las partículas de un aerosol, la velocidad límite de sedimentación en el aire aumenta al aumentar la densidad y al aumentar el tamaño de la partícula. La tabla siguiente muestra la velocidad límite y la sedimentación en 1 hora, para una partícula esférica en función de su densidad:

Diámetro

ρ=1,00 g/cm3 (Agua, VX)

ρ=1,24 g/cm3 (Iperita)

ρ=1,89 g/cm3 (Lewisita)

ρ=18,95 g/cm3 (Uranio)

0,5 µm

0,000777 cm/s

2,80 cm

0,000963 cm/s

3,47 cm

0,001469 cm/s

5,29 cm

0,014738 cm/s

53,06 cm

1 µm

0,003107 cm/s

11,19 cm

0,003854 cm/s

13,87 cm

0,005876 cm/s

21,15 cm

0,058952 cm/s

212,2 cm

5 µm

0,077677 cm/s

279,6 cm

0,096344 cm/s

346,8 cm

0,146900 cm/s

528,8 cm

1,473789 cm/s

53,06 m

10 µm

0,310710 cm/s

11,19 m

0,385376 cm/s

13,87 m

0,587599 cm/s

21,15 m

5,895154 cm/s

212,2 m

50 µm

7,767744 cm/s

279,6 m

9,634411cm/s

346,8 m

14,68997 cm/s

528,8 m

147,3789 cm/s

5,306 km

100 µm

31,07098 cm/s

1,119 km

38,53764 cm/s

1,387 km

58,75987 cm/s

2,115 km

589,5154 cm/s

21,22 km

200 µm

124,2839 cm/s

4,474 km

154,1506 cm/s

5,549 km

235,0395 cm/s

8,461 km

2358,062 cm/s

84,89 km

 

 

Sedimentación, evaporación y deriva4

En muchos casos interesa conocer cómo sedimenta un aerosol, y si lo hace en la zona de interés o sufre una «deriva». Por ejemplo, cuando nuestro interés es generar aerosoles para dispersar una sustancia, la deriva es un aspecto a controlar, que está influenciado por muchos factores entre los que podemos citar las características de la dispersión, el equipo y las técnicas de dispersión, así como por las condiciones atmosféricas

La deriva se asocia con el movimiento físico de las partículas del aerosol que provoca su sedimentación fuera de la vertical del punto de formación del aerosol. Este tipo de deriva se denomina «deriva por viento» y depende de la naturaleza y tamaño de las partículas, y de las condiciones meteorológicas del momento. Los aerosoles con partículas de gran tamaño presentan muy poca «deriva por viento», pero los aerosoles con partículas pequeñas pueden viajar cientos de metros antes de depositarse en el suelo. Además, en el caso de aerosoles con partículas líquidas, estas se evaporan tanto más rápido cuanto más pequeñas son, debido a su mayor superficie de evaporación, y conforme van evaporándose su tamaño va haciéndose menor.

A veces también se habla de otro tipo de deriva, una vez producida la sedimentación del aerosol. Recibe el nombre de «deriva por vapor», al asociarse con la volatilización (cambio de estado de líquido a gas) de las gotas sedimentadas del aerosol. La deriva por vapor solo es importante si la volatilidad de la sustancia líquida del aerosol es muy elevada y las condiciones atmosféricas son favorables para la vaporización.

Entre las características más importantes de la dispersión podemos citar el tamaño de las partículas, y la composición química y evaporación del material a dispersar (las partículas).

El tamaño de las partículas es con mucho el factor más importante que afecta a la deriva. Las partículas grandes con tamaños de 150 µm a 200 µm presentan una deriva insignificante para velocidades del viento entre 1,5 km/hora y 14 km/hora. En los aerosoles con tamaños de partícula inferiores a 50 µm de diámetro, las partículas permanecen suspendidas en el aire mucho tiempo hasta que se evaporan o son capturadas. En la mayor parte de los casos para reducir la deriva interesa un balance apropiado entre gotas grandes, que presentan una baja deriva, y gotas pequeñas, que proporcionan una buena cobertura. El tamaño de gotas recomendada para la dispersión de fungicidas, insecticidas y herbicidas es de 150-400 µm.

La composición química del material a dispersar afecta a su viscosidad, y esta viscosidad afecta al tamaño de las gotas. La mayor viscosidad aumenta el tamaño de las gotas de modo que hay menos gotas pequeñas que son las que más deriva sufren. Pueden añadirse aditivos al producto para incrementar su viscosidad, y entre otras cosas, aumentar el tamaño de las gotas.

La evaporación se refiere a la cantidad de partículas que pasan del estado líquido al estado gaseoso durante la vida del aerosol. La evaporación es más fácil en un aerosol de partículas pequeñas debido a que existe una mayor superficie de contacto con el aire. El fenómeno de evaporación es esencialmente un proceso de transferencia de calor y de transferencia de masa (una parte o la totalidad de la masa de las partículas se transfiere al aire en forma de vapor) como consecuencia de las diferencias de temperatura entre las partículas y el aire circundante que las rodea, y por efecto de la humedad relativa del aire.

La evaporación de las partículas afecta al tamaño de las mismas, y el tamaño de éstas afecta a su evaporación. Para un mismo volumen total, cuanto más pequeñas sean las gotas, mayor será la superficie total de evaporación y más fácil y rápidamente se evaporarán y se irán haciendo más pequeñas. Las gotas de menos de 30 µm acaban por evaporarse antes de sedimentar, mientras que las gotas de más de 150 µm no experimentaran una reducción significativa de tamaño antes de sedimentar.

Si consideramos las partículas esféricas su volumen viene dado por V=(4/3)πR3 y su superficie por S=4πR2. A partir del volumen (0,004189 mm3) de una gota de tamaño 200 µm (de radio 100 µm) se podrían generar 106 (un millón) de gotas 2µm de tamaño (cada una con un volumen de 4,189×10-9 mm3). Puesto que la superficie de una gota de tamaño 200 µ es de 0,12566 mm2 y la de una gota de tamaño 2 µm es de 0,12566×10-4 mm2, la superficie de 1 millón de gotas de tamaño 2 µm es cien veces la superficie de una gota de tamaño 200 µm. La evaporación es un fenómeno superficial, y puesto que las gotas más pequeñas suponen mayor superficie, las gotas pequeñas se evaporarán más rápido que las gotas grandes.

En general, podemos afirmar que la evaporación será mayor en los aerosoles con partículas acuosas pequeñas, con temperaturas ambientales altas y/o humedades relativas del aire. Igualmente, habrá mayor evaporación cuanto mayor sea el tiempo que permanecen suspendidas las partículas, expuestas a las condiciones meteorológicas. Como se mencionó anteriormente, durante el proceso de evaporación las gotas transfieren masa al aire circundante, disminuyendo su tamaño. En ciertos casos la evaporación es un factor crítico, pues además aumenta el riesgo de deriva5.

El proceso de generación de gotas para conseguir un espray o aerosol se llama atomización o nebulización, y suele llevarse a cabo haciendo pasar un líquido a través de una boquilla. El tipo de boquilla condiciona la forma o patrón del espray, y el tamaño de sus partículas, de modo que el tamaño de partícula aumenta al elegir una boquilla de tipo pulverización fina, cono hueco, abanico plano y cono lleno. Las condiciones de operación también influyen en el tamaño de las partículas: las presiones más altas producen partículas más pequeñas y las presiones más bajas producen partículas más grandes, las boquillas de flujo más bajo producen partículas más pequeñas y las boquillas de flujo más alto producen partículas más grandes, un aumento de la tensión superficial del líquido aumentan el tamaño de partícula, las partículas pequeñas pueden tener una velocidad inicial más alta, pero la velocidad disminuye rápidamente, mientras que las partículas más grandes retienen la velocidad por más tiempo y viajan más lejos6,7.

Las condiciones atmosféricas pueden afectar de manera importante el comportamiento de los aerosoles. Varios factores asociados al microclima del lugar pueden afectar al tamaño de las partículas, a su sedimentación y evaporación, y a la deriva del aerosol. Estos factores incluyen la velocidad y dirección del viento, la humedad relativa y la temperatura, y la estabilidad atmosférica e inversión térmica.

Resulta obvio que, a mayor velocidad del viento, más lejos puede ser transportada una gota de un determinado tamaño. La dirección del viento es importante para reducir el daño causado por la deriva.

La humedad relativa y la temperatura no son tan críticas como la velocidad del viento, pero tienen su importancia en algunas áreas geográficas o bajo ciertas condiciones meteorológicas. A medida que una partícula cae a través del aire, las moléculas de agua de la superficie de la gota se evaporan. Esta evaporación reduce el tamaño y la masa de la gota, pudiendo así permanecer en el aire durante más tiempo y, bajo las condiciones adecuadas, desplazarse mayores distancias. Aunque las pérdidas por evaporación en los aerosoles ocurren bajo casi todas las condiciones atmosféricas, estas pérdidas son menos importantes durante los momentos más fríos del día como al amanecer o al atardecer. Además, la humedad relativa es usualmente mayor durante estos momentos fríos.

La estabilidad atmosférica influencia en forma significativa la deriva. Bajo condiciones meteorológicas normales, la temperatura del aire decrece 1 ºC cada 120 metros de altura. El aire frío tiende a asentarse, desplazando el aire caliente de abajo y causando un mezclado vertical. Mientras que las capas de aire caliente ascienden, las gotas suspendidas suben con él y se disipan dentro de las capas superiores por la natural turbulencia y mezcla vertical del aire. Sin embargo, pueden surgir problemas cuando la atmósfera es muy estable. Bajo condiciones de estabilidad, una capa de aire caliente ubicada arriba a cierta distancia puede constituirse en una manta, manteniendo abajo el aire frío. Este fenómeno es conocido como inversión atmosférica. Las partículas suspendidas en la capa fría no pueden moverse para ningún lado excepto lateralmente, posiblemente por algunos kilómetros. Eventualmente, la suspensión puede encontrar una corriente de aire descendente, forzando las partículas a caer y depositándose fuera del objetivo, quizá sobre un cultivo sensible. Nuevamente, la mejor manera de evitar la deriva asociada a la inversión atmosférica es evitar la formación de pequeñas partículas (150 µm o menores) durante la aspersión.

 

 

Inhalación de aerosoles8,9

El aire que respiramos no contiene únicamente nitrógeno y oxígeno. Se considera que, el aire es una mezcla de gases en proporciones ligeramente variables, compuesto por un 21% de oxígeno, un 78% de nitrógeno, un 0,93 % de argón, 0,04 % de dióxido de carbono y pequeñas cantidades de otros gases, así como una cantidad variable de vapor de agua (alrededor de un 1 % al nivel del mar y de un 0,4 % en toda la atmósfera). El aire que respiramos contiene, además, ingentes cantidades de partículas en suspensión, tanto sólidas como líquidas, orgánicas e inorgánicas, bacterias, virus, pólenes, polvo, y otras partículas más o menos simples.

El aparato respiratorio está formado por las vías aéreas y por los pulmones. A través de las vías aéreas el aire circula en dirección a los pulmones y es en estos órganos donde se realiza el intercambio de gases. En las vías aéreas diferenciamos la vía aérea superior, que va desde la nariz y la boca hasta las cuerdas vocales, e incluye la faringe y la laringe, y la vía aérea inferior, formada por la tráquea, los bronquios y sus ramificaciones en el interior de los pulmones, los bronquiolos.

El sistema respiratorio está especialmente diseñado, tanto anatómica como funcionalmente, para que el aire llegue a los territorios más distales en las mejores condiciones de limpieza. En la vía aérea superior, los pelos de la nariz, las fosas nasales, las cuerdas vocales, los cilios del epitelio bronquial, los reflejos del estornudo y de la tos, etc., contribuyen a realizar esta limpieza.

En la vía aérea inferior, el árbol bronquial comienza en la tráquea, y en la carina o bifurcación traqueal tiene lugar la primera bifurcación de la tráquea en los dos bronquios principales, uno relacionado con cada pulmón. El bronquio principal derecho es más corto, ancho y verticalizado que el izquierdo. Los bronquios principales se dividen dicotómicamente en bronquios lobares, los lobares se dividen y forman los bronquios segmentarios. Sucesivamente esto últimos se dividen en subsegmentarios grandes, luego subsegmentarios pequeños, bronquios terminales, hasta llegar a lo que se conoce como acino respiratorio, el cual se forma por el bronquiolo respiratorio, los sacos alveolares, y los alveolos. En total tenemos aproximadamente 23 generaciones (bifurcaciones) en el árbol bronquial hasta llegar a los alveolos10.

A medida que aumenta el número de generaciones (es decir, a medida que las vías respiratorias se hacen más pequeñas), la cantidad de cilios, la cantidad de células secretoras de moco, la presencia de glándulas submucosas y la cantidad de cartílago en las paredes de las vías respiratorias disminuyen gradualmente. El moco es importante para atrapar las partículas pequeñas. Los cilios barren la alfombra de moco, que se mantiene húmeda por las secreciones de las glándulas submucosas, hacia la faringe, donde al tragar se elimina el moco. El cartílago es importante para prevenir el colapso de las vías respiratorias, que es especialmente un problema durante la espiración. Las vías respiratorias mantienen algo de cartílago hasta aproximadamente la décima generación, hasta el momento en que se denominan bronquios11.

A partir de aproximadamente la undécima generación, las vías respiratorias ahora libres de cartílago se denominan bronquiolos. Debido a que carecen de cartílago, los bronquiolos pueden mantener abierto el paso solo porque la presión que los rodea puede ser más negativa que la presión interna y debido al tirón hacia afuera (tracción radial o inmovilización) de los tejidos circundantes. Por tanto, los bronquiolos son especialmente susceptibles al colapso durante la espiración. Hasta la generación ∼16, no hay alvéolos, y el aire no puede intercambiarse con la sangre capilar pulmonar11.

El tamaño y forma de las partículas, la velocidad del aire respirado, la geometría de las vías aéreas, el grado de humedad y los mecanismos de aclaramiento son factores que afectan al depósito de las partículas de los aerosoles.

  • El tamaño y la forma de las partículas son factores primordiales que van a condicionar su captura por los pulmones. El tamaño se define mediante lo que se denomina diámetro de la masa media aerodinámica (DMMA) o diámetro de una partícula de masa igual a la mediana de las partículas de una población, es decir, aquel diámetro de la partícula en el que el 50% de la masa del aerosol se encuentra por encima del mismo y el otro 50% por debajo En función de su tamaño y de su forma, las partículas pueden ser capturadas mediante uno o más de los siguientes mecanismos:
    • Choque
    • Interceptación
    • Sedimentación
    • Difusión

Choque es el fenómeno físico por el que las partículas de un aerosol tienden a continuar con su trayectoria cuando discurren por la vía aérea, en vez de adecuarse a las curvaturas del tracto respiratorio. Las partículas que tengan suficiente momento (producto de la masa por la velocidad) se verán afectadas por las fuerzas centrífugas en aquellos puntos en que el flujo de aire cambie de dirección repentinamente, chocando contra la pared de la vía aérea. Esto sucede principalmente en las primeras 10 generaciones bronquiales, en las que la velocidad del aire es elevada y el flujo es turbulento. Este fenómeno afecta sobre todo a las partículas mayores de 10 µm, que van a quedar retenidas principalmente en la región orofaríngea. Este mecanismo explica el comportamiento de las partículas más grandes en el aire, que, en lugar de seguir las líneas de flujo del aire, siguen, debido a su inercia, una trayectoria recta, impactan con los obstáculos y resultan capturadas

La interceptación (no la intercepción) se describe como un mecanismo de captura para partículas grandes. Estas partículas grandes, aunque fluyen con las líneas de flujo del aire, sobresalen tanto de las mismas que contactan con los obstáculos cuando pasan junto a ellos y resultan capturadas. Se da principalmente en el caso de las partículas fibrosas por su forma alargada.

La sedimentación es el fenómeno físico por el que las partículas con una masa suficiente se depositan por acción de la gravedad cuando el tiempo de permanencia en la vía aérea es suficientemente largo. Predomina en las 5 últimas generaciones bronquiales, en las que la velocidad del aire es baja y, por lo tanto, el tiempo de residencia se prolonga.

La difusión (no la suspensión) es el fenómeno por el que las partículas de un aerosol de desplazan de forma errática de un sitio a otro de las vías aéreas. Sucede como consecuencia del movimiento browniano de las partículas y se da en aquellas de tamaño inferior a 0,5 µm de DMMA cuando alcanzan los espacios alveolares, en donde la velocidad del aire es prácticamente nula. Estas partículas por lo general no llegan a depositarse y son expulsadas nuevamente al exterior con la espiración. Las partículas pequeñas y ligeras son capturadas por difusión. Debido a su pequeño tamaño son amortiguadas por las propias partículas del aire y tienen por ello un movimiento aleatorio que aumenta la probabilidad de que entren en contacto y sean capturadas.

De modo general puede considerarse que las partículas con DMMA mayor de 10 µm se depositan en la orofaringe, las de 5-10 µm en las vías aéreas centrales, y las de 0,5-5 µm en las pequeñas vías aéreas y alvéolos. Por lo tanto, para el tratamiento respiratorio tópico interesa emplear partículas con DMMA comprendido entre 0,5 y 5 µm. Es lo que se denomina fracción respirable de un aerosol.

  • La velocidad del aire varía a lo largo de las vías respiratorias. Dado que las partículas son transportadas en la vía aérea por una corriente de aire, sus trayectorias se van a ver afectadas por las características de dicha corriente. El flujo de aire en los pulmones está determinado por el volumen corriente (cantidad de aire que entra en los pulmones con cada inspiración normal. Su valor normal es de 500 ml aproximadamente) y la frecuencia respiratoria (número de ciclos respiratorios que ocurren por minuto, es decir, número de inspiraciones seguidas de una espiración, que se pueden contar en un minuto. Lo habitual es que esté en torno a 12-16 respiraciones por minuto). Parece demostrado que en las 4 primeras generaciones de la vía aérea el depósito de partículas aumenta según lo hace el flujo inspiratorio, para cualquier tamaño de partícula. Sin embargo, lo contrario sucede en las últimas generaciones de la vía aérea, en donde el depósito de partículas es inversamente proporcional a este flujo. Esto es debido a que el incremento del flujo inspiratorio disminuye el tiempo de permanencia de las partículas en la vía aérea, por lo que los efectos de la gravedad y del movimiento browniano se verían muy reducidos.
  • La geometría de las vías aéreas afecta al depósito de partículas en las mismas. Las probabilidades de depósito de las partículas por choque aumentan cuanto mayor es el tamaño de las propias partículas, cuanto mayor sea el flujo de aire inspirado, cuanto mayor sea el ángulo de separación entre dos ramas y cuanto más estrecha sea la vía aérea. La disminución del diámetro interior de la vía aérea aumenta la velocidad del aire, produciendo turbulencia en lugares en los que el flujo es normalmente laminar. La obstrucción de la vía aérea también hace que el aire tienda a desplazarse a zonas sin obstruir, por lo que las partículas del aerosol tenderán a depositarse mayoritariamente en las zonas sin obstruir (sanas) de los pulmones.
  • En cuanto al grado de humedad, las partículas de los aerosoles pueden ser higroscópicas en mayor o menor medida. La higroscopicidad es la propiedad de algunas sustancias de absorber y exhalar la humedad según el medio en que se encuentran. Esto hace que puedan aumentar o disminuir de tamaño al penetrar en la vía aérea, con la consiguiente modificación del patrón de captura respecto al esperado inicialmente. El diámetro que alcanza una partícula después de su crecimiento higroscópico depende de su diámetro inicial, de las propiedades intrínsecas de la partícula y de las condiciones ambientales de las vías aéreas. En general se considera que el crecimiento higroscópico afecta poco a las partículas con DMMA inferior a 0,1 µm, mientras que es muy importante en las partículas con DMMA superior a 0,5 µm.
  • El sistema mucociliar está formado por el epitelio ciliar, que tapiza la vía aérea desde la nariz hasta los bronquiolos, y por el moco, secretado por las células caliciformes y las células submucosas que se encuentran en el epitelio de la vía aérea, que generan una delgada capa de moco que recubre los cilios. Las partículas una vez depositadas en las vías aéreas, pueden ser arrastradas por el sistema mucociliar, y degradadas o absorbidas en la circulación sistémica o en los conductos linfáticos. Las partículas que alcanzan a depositarse en los alvéolos pueden ser fagocitadas y eliminadas por los macrófagos alveolares, en el caso de que sean partículas, o bien ser absorbidas hacia la circulación sistémica si son solubles.

 

 

Los aerosoles en la guerra química

La munición química se diseña:

  • bien para generar un aerosol con un tamaño de partícula adecuado (de 1µm a 7µm), que permanezca suspendido en aire en una zona próxima al suelo (1-3 metros) para que pueda ser inhalado, o
  • bien para generar una nube de partículas más gruesas que se deposite sobre el terreno provocando su contaminación.

En ambos casos con el fin de ocasionar bajas al enemigo y/o conseguir una disminución de sus capacidades operativas al requerir el empleo de medios de protección.

La persistencia puede definirse como el tiempo durante el cual un agente químico, en atmósfera libre y en su punto de dispersión, actúa conservando el grado de eficacia establecido. La persistencia puede variar desde algunas horas a varias semanas, en función de:

  • la naturaleza del agente
  • el método de dispersión
  • el terreno y las condiciones meteorológicas

Aunque se han espesado numerosos agentes químicos de guerra, iperita, lewisita, tabún, sarín, VX, etc., el agente espesado preferentemente es el somán (GD). Las formas espesadas de somán, se suelen identificar con las siglas TGD, del inglés “Thickened GD”.

Los espesantes se añaden a los agentes químicos para aumentar su viscosidad. Uno de los espesantes más empleados es un copolímero, no tóxico, mezcla de acrilato de butilo-acrilato de etilo-metacrilato de metilo, con el nombre comercial de «Acryloid K125», que se añade en una proporción del 5%.

Al aumentar la viscosidad del agente químico:

  • Se reduce la superficie total de las gotitas de agente (porque éstas se extienden menos), disminuye la evaporación y el agente resulta más persistente.
  • Las gotas se adhieren mejor a las superficies y dificultan su remoción por métodos físicos.
  • Aumenta la exactitud de ataque, debido a que las gotitas que se forman, son de mayor tamaño y sedimentan más rápidamente, evitándose que floten a la deriva.
  • Se disminuye su extensión sobre una superficie, y su penetración en los materiales porosos se realiza más lentamente.
  • Las heridas contaminadas con agentes espesados requieren mayores precauciones (Nunca debe olvidarse el peligro que conllevan los vapores del agente químico de guerra).

 

 

Aerosoles y transmisión de enfermedades (COVID-19)

Después de casi un año de pandemia y al igual que sucedió con las mascarillas, ahora parece que, con la evidencia científica acumulada, el virus SARS-CoV-2 «puede transmitirse de persona a persona por diferentes vías, siendo la principal mediante el contacto y la inhalación de las gotas y aerosoles respiratorios emitidos por un enfermo hasta las vías respiratorias superiores e inferiores de una persona susceptible»12. También se puede producir el contagio por contacto indirecto a través de las manos u objetos contaminados las secreciones respiratorias del enfermo con las mucosas de las vías respiratorias y la conjuntiva de la persona susceptible.

Todas las personas, al hablar y respirar emiten, a partir de sus vías respiratorias, aerosoles de diferentes tamaños que oscilan desde nanómetros hasta cientos de micrómetros. Según los tamaños de estos aerosoles, el comportamiento aerodinámico es diferente. Se considera que tan sólo las secreciones superiores a 100 µm tienen comportamiento «balístico» depositándose en pocos segundos por efecto de la gravedad y pueden recorrer una distancia máxima de dos metros desde el emisor. Estas emisiones podrían alcanzar a una persona susceptible que estuviera cerca impactando en algún lugar (ojos, boca, nariz) desde el cual podría causar la infección. Cualquier otra emisión respiratoria menor de 100 µm se considera un aerosol, puesto que queda suspendido en el aire por un tiempo (desde segundos hasta horas) en el que puede ser inhalado a una distancia superior a dos metros del emisor o incluso en ausencia de un emisor, si aún persisten partículas suspendidas en el aire. En función de su tamaño, los aerosoles desde 15 µm hasta 100 µm alcanzan las vías respiratorias superiores, los aerosoles desde 5 µm hasta 15 µm pueden alcanzar la tráquea y bronquios principales y los aerosoles menores o iguales a 5 µm tienen capacidad para llegar hasta los alveolos12.

A la vista de las evidencias encontradas hasta la fecha, se pueden establecer que:

  • Los aerosoles generados contienen virus
  • Los virus contenidos en los aerosoles tienen capacidad de generar infección sobre todo en determinadas circunstancias: en proximidad al caso índice durante tiempo prolongado y en espacios cerrados y mal En estas condiciones pueden coexistir varios mecanismos de transmisión.
  • Los tejidos diana son accesibles, para aerosoles de cualquier tamaño con puertas de entrada en cualquier lugar del tracto respiratorio

Por todo lo anterior se concluye que en el estado actual del conocimiento científico existen evidencias científicas consistentes que permiten afirmar que la transmisión del virus SARS-CoV-2 por aerosoles debe considerarse como la principal vía de transmisión. Estos aerosoles podrían tanto impactar y depositarse en las conjuntivas y la mucosa del tracto respiratorio superior, como ser inhalados llegando a cualquier tramo del tracto respiratorio. El riesgo de esta transmisión aumenta en la distancia corta, en entornos cerrados y concurridos, especialmente mal ventilados, y si se realizan actividades que aumenten la generación de aerosoles como hacer ejercicio físico, hablar alto, gritar o cantar12.

La Organización Mundial de la Salud, a fecha 20 de octubre de 2020, indicaba que el virus SARS-CoV-2 se puede propagar a través de pequeñas partículas líquidas expulsadas por una persona infectada a través de la boca o la nariz al toser, estornudar, hablar, cantar o resoplar, y que esas partículas líquidas tienen diferentes tamaños, desde las más grandes «gotículas respiratorias» hasta las más pequeñas, llamadas «aerosoles». Añadía además que «la transmisión por aerosoles puede producirse en entornos específicos, sobre todo en espacios interiores, abarrotados y mal ventilados en los que personas infectadas pasan mucho tiempo con otras, por ejemplo, restaurantes, prácticas de coro, clases de gimnasia, clubes nocturnos, oficinas y/o lugares de culto.»13

Lo cierto es que, aunque el mecanismo de transmisión exacto del SARS-CoV-2 sigue sin estar claro14,15,16, se acepta, en general que la vía aérea es la principal ruta de transmisión17. Los virus respiratorios, incluido el SARS-CoV-2, se pueden dispersar a través de gotitas expulsadas por una persona infectada al toser, estornudar, hablar e incluso respirar18.

Tocarse la cara es un mecanismo potencial de transmisión secundaria del SARS-CoV-2, y la inhalación directa de gotitas cargadas de virus o núcleos de gotitas es otro14,15,19,20.

Varios estudios han informado acerca de las distribuciones de tamaño, en términos de su tamaño, de las gotas generadas a través de actividades espiratorias14,21,22,23,24,25,26,27,28,29,30,31. Las gotas grandes hacen referencia a aquellas con un diámetro mayor a 100 μm, y tienden a sedimentarse rápidamente debido a la gravedad. Por el contrario, las gotas más pequeñas permanecen suspendidas durante períodos de tiempo más prolongados y pueden evaporarse en aerosoles o núcleos de gotas, lo que presenta un riesgo de transmisión a largo plazo. La propagación de virus a través de aerosoles y núcleos de gotitas se denomina «transmisión aérea».

El rango de dispersión de las gotitas para la tos sigue siendo controvertido. Según el trabajo fundamental de Wells, las gotas de 100 μm se depositan a una distancia horizontal de 2 m de quien estornuda29. Sin embargo, Li y colaboradores14 han observado que gotas de 100 μm podrían recorrer distancias de hasta 6,6 m con una velocidad del viento de 2 m/s, pero que esta distancia se veía incrementada en condiciones de sequedad, y Xie y colaboradores30 han encontrado que las gotas podrían viajar más allá de los 6 m basándose en una velocidad de chorro característica para un estornudo de 50 m/s. Incluso con una velocidad de tos más lenta de 10 m/s, las gotas pueden viajar sustancialmente más allá de 2 m. Un trabajo reciente de Bourouiba16 mostró que las actividades espiratorias, como los estornudos y la tos, liberan una turbulenta nube de gas flotante con gotitas suspendidas de varios tamaños. Estas nubes de gas pueden suspender gotitas en el aire hasta distancias de 7 a 8 m antes de perder su impulso. Tanto las trayectorias de las gotas como las tasas de evaporación se ven fuertemente afectadas por la nube de gas. En comparación con las gotas grandes, las gotas más pequeñas son suspendidas por la nube de gas flotante y transportadas a largas distancias. Estas gotitas pueden ser vehículos para patógenos y, por lo tanto, presentan riesgos potenciales para susceptibles huéspedes a ciertas distancias. Un estudio reciente informó que el SARS-CoV-2 puede permanecer viable en aerosoles por un tiempo de hasta 3 horas31. Por lo tanto, comprender el comportamiento en el aire de las gotitas grandes y pequeñas es fundamental para reducir los riesgos de infección y romper la cadena de transmisión de la infección por SARS-CoV-214.

Las trayectorias de las gotas se ven fuertemente afectadas por la aerodinámica. Para comprender mejor la transmisión del SARS-CoV-2, es de vital importancia comprender completamente la dinámica del flujo de aire y de las gotas, incluidas sus interacciones y la evaporación de las gotas. Por ejemplo, en condiciones de alta temperatura y baja humedad relativa (HR), una gota podría evaporarse y encogerse, lo que, a su vez, afecta a su trayectoria y a su destino final14.

 

El teniente coronel René Pita es jefe del Departamento de Defensa Química de la Escuela Militar de Defensa NBQ.

El teniente coronel (reserva) Juan Domingo es especialista en Defensa NBQ y editor de la página web cbrn.es.

 

Referencias

  1. «Emulsions, Foams, Suspensions, and Aerosols: Microscience and Applications», Laurier L. Schramm, Wiley-VCH, 2nd Edition, 2014
  2. «Fórmula de Stokes», http://www.sc.ehu.es/sbweb/fisica/dinamica/stokes/stokes.html
  3. «Problemas de física, volumen II, mecánica de fluidos y acústica», E. Gullón de Senespleda y M. López Rodríguez, Librería internacional de Romo, S.L., 3ªEd., 1978
  4. «Reducing Spray Drift», Vern Hofman & Elton Solseng, AE1210, Reviewed June 2017, https://www.ag.ndsu.edu/publications/crops/reducing-spray-drift/ae1210.pdf
  5. «Consideraciones sobre el comportamiento de gotas de aspersión», F. R. Leiva, Agronomía Colombiana, volumen 7:110-117, 1990.
  6. «A Guide to Spray Technology for Dust Control», Bulletin B652A, Spraying Systems Co., https://www.uk.spray.com/literature_pdfs/B652A_Spray_Technology_Dust_Control.pdf
  7. «Understanding Drop Size», Bulletin B459C, Spraying Systems Co., https://www.spray.com/-/media/dam/industrial/usa/sales-material/product-market-bulletin/b459c_understanding_drop_size.pdf
  8. «Depósito pulmonar de partículas inhaladas», Ana Fernández Tena y Pere Casan Clarà, Arch Bronconeumol. 2012; 48(7):240–246
  9. «Inhalation Aerosols: Physical and Biological Basis for Therapy», Anthony J. Hickey, CRC Press, 2ªEd.
  10. «Embriología del desarrollo de los bronquios y el parénquima pulmonar», María José Acuña Navas y otros, Medicina Legal de Costa Rica, vol. 27 (1), marzo 2010
  11. «Section V-The Respiratory System», Medical physiology: a cellular and molecular approach / [edited by] Walter F. Boron, Emile L. Boulpaep. , 2nd ed.
  12. «Información científica-técnica, Enfermedad por coronavirus, COVID-19», Centro de Coordinación de Alertas y Emergencias Sanitarias, Ministerio de Sanidad, Actualización, 15 de enero 2021, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjvh4mD49LuAhVAaRUIHcz5C78QFjAAegQIBRAC&url=https%3A%2F%2Fwww.mscbs.gob.es%2Fprofesionales%2FsaludPublica%2Fccayes%2FalertasActual%2FnCov%2Fdocumentos%2FITCoronavirus.pdf&usg=AOvVaw0e60dQ6xnUJ66KzZGa64xD
  13. «¿Cómo se propaga la COVID 19 entre las personas?», «Preguntas y respuestas sobre la transmisión de la COVID-19», OMS, actualizado al 20 de octubre de 2020, https://www.who.int/es/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
  14. «Dispersion of evaporating cough droplets in tropical outdoor environment», H. Li, F. Yew Leong, G. Xu, Z. Ge, C. Wei Kang & K. Hui Lim, Phys. Fluids 32, 113301 (2020) enviado por Rene
  15. «The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?», S. Asadi, N. Bouvier, A. S. Wexler, & W. D. Ristenpart, Aerosol Sci. 54, 635–638 (2020), https://www.tandfonline.com/doi/pdf/10.1080/02786826.2020.1749229?needAccess=true
  16. «Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19», Lydia Bourouiba, JAMA 323, 1837–1838 (2020).
  17. «Recognition of aerosol transmission of infectious agents: A commentary», R. Tellier, Y. Li, B. J. Cowling, & J. W. Tang, BMC Infect. Dis. 19, 101 (2019), https://www.researchgate.net/journal/BMC-Infectious-Diseases-1471-2334/publication/330770553_Recognition_of_aerosol_transmission_of_infectious_agents_A_commentary/links/5fc25192299bf104cf88f2ff/Recognition-of-aerosol-transmission-of-infectious-agents-A-commentary.pdf
  18. «The flow physics of COVID-19», R. Mittal, R. Ni, & J.-H. Seo, J. Fluid Mech. 894, F2-1–F2-14 (2020), https://www.cambridge.org/core/services/aop-cambridge-core/content/view/476E32549012B3620D2452F30F2567F1/S0022112020003304a_hi.pdf/the-flow-physics-of-covid-19.pdf
  19. «Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant», Y. G. Li, H. Qian, J. Hang, X. G. Chen, L. Hong, P. Liang, J. S. Li, S. L. Xiao, J. J. Wei, L. Liu, & M. Kang, (published online 2020). https://www.medrxiv.org/content/10.1101/2020.04.16.20067728v1.full.pdf
  20. «Airborne transmission of SARS-CoV-2: The world should face the reality», L. Morawska & J. Cao, Environ. Int. 139, 105730 (2020), https://reader.elsevier.com/reader/sd/pii/S016041202031254X?token=20E5A31306FA1888B132065E67E41575AF014E583B2F26435801A286DD486C4D8BE4B4513EF8231A12353B90E22FD501
  21. «COVID-19 may transmit through aerosol», Juan Wang & Guoqiang Du, Irish Journal of Medical Science, 2020.
  22. «Avoiding COVID-19:Aerosol guidelines», Matthew J. Evans, Aerosol guidelines, June 8, 2020.
  23. «Bioaerosol Size Effect in COVID-19 Transmission», Marcelo I. Guzman, Preprints (www.preprints.org), 7 April 2020.
  24. «The size and the duration of air-carriage of respiratory droplets and droplet-nuclei», J. P. Duguid, Epidemiol. Infect. 44, 471–479 (1946), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234804/pdf/jhyg00188-0053.pdf
  25. «Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections», W. F. Wells, Harvard University Press, 1955.
  26. «Exhaled droplets due to talking and coughing», X. Xie, Y. Li, H. Sun, & L. Liu, J. R. Soc., Interface 6, S703–S714 (2009), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843952/pdf/rsif20090388.pdf
  27. «Violent expiratory events: On coughing and sneezing», L. Bourouiba, E. Dehandschoewercker, & J. W. M. Bush, J. Fluid Mech. 745, 537–563 (2014), https://www.cambridge.org/core/services/aop-cambridge-core/content/view/475FCFCBD32C7DB6C1E49476DB7A7446/S0022112014000883a.pdf/violent-expiratory-events-on-coughing-and-sneezing.pdf
  28. «Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission», G. A. Somsen, C. van Rijn, S. Kooij, R. A. Bem, &d. Bonn, Lancet Respir. Med. 8, 658–659 (2020), https://www.thelancet.com/action/showPdf?pii=S2213-2600%2820%2930245-9
  29. «On air-borne infections: Study II. Droplets and droplet nuclei», W. F. Wells, Am. J. Epidemiol. 20, 611–618 (1934).
  30. «How far droplets can move in indoor environments—Revisiting the wells evaporation–falling curve», X. Xie, Y. Li, A. T. Y. Chwang, P. L. Ho, & W. H. Seto, Indoor Air 17, 211–225 (2007).
  31. «Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1», N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, & V. J. Munster, N. Engl. J. Med. 382, 1564–1567 (2020).

 

 

De tal palo, tal astilla

Introducción1

Las plagas han sido desde tiempos inmemoriales un problema para la agricultura. Los fósiles confirman la presencia de moscas que preceden a los humanos en este mundo. El primer ejemplo de control de plagas se remonta a la época en que un ser humano mató por primera vez a un mosquito o aplastó una mosca molesta. Desde que los humanos se dedicaron a la agricultura, se dieron cuenta de los peligros de las plagas para los cultivos alimentarios, y comenzaron a idear formas de repeler esas criaturas dañinas. Casi todas las civilizaciones han empleado métodos químicos o biológicos como medidas para el control de plagas, por ejemplo, los antiguos sumerios que usaron compuestos de azufre para matar insectos y en el 1200 a.C., los chinos emplearon hormigas depredadoras contra las plagas de escarabajos y orugas.

En la época medieval la ignorancia y la superstición llevaron a considerar las plagas como un castigo de Dios, y la lucha contra las mismas decayó. No fue hasta el Renacimiento, con el despertar científico, cuando el control de plagas volvió a cobrar fuerza, y se emplearon sustancias orgánicas e inorgánicas, como por ejemplo, la nicotina y el arsénico, para combatir diversas plagas de insectos.

El uso de pesticidas para combatir las plagas progresó notablemente gracias al descubrimiento, a finales del siglo XIX, de algunos insecticidas sintéticos, como por ejemplo, el DDT, y a la búsqueda, a principios del siglo XX, de nuevos pesticidas, que condujo al desarrollo de los pesticidas organofosforados y al descubrimiento de los agentes neurotóxicos de guerra.

Pero nuestra historia comienza en los años 1900 con el aprovechamiento de las propiedades insecticidas del jabón.

 

 

Del jabón a los pesticidas2,3

El jabón líquido o fácilmente soluble (soft soap), generalmente elaborado por saponificación de los ácidos grasos con hidróxido potásico resultó ser muy efectivo como insecticida y acaricida para combatir el pulgón, la cochinilla, la mosca blanca, los trips y la araña roja, entre otros, en diferentes tipos de plantaciones, por ejemplo, en las de lúpulo. El jabón potásico es biodegradable e inocuo, actúa por contacto reblandeciendo la cutícula protectora de los insectos, provocando su asfixia, sin dañar a otros insectos beneficiosos como las abejas o sus propios predadores naturales, útiles también para controlar la plaga. Además es una fuente de potasio para las plantas.

En 1912, uno de los principales productores de jabón en Reino Unido, la empresa Chiswick Polish Co. Ltd., percibió en ello una oportunidad de desarrollo, y compró un terreno en Yalding una localidad situada en el condado de Kent, en Inglaterra, que estaba bien comunicado por carretera, ferrocarril y río, para levantar en él una fábrica para la producción jabón potásico.

Poco después, en 1914, Chiswick Polish Co. Ltd. fue vendida a un consorcio compuesto principalmente por productores locales de fruta y lúpulo, y pasó a llamarse Yalding Manufacturing Co. Ltd.. Continuó con la fabricación de su conocida marca de jabón potásico, pero extendió su gama de producción para incluir otras actividades como el lavado de fruta y lúpulo, los fungicidas y los insecticidas.

Tras el descubrimiento por parte del profesor Ian McDougall, de McDougall Bros de Manchester, de las propiedades insecticidas del tubli​ (Derris elliptica, una especie de árbol del género Derris, originario de la India), la fábrica de Yalding Manufacturing Co. Ltd. se fusionó con McDougall Bros, en 1921, para convertirse en McDougall & Yalding Ltd..

Tras el descubrimiento en 1885 del poder fungicida de los compuestos de cobre (Mezcla Bordeaux, sulfato de cobre, hidróxido de calcio y agua) muchas empresas se interesaron por la protección de los cultivos, y en 1927, McDougall & Robertson, William Cooper & Nephews, McDougall & Yalding Ltd., Tomlinson & Hayward Ltd., y Abol Ltd. se fusionaron para formar Cooper, McDougall & Robertson Ltd..

En los años siguientes, la empresa ICI (Imperial Chemical Industries) empezó a interesarse por el desarrollo de nuevos productos químicos para la protección de cultivos, en competencia con la empresa Cooper, McDougall & Robertson. Para poner fin a esta competencia, en junio de 1937 crearon una nueva empresa Plant Protection Ltd., y la fábrica de Yalding quedó primero bajo el control de la División de Colorantes de ICI (ICI Dyestuffs Division), para pasar finalmente a la División de Productos Químicos Generales de ICI (ICI General Chemicals Division). En 1964, ICI decidió fusionar sus intereses de producción y protección de cultivos, y Plant Protection Ltd. pasó a formar parte de la División Agrícola de ICI. Finalmente, en 1987, tras la adquisición de Stauffer Chemical Company, y de acuerdo con la campaña de imagen corporativa de ICI, el nombre Plant Protection desapareció, y la empresa pasó a operar globalmente como ICI Agrochemicals. En junio de 1993, ICI escindió sus negocios, y los productos farmacéuticos, agroquímicos, semillas y productos biológicos se transfirieron a una empresa nueva e independiente llamada Zeneca, que posteriormente se fusionó, en 1999, con Astra AB para formar AstraZeneca.

La empresa Plant Protection Ltd, creada en 1937, subsidiaria de ICI y de Cooper, McDougall & Robertson, realizó hasta su desaparición importantes descubrimientos, destacando entre ellos el amitón, un poderoso pesticida que condujo al desarrollo del famoso agente neurotóxico VX.

 

 

PPL (Plant Protection Limited) y el amitón4,5

Después de la Segunda Guerra Mundial, las industrias de pesticidas e insecticidas se expandieron rápidamente, y muchas compañías comenzaron a trabajar en compuestos organofosforados. Entre 1952 y 1953, al menos tres empresas (Geigy, ICI y Sandoz)6 identificaron un grupo de ésteres organofosforados (con un grupo –S-2-dialquilaminoetilo), con una potente actividad insecticida, especialmente contra los ácaros. Después de que estas sustancias fueran patentadas, y sus propiedades publicadas en la literatura abierta, algunas de ellas se comercializaron como insecticidas6:

  • «Process for the production of basic thiophosphoric or dithiophosphoric acid esters», J. R. Geigy, AG., British patent no. 740563 (app. March 1952).
  • «New basic esters of phosphorus containing acids», R. Ghosh, (I.C.I. Ltd.), British patent no. 738839 (app. November 1952).
  • «Pest control agents», Sandoz Ltd., British patent no. 781471 (app. May 1953).

Una de estas sustancias fue un candidato a acaricida, que recibió el nombre de amitón (O,O-diethyl-S-2-diethylaminoethyl phosphorothiolate), descubierto por los químicos Ranajit Ghosh y J. F. Newman, que trabajaban en la Plant Protection Limited (PPL) en Yalding, Kent. Recordemos que PPL era una compañía subsidiaria de ICI y de Cooper, McDougall & Robertson (CMR), creada en 1937 para poner fin a la competencia entre ambas en la producción de pesticidas. Ghosh probablemente sintetizó el amitón a principios de 1952, aunque hay quien afirma que fue sintetizado en 19487. PPL no solicitó la patente sobre el compuesto hasta noviembre de 1952, y los detalles acerca del amitón no se publicaron hasta 1955, cuando éste ya estaba protegido por varias patentes que cubrían su método de síntesis:

  • «New Basic Esters of Phosphorus-Containing Acids», Ranajit Ghosh, British Patent Number 738839, Application Date: November 19, 1952.
  • «Manufacture of Basic Esters of Phosphorothiolic Acid», Ranajit Ghosh, British Patent Number 763516, Application Date: July 16, 1954.
  • «New Pesticidal Basic Esters of Phosphorothiolothionic Acid», Ranajit Ghosh, British Patent Number 763516 Application Date: July 16, 1954.

Estructura del amitón (también conocido como C-11, VG, T-2274, R-5158 ó EA 1508), fosforotiolato de O,O-dietilo y S-2-dietilaminoetilo

 

En 1954, ICI comercializó como insecticida una forma del amitón (la sal de hidrógeno oxalato) con el nombre comercial Tetram®. Tres años más tarde, Nature informó que PPL estaba fabricando un «nuevo» pesticida con los nombres comerciales Tetram® e «ICI Amitón», que tenía una alta toxicidad para el hombre, pero un gran poder insecticida, en gran medida específico para la araña roja y otros ácaros, y para los insectos escamosos, y que tenía poco efecto sobre los depredadores de insectos8.

Tetram (hidrógeno oxalato de fosforotiolato de O,O-dietilo y S-2-dietilaminoetilo)9

 

Para la síntesis del amitón se utilizan métodos que parten de fosforotiono derivados que finalmente por isomerización conducen al amitón10:

Otra ruta para su síntesis es la reacción del dietilfosfito de sodio con el tiocianato de 2-dietilaminoetilo:

El amitón no tuvo el éxito esperado como insecticida. No solo era altamente tóxico para los humanos, sino que se absorbía fácilmente a través de la piel hacia el torrente sanguíneo, lo que le hacía demasiado peligroso para el uso agrícola. Todo indica que pese a ser un excelente insecticida sistémico contra artrópodos succionadores, como los ácaros y los insectos escamosos, y pese a la ausencia de accidentes durante sus ensayos, la toxicidad intrínseca del material (su LD50 oral en ratas es ~ 3 mg/kg)7 resultaba demasiado elevada como para permitir su explotación comercial, y en consecuencia, el producto fue retirado del mercado allá por el año 19586. Una elevada toxicidad percutánea no es una buena cualidad para un buen insecticida, pero en cambio si lo es para un buen agente químico de guerra.

 

 

De tal palo tal astilla4,5,6

Los compuestos del tipo «amitón» rápidamente atrajeron la atención de los laboratorios militares, por la mayor toxicidad que llevaba la introducción de un átomo de nitrógeno básico en la molécula del compuesto organofosforado, efecto que provocó un considerable interés en las teorías sobre la inhibición de la colinesterasa que en ese momento se estaban desarrollando.

Varios grupos de investigación, entre ellos un equipo del Instituto I. M. Sechenov de Leningrado, que en 1955 habían empezado a estudiar diversos compuestos similares al amitón, habían vaticinado un aumento de la actividad inhibidora de la colinesterasa para este tipo de compuestos11.

Ya que los compuestos del tipo del sarín (alquilfosfonofluoridatos de O-alquilo) habían mostrado poseer una mayor actividad inhibidora que los fluorofosfatos de O,O’-dialquilo, posiblemente debido a la presencia de una cadena alquílica unida directamente al átomo de fósforo, parecía un desarrollo lógico en el estudio del potencial tóxico de la cadena S-2-dialquilaminoetilo, pasar de las estructuras del tipo «fosforotiolatos de O,O’-dialquilo», como las de los análogos del amitón, a las estructuras del tipo «alquilfosfonotiolatos de O-alquilo»:

Fluorofosfato de O,O-diisopropilo, DFP

Metilfosfonofluoridato de O-isopropilo, sarín

fosforotiolatos de dialquilo

alquilfosfonotiolatos de alquilo

amitón, VG

fosforotiolato de O,O-dietilo y S-2-dietilaminoetilo

VE

etilfosfonotiolato de O-etilo y S-2-dietilaminoetilo

 

En 1954 diversos investigadores de los campos académico, industrial y militar dieron este paso, casi al mismo tiempo12:

  • Ranajit Ghosh y J. F. Newman de la empresa ICI publicaron un artículo («A New Group of Organophosphate Pesticides», Chemistry and Industry, 1955, 118) que daba detalles de esta clase de compuestos;
  • El químico alemán Gerhard Schrader y su equipo preparaban el metilfosfonotiolato de O-isopropilo y de S-2-dietilaminoetilo, en la Farbenfabriken Bayer AG:

  • El químico sueco Lars-Erik Tammelin preparaba el metilfosfonotiolato de O-etilo y de S-2-dietilaminoetilo (VM), y el metilfosfonotiolato de O-isopropilo y de S-2-dimetilaminoetilo, en el Laboratorio de Defensa de Guerra Química del gobierno sueco:

VM

  • Ranajit Ghosh en la empresa ICI preparaba el etilfosfonotiolato de O-etilo y de S-2-dietilaminoetilo (VE), sobre el cual se presentó una solicitud de patente a su debido tiempo («New basic ester of thiophosphonic acids and salts thereof», Rajanit Ghosh, ICI Ltd., British patent no. 797603, applied June 1955), que posteriormente interfirió con una solicitud de patente realizada por el G. Schrader («Phosphonic acid esters», K. Schegk, H. Schlar & G. Schrader, Farbenfabriken Bayer AG., British patent no. 847550, applied June 1957). Al igual que sucedía con el amitón, este compuesto tenía una poderosa acción acaricida, pero era aún más tóxico para los mamíferos. Cuando se concedió la patente sobre este nuevo compuesto y sus congéneres, el amitón ya había sido retirado del mercado debido a su peligrosa toxicidad para el hombre, especialmente a través de la piel:

VE

PPL informó, a través de su empresa matriz ICI, de la existencia del amitón al Establecimiento Experimental de Defensa Química (Chemical Defence Experimental Establishment, CDEE) en Porton Down muy probablemente a finales de 1952 o principios de 1953.

La solicitud de colaboración a la industria solicitada en 1951 por el gobierno británico a través del Ministerio de Abastecimiento y Porton Down había generado poco interés, así que antes de reiterar de nuevo la solicitud de colaboración a la industria en 1953, para asegurar la confidencialidad, el Ministerio de Abastecimiento estableció un sistema de códigos comerciales («C-xx») para identificar a cada compuesto antes de su remisión a Porton Down para su estudio. El primer compuesto tratado bajo el nuevo sistema, el compuesto R-5158, recibió el código C-11.

Una vez que el C-11 (el amitón), fue transferido a Porton Down, recibió el nombre, en clave militar, de VG. La «V» aparentemente significaba «venomous» («venenoso») debido a su toxicidad por contacto con la piel. Los miembros de la Junta Asesora de Defensa Química observaron que C-11 (T-2274) y otro compuesto similar designado T-2290, que más tarde recibiría el nombre en clave de agente VE, eran «con mucho» los compuestos más peligrosos por contacto con la piel desnuda. Por lo tanto, a finales de 1953, Porton Down ya era consciente de las propiedades tóxicas del agente VE, que aunque tenía importantes propiedades insecticidas, resultaba para los mamíferos aún más tóxico que el propio VG (amitón). Como resultado, el VE reemplazó al VG como candidato a agente químico de guerra. PPL continuó sus trabajos de desarrollo en esta área y, en junio de 1955, Ghosh solicitó una patente sobre el VE. Lo que no está claro es si los científicos militares del CDEE sintetizaron el VE de forma independiente modificando el VG (amitón), o si PPL descubrió el VE y lo transfirió a Porton Down . Posteriormente, los científicos de Porton identificaron sustancias que eran aún más tóxicas que VE al hacer modificaciones en la estructura molecular del VG.

Los documentos disponibles dejan sin respuesta muchas preguntas importantes acerca de la transferencia de tecnología de la industria civil a la industria militar. Existen ambigüedades con respecto a cuánta información sobre el amitón y el agente VE fue transferida por PPL a Porton Down, y cuánta información adquirió Porton Down por sí mismo. Todo lo que se puede afirmar con certeza es que el uso de la sustancia química C-11 se transfirió de PPL a Porton Down en algún momento entre 1951 y 1953, muy probablemente a finales de 1952 o principios de 1953.

En mayo de 1954, en virtud del acuerdo tripartito de 1936, el gobierno británico pasó la información sobre el VG (amitón) y el VE, constituyentes de lo que habían denominado serie C11, a los científicos aliados del Arsenal Edgewood (Edgewood Arsenal) de los Estados Unidos, y de la Estación Experimental en Suffield (Suffield Experimental Station) de Canadá.

En julio de 1956, los científicos militares del Arsenal Edgewood habían sintetizado aproximadamente cincuenta agentes nerviosos de la serie V, incluidos los denominados con los códigos «VE», «VG», «VM», «VP», «VR», «VS» y «VX», y los estudió detalladamente para obtener la mejor combinación de características militarmente deseables, tales como toxicidad, estabilidad en almacenamiento, persistencia en el campo de batalla y facilidad de fabricación. En febrero de 1957, el Comando de Investigación y Desarrollo del Ejército (Army Research and Development Command) seleccionó el VX como el agente de «tipo V» (persistente) en el que concentrar el trabajo adicional, incluido el desarrollo de plantas piloto de producción y estudios acerca de su diseminación. El VX, a diferencia de los agentes de la serie G, es un líquido poco volátil y, por tanto, muy persistente en la zona en la que es utilizado. Además, se comprobó que el VX aplicado en piel era unas cien veces más tóxico que el sarín y unas dos veces más tóxico que éste por vía inhalatoria13,14.

 

VG, amitón, C-11, T-2274, R-5158, EA 1508

VE, EA 1517, T-2290

VM, EA 1664, T-2347

VP, EA 1511

VS, EA 1677, T-2448

Vx, EA 1699, T-2370

VX, EA 1701, T-2445

CVX, Chinese VX

RVX, VR , Russian VX, soviet V-gas, substance 33, R-33, agent «November»

 

La estructura química exacta del VX era un secreto militar. En 1957, los servicios de inteligencia de la Unión Soviética obtuvieron información detallada de los agentes neurotóxicos de la serie V, y en los años sesenta desarrollaron un agente similar, conocido como RVX, VX soviético (ruso), R-33 o agente 33. En diciembre de 1972 dio comienzo la producción de VX ruso a gran escala en Novocheboksarsk (Chuvashia), que finalizaría en 198713,14.

La explicación habitual de las discrepancias entre el VX occidental y el VX ruso, es que la inteligencia militar soviética había obtenido la fórmula empírica, C11H26NO2PS, del agente VX estadounidense pero no su estructura química, lo que llevó a los químicos soviéticos a una estructura química similar pero no idéntica a la del VX13:

 

VX

RVX, R-33

 

Otra hipótesis más probable es que los soviéticos conocían la estructura química correcta del VX, pero eran incapaces de fabricarlo con la tecnología química de que disponían y optaron por sintetizar una variante estructural de VX utilizando un método diferente. Una tercera hipótesis es que los soviéticos desarrollaron deliberadamente un análogo del VX en la creencia de que los sistemas de detección desarrollados para el agente VX no detectarían el R-33. Los estudios toxicológicos llevados a cabo más tarde concluyeron que el VX soviético, inhibía la acetilcolinesterasa de manera irreversible y mucho más rápida que el VX occidental, lo que le haría más letal que éste último13.

 

 

 

 

Referencias

  1. «The History Of Pest Control», Ameri-Tech, https://ameritechpest.com/the-history-of-pest-control.html
  2. «Chiswick Soft Soap and Polish Company – (former) ICI Yalding site», http://wikimapia.org/29746085/Chiswick-Soft-Soap-and-Polish-Company-former-ICI-Yalding-site
  3. «Report – Yalding Agrochemical Laboratory – Update – Nov 2019», https://www.28dayslater.co.uk/threads/yalding-agrochemical-laboratory-update-nov-2019.120767/
  4. «Double-Edged Innovations-Preventing the Misuse of Emerging BC Technologies»-Jonathan B. Tucker, Defense Threat Reduction Agency, 2010, https://apps.dtic.mil/dtic/tr/fulltext/u2/a556984.pdf
  5. «Innovation, Dual Use, and Security-Managing the Risks of Emerging Biological and Chemical Technologies», Jonathan B. Tucker, The MIT Press, 2012.
  6. «The problem of Chemical and Biological Warfare», Volume I. The Rise of CB Weapons, «V-Agent Nerve Gases», Julian Perry Robinson, SIPRI, 1971.
  7. «Chemistry of Organophosphate Pesticides», C. Fest & K.-J. Schmidt, Springer-Verlag, 1982.
  8. «A New Organophosphorus Insecticide», Nature, 179, 763 (1957)
  9. «The Acute and Subacute Toxicity of Technical O,O-Diethyl S-2-Diethylaminoethyl Phosphorothioate Hydrogen Oxalate (Tetram)», C. Boyd Shaffer & Bob West, Toxicology and Applied Pharmacology 2, 1-13 (1960)
  10. «The Preparation and Isomerization of Some Basic Esters of O,O’-Diethyl Hydrogen Phosphorothioate», A. Calderbank & R. Ghosh, Chem. Soc., 1960, 637-642
  11. «On the physiological activity of the organophosphorus compounds», E. V. Zeymal, M. Y. Mikhel’son & N. K. Fruyentov, Second conference on the chemistry and use of organic phosphorus compounds, USSR Academy of Sciences, Kazan, 1959.
  12. «A Short History of the Development of Nerve Gases», https://web.archive.org/web/20061112085443/http:/www.mitretek.org/AShortHistoryOfTheDevelopmentOfNerveGases.htm
  13. «War of Nerves, Chemical Warfare from WWI to Al-qaeda», Jonathan B. Tucker, Pantheon Books, 2006
  14. «Armas químicas: La ciencia en manos del mal», René Pita Pita, Plaza y Valdés Editores, 2008

No todos los alcoholes son iguales

Para empezar, recordemos que en su artículo II, punto 3, la Convención para la prohibición de las Armas Químicas (CAQ) entiende por «precursor»1:

«Cualquier reactivo químico que intervenga en cualquier fase de la producción por cualquier método de una sustancia química tóxica. Queda incluido cualquier componente clave de un sistema químico binario o de multicomponentes.»

(A los efectos de la aplicación de la CAQ, los precursores respecto de los que se ha previsto la aplicación de medidas de verificación están enumerados en Listas incluidas en el Anexo sobre sustancias químicas.)

Y según el punto 4 de ese mismo artículo, se entiende por «componente clave de sistemas químicos binarios o de multicomponentes»1:

«El precursor que desempeña la función más importante en la determinación de las propiedades tóxicas del producto final y que reacciona rápidamente con otras sustancias químicas en el sistema binario o de multicomponentes.»

Los alcoholes son precursores de multitud de agentes químicos de guerra, y además son, en algunos casos, componentes de sistemas químicos binarios o de multicomponentes.

 

 

Los alcoholes y la CAQ1,2

A efectos de verificación la CAQ recoge en su anexo sobre sustancias químicas miles de sustancias químicas del tipo ésteres fosfóricos o ésteres fosfónicos, donde el resto alquílico del éster puede ser una cadena carbonada lineal, o más o menos ramificada, o incluso con ciclos, que no tenga más de 10 átomos de carbono:

1A.1

1A.2

1A.3

 

 

2B.4

Pese a la existencia de miles de ésteres en las Listas de la CAQ, tan solo unos pocos alcoholes están recogidos en ellas, lo que indica claramente que no todos los alcoholes son iguales:

2B.9 Quinuclidinol-3

CAS 1619-34-7

2B.11 N,N-dialquilaminoetan-2-oles

2B.13 Tiodiglicol

CAS 111-48-8

2B.14 Alcohol pinacolilico (3,3-dimetilbutan-2-ol)

CAS 464-07-3

 

3B.15 Etildietanolamina

CAS 139-87-7

3B.16 Metildietanolamina

CAS 105-59-9

3B.17 Trietanolamina

CAS 102-71-6

Todos los alcoholes listados tienen, además de sus fines no prohibidos por la CAQ, una aplicación más o menos directa para la síntesis de algunos agentes químicos de guerra, por ejemplo:

  • El quinuclidin-3-ol es junto con el ácido 2,2-difenil-2-hidroxiacético, precursor necesario del agente incapacitante benzilato de 3-quinuclidinilo, más conocido como agente BZ (CAS 6581-06-2), incluido en la Lista 2A.3.

  • El N,N-diisopropilaminoetanol es un precursor para la síntesis del O-2-diisopropilaminoetil metilfosfonito de O-etilo, agente QL (CAS 57856-11-8), precursor para la síntesis del agente neurotóxico VX (CAS 50782-69-9).

  • El tiodiglicol (CAS 111-48-8) reacciona con el cloruro de hidrógeno para formar sulfuro de bis (2-cloroetilo), el famoso agente vesicante conocido como iperita o “gas mostaza” (CAS 505-60-2).

  • El 3,3-dimetilbutan-2-ol, conocido como alcohol pinacolílico (CAS 464-07-3), es precursor del agente neurotóxico somán (CAS 96-64-0).

Se da la circunstancia de que muchos alcoholes, que son sustancias muy utilizadas para fines no prohibidos por la CAQ, no están incluidos, ni en las Listas de la CAQ, ni en las listas del Grupo Australia, y sin embargo son precursores para la síntesis de los ésteres organofosforados incluídos en las Listas.

Por ejemplo, ni el isopropanol, ni el ciclohexanol, ni el etanol están incluidos en las Listas de la CAQ, y tampoco están incluidos en el Grupo Australia, pero son precursores para la síntesis del sarín, ciclosarín y etilsarín, respectivamente:

 

 

Destrucción de las armas químicas1

En el anexo sobre la aplicación y la verificación, en su Parte IV(A) relativa a la destrucción de armas químicas y su verificación, en el artículo 2 se indica:

            …

    1. los casos de mezclas de dos o más sustancias químicas, se identificará cada una de ellas, indicándose los porcentajes respectivos, y la mezcla se declarará con arreglo a la categoría de la sustancia química más tóxica. Si un componente de un arma química binaria está constituido por una mezcla de dos o más sustancias químicas, se identificará cada una de ellas y se indicará el porcentaje respectivo;
    2. Las armas químicas binarias se declararán con arreglo al producto final pertinente dentro del marco de las categorías de armas químicas mencionadas en el párrafo 16. Se facilitará la siguiente información complementaria respecto de cada tipo de munición química binaria/dispositivo químico binario:

i) El nombre químico del producto tóxico final;

ii) La composición química y la cantidad de cada componente;

iii) La relación efectiva de peso entre los componentes;

iv) Qué componente se considera el componente clave;

v) La cantidad proyectada del producto tóxico final calculada sobre una base estequiométrica a partir del componente clave, suponiendo que el rendimiento sea del 100%. Se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto tóxico final específico equivale a la cantidad (en toneladas) de ese producto tóxico final calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;

Y en el artículo 18 de esta Parte IV(A) relativa a la destrucción de armas químicas y su verificación, se indica:

Para la destrucción de las armas químicas binarias se aplicará lo siguiente:

  1. A los efectos del orden de destrucción, se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto final tóxico específico equivale a la cantidad (en toneladas) de ese producto final tóxico calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;
  2. La exigencia de destruir una cantidad determinada del componente clave implicará la exigencia de destruir una cantidad correspondiente del otro componente, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario;
  3. Si se declara una cantidad mayor de la necesaria del otro componente, sobre la base de la relación efectiva de peso entre componentes, el exceso consiguiente se destruirá a lo largo de los dos primeros años siguientes al comienzo de las operaciones de destrucción;
  4. Al final de cada año operacional siguiente, cada Estado Parte podrá conservar una cantidad del otro componente declarado determinada sobre la base de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.

Esto supone que si se declarase la posesión de un componente clave de un sistema de munición química binaria, por ejemplo, si se declarasen 100 kg de DF (que con un peso molecular de 100,00 suponen 1000 moles), habría que destruir 1000 moles de un alcohol, por ejemplo, de 3,3-dimetil-2-butanol (CAS 464-07-3, Lista 2B.14), de 2-propanol (CAS 67-63-0, no listado), de 2-butanol (CAS 78-83-1, no listado), de 2,2-dimetil-1-propanol (CAS 75-84-3, no listado), o de cualquier otro de los muchos alcoholes no listados.

 

 

Guerra química

En guerra química la elección del alcohol viene condicionada por la toxicidad del agente y la disponibilidad o facilidad de síntesis del alcohol.

La siguiente tabla muestra la toxicidad en conejos, por vía intravenosa, para diferentes metilfosfonofluoridatos de O-alquilo, sarín, somán y ciclosarín, entre otros, y como puede observarse son bastante similares. En caso de requerirse un agente químico de guerra del tipo «metilfosfonofluoridato de O-alquilo» es probable que la obtención del mismo venga condicionada en gran medida por la disponibilidad del alcohol correspondiente3.

 

 

Grupo alquilo R1

Nombre del agente químico de guerra

LD50 iv en conejos (mg/kg)

CH3

Metilfosfonofluoridato de O-metilo

0,04

CH3CH2

Metilfosfonofluoridato de O-etilo

0,05

CH3CH2CH2

Metilfosfonofluoridato de O-propilo

0,03

(CH3)2CH-

Metilfosfonofluoridato de O-isopropilo, sarín, GB

0,02

CH3CH2CH2CH2

Metilfosfonofluoridato de O-butilo

0,05

CH3CH2CH(CH3)-

Metilfosfonofluoridato de O-(1-metilpropilo)

0,01

(CH3)2CH2CH-

Metilfosfonofluoridato de O-isobutilo

0,19

CH3CH2CH2CH(CH3)-

Metilfosfonofluoridato de O-(1-metilbutilo)

0,02

(CH3)2CH2CH(CH3)-

Metilfosfonofluoridato de O-(1,2-dimetilpropilo)

0,01

(CH3)3CCH2

Metilfosfonofluoridato de O-neopentilo, Metilfosfonofluoridato de O-(2,2-dimetilpropilo)

0,01

CH3CH2CH2CH2CH2CH2

Metilfosfonofluoridato de O-hexilo

0,15

(CH3)2CHCH2CH(CH3)-

Metilfosfonofluoridato de O-(1,3-dimetilbutilo)

0,02

(CH3)3CCH(CH3)-

Metilfosfonofluoridato de O-pinacolilo, Metilfosfonofluoridato de O-(1,2,2-trimetilpropilo), somán, GD

0,01

C6H11

Metilfosfonofluoridato de O-ciclohexilo, ciclosarín, GF

0,02

 

 

De los alcoholes, los ésteres

La cadena carbonada lineal, o más o menos ramificada, o incluso con ciclos, que no tenga más de 10 átomos de carbono, enlazada al átomo de fósforo a través de un átomo de oxígeno, se correspondería con el alcohol esterificado. Conforme aumenta el número de átomos de carbono del alcohol aumenta de manera importante el número de isómeros posibles. La siguiente tabla muestra los posibles alcoholes de C1 a C8, con su número CAS (no se incluyen los ciclos, ni los isómeros ópticos):

 C1

 

Metanol, CAS 67-56-1

C2

Etanol, CAS 64-17-5

C3

Propanol, CAS 71-23-8

Isopropanol, CAS 67-63-0

C4

1-butanol, CAS 71-36-3

2-butanol, CAS 78-83-1

1-metil-1-propanol, CAS 78-92-2

1,1-dimetil-1-propanol, CAS 75-65-0

C5

1-pentanol, CAS 71-41-0

2-pentanol, CAS 6032-29-7

3-pentanol, CAS 584-02-1

2-metil-1-butanol, CAS 137-32-6

3-metil-1-butanol, CAS 123-51-3

2-metil-2-butanol, CAS 75-85-4

3-metil-2-butanol, CAS 598-75-4

2,2-dimetil-1-propanol, CAS 75-84-3

C6

1-hexanol, CAS 111-27-3

2-hexanol, CAS 626-93-7

3-hexanol, CAS 623-37-0

2-metil-1-pentanol, CAS 105-30-6

3-metil-1-pentanol, CAS 589-35-5

4-metil-1-pentanol, CAS 626-89-1

2-metil-2-pentanol, CAS 590-36-1

3-metil-2-pentanol, CAS 565-60-6

4-metil-2-pentanol, CAS 108-11-2

3-metil-3-pentanol, CAS 77-74-7

4-metil-3-pentanol, CAS 565-67-3

2,2-dimetil-1-butanol, CAS 1185-33-7

2-etil-1-butanol, CAS 97-95-0

2,3-dimetil-1-butanol, CAS 49550-30-2

3,3-dimetil-1-butanol, CAS 624-95-3

2,3-dimetil-2-butanol, CAS 594-60-5

3,3-dimetil-2-butanol, CAS 464-07-3 (en Lista 2B.14 de la CAQ)

C7

1-heptanol, CAS 111-70-6

2-heptanol, CAS 543-49-7

3-heptanol, CAS 589-82-2

4-heptanol, CAS 589-55-9

2-metil-1-hexanol, CAS 624-22-6

3-metil-1-hexanol, CAS 13231-81-7

4-metil-1-hexanol, CAS 818-49-5

5-metil-1-hexanol, CAS 627-98-5

2-metil-2-hexanol, CAS 625-23-0

3-metil-2-hexanol, CAS 2313-65-7

4-metil-2-hexanol, CAS 2313-61-3

5-metil-2-hexanol, CAS 627-59-8

2-metil-3-hexanol, CAS 617-29-8

3-metil-3-hexanol, CAS 597-96-6

4-metil-3-hexanol, CAS 615-29-2

5-metil-3-hexanol, CAS 623-55-2

2,2-dimetil-1-pentanol, CAS 2370-12-9

3,3-dimetil-1-pentanol, CAS 19264-94-9

4,4-dimetil-1-pentanol, CAS 3121-79-7

2-etil-1-pentanol, CAS 27522-11-8

3-etil-1-pentanol, CAS 66225-51-2

2,3-dimetil-2-pentanol, CAS 4911-70-0

2,4-dimetil-2-pentanol, CAS 625-06-9

3,3-dimetil-2-pentanol, CAS 19781-24-9

4,4-dimetil-2-pentanol, CAS 6144-93-0

3,4-dimetil-1-pentanol, CAS 6570-87-2

2,3-dimetil-1-pentanol, CAS 10143-23-4

2,4-dimetil-1-pentanol, CAS 6305-71-1

3-etil-2-pentanol, CAS 609-27-8

3,4-dimetil-2-pentanol, CAS 64502-86-9

2,2-dimetil-3-pentanol, CAS 3970-62-5

2,4-dimetil-3-pentanol, CAS 600-36-2

3-etil-3-pentanol, CAS 597-49-9

2,3-dimetil-3-pentanol, CAS 595-41-5

2,2,3-trimetil-1-butanol, CAS 55505-23-2

2,3,3-trimetil-1-butanol, CAS 36794-64-6

2-etil-3-metil-1-butanol, CAS 32444-34-1

2-etil-2-metil-1-butanol, CAS 18371-13-6

2,3,3-trimetil-2-butanol, CAS 594-83-2

C8

1-octanol, CAS 111-87-5

2-octanol, CAS 123-96-6

3-octanol, CAS 589-98-0

4-octanol, CAS 589-62-8

2-metil-1-heptanol, CAS 60435-70-3

2-metil-2-heptanol, CAS 625-25-2

2-metil-3-heptanol, CAS 18720-62-2

2-metil-4-heptanol, CAS 21570-35-4

3-metil-1-heptanol, CAS 1070-32-2

3-metil-2-heptanol, CAS 31367-46-1

3-metil-3-heptanol, CAS 5582-82-1

3-metil-4-heptanol, CAS 1838-73-9

4-metil-1-heptanol, CAS 817-91-4

4-metil-2-heptanol, CAS 56298-90-9

4-metil-3-heptanol, CAS 14979-39-6

4-metil-4-heptanol, CAS 598-01-6

5-metil-1-heptanol, CAS 7212-53-5

5-metil-2-heptanol, CAS 54630-50-1

5-metil-3-heptanol, CAS 18720-65-5

6-metil-1-heptanol, CAS 1653-40-3

6-metil-2-heptanol, CAS 4730-22-7

6-metil-3-heptanol, CAS 18720-66-6

2,2-dimetil-1-hexanol, CAS 2370-13-0

2,2-dimetil-3-hexanol, CAS 4209-90-9

2,3-dimetil-1-hexanol, CAS 19550-02-8

2,3-dimetil-2-hexanol, CAS 19550-03-9

2,3-dimetil-3-hexanol, CAS 4166-46-5

2,4-dimetil-1-hexanol, CAS 3965-59-1

2,4-dimetil-2-hexanol, CAS 42328-76-7

2,4-dimetil-3-hexanol, CAS 13432-25-2

2,5-dimetil-1-hexanol, CAS 6886-16-4

2,5-dimetil-2-hexanol, CAS 3730-60-7

2,5-dimetil-3-hexanol, CAS 19550-07-3

3,3-dimetil-1-hexanol, CAS 10524-70-6

3,3-dimetil-2-hexanol, CAS 22025-20-3

3,4-dimetil-1-hexanol, CAS 66576-57-6

3,4-dimetil-2-hexanol, CAS 19550-05-1

3,4-dimetil-3-hexanol, CAS 19550-08-4

3,5-dimetil-1-hexanol, CAS 13501-73-0

3,5-dimetil-2-hexanol, CAS 66576-27-0

3,5-dimetil-3-hexanol, CAS 4209-91-0

4,4-dimetil-1-hexanol, CAS 6481-95-4

4,4-dimetil-2-hexanol, CAS 66576-28-1

4,4-dimetil-3-hexanol, CAS 19550-09-5

4,5-dimetil-1-hexanol, CAS 60564-76-3

4,5-dimetil-2-hexanol, CAS 66576-29-2

4,5-dimetil-3-hexanol, CAS 66576-30-5

5,5-dimetil-1-hexanol, CAS 2768-18-5

5,5-dimetil-2-hexanol, CAS 31841-77-7

5,5-dimetil-3-hexanol, CAS 66576-31-6

2-etil-1-hexanol, CAS 104-76-7

3-etil-1-hexanol, CAS 41065-95-6

3-etil-2-hexanol, CAS 24448-19-9

3-etil-3-hexanol, CAS 597-76-2

4-etil-1-hexanol, CAS 66576-32-7

4-etil-2-hexanol, CAS 66576-33-8

4-etil-3-hexanol, CAS 19780-44-0

2,2,3-trimetil-1-pentanol, CAS 57409-53-7

2,2,3-trimetil-3-pentanol, CAS 7294-05-5

2,2,4-trimetil-1-pentanol, CAS 123-44-4

2,2,4-trimetil-3-pentanol, CAS 5162-48-1

2,3,3-trimetil-1-pentanol, CAS 66576-25-8

2,3,3-trimetil-2-pentanol, CAS 23171-85-9

2,3,4-trimetil-1-pentanol, CAS 6570-88-3

2,3,4-trimetil-2-pentanol, CAS 66576-26-9

2,3,4-trimetil-3-pentanol, CAS 3054-92-0

2,4,4-trimetil-1-pentanol, CAS 16325-63-6

2,4,4-trimetil-2-pentanol, CAS 690-37-9

3,3,4-trimetil-1-pentanol, CAS 65502-58-1

3,3,4-trimetil-2-pentanol, CAS 19411-41-7

3,4,4-trimetil-1-pentanol, CAS 16325-64-7

3,4,4-trimetil-2-pentanol, CAS 10575-56-1

2-etil-2-metil-1-pentanol, CAS 5970-63-8

2-etil-3-metil-1-pentanol, CAS 66576-35-0

2-etil-4-metil-1-pentanol, CAS 106-67-2

3-etil-2-metil-1-pentanol, CAS 66576-34-9

3-etil-2-metil-2-pentanol, CAS 19780-63-3

3-etil-2-metil-3-pentanol, CAS 597-05-7

3-etil-3-metil-1-pentanol, CAS 10524-71-7

3-etil-3-metil-2-pentanol, CAS 66576-22-5

3-etil-4-metil-1-pentanol, CAS 38514-13-5

3-etil-4-metil-2-pentanol, CAS 66576-23-6

2-propil-1-pentanol, CAS 58175-57-8

2-(1-metiletil)-1-pentanol, CAS 18593-91-4

2-etil-3,3-dimetil-1-butanol, CAS 66576-56-5

2-etil-2,3-dimetil-1-butanol, CAS 66576-55-4

2,2-dietil-1-butanol, CAS 13023-60-4

3-metil-2-(1-metiletil)-1-butanol, CAS 18593-92-5

2,2,3,3-tetrametil-1-butanol, CAS 66576-24-7

 

De los 161 alcoholes de esta lista solo el 3,3-dimetil-2-butanol (alcohol pinacolílico), CAS 464-07-3 está en las Listas de la CAQ, concretamente en la Lista 2B.14.

Los alcoholes se usan como disolventes y diluyentes para pinturas (principalmente alcoholes C1-C6), como intermedios en la fabricación de ésteres y de toda una gama de compuestos orgánicos, como agentes de flotación, como lubricantes, y como combustibles o aditivos de combustible. Para fines industriales, a menudo se prefieren las mezclas isoméricas porque los alcoholes puros son demasiado caros. Además, las mezclas de alcoholes con diferentes números de átomos de carbono pueden ser ventajosas para ciertos fines. Por lo tanto, las cantidades de mezclas de alcohol disponibles en el mercado son similares a las cantidades de los alcoholes puros individuales.

Desde el punto de vista industrial los alcoholes más importantes son metanol, etanol, 1-propanol, 2-propanol (alcohol isopropílico), 1-butanol, 2-metil-1-propanol (alcohol isobutílico), los alcoholes plastificantes (C6 – C11) y los alcoholes grasos (C12 – C18), utilizados para detergentes.

 

 

Métodos de preparación de alcoholes4,5,6,7,8

Existen muchos y muy diversos métodos de laboratorio para la preparación de alcoholes, que aparecen descritos en los múltiples libros sobre química orgánica. A modo de resumen podemos citar los siguientes:

  1. Hidratación de alquenos. La reacción de hidratación sigue la regla de Markovnikov, es decir, el protón se adiciona al carbono menos sustituido del alqueno y el grupo hidroxilo se adiciona al carbono más sustituido del alqueno.

  1. Hidroboración seguida de oxidación. La hidroboración es una reacción en la cual un alqueno reacciona con un hidruro de boro para formar un organoborano que posteriormente es oxidado con peróxido de hidrógeno en medio básico para obtener un alcohol. La reacción de hidroboración sigue la regla anti-Markovnikov, es decir, el protón se adiciona al carbono más sustituido del alqueno y el grupo hidroxilo se adiciona al carbono menos sustituido del alqueno.

  1. Hidrólisis de los halogenuros de alquilo. La hidrólisis de los halogenuros de alquilo es una reacción de sustitución nucleófila que permite la obtención del correspondiente alcohol. La utilidad de esta reacción de sustitución viene limitada por la competencia de la reacción de eliminación de halogenuro de hidrógeno que produce el correspondiente alqueno.

  1. Hidrólisis de los halogenuros de alquilo. La hidrólisis de los halogenuros de alquilo es una reacción de sustitución nucleófila que permite la obtención del correspondiente alcohol. La utilidad de esta reacción de sustitución viene limitada por la competencia de la reacción de eliminación de halogenuro de hidrógeno que produce el correspondiente alqueno.
  2. Reacción de adición nucleófila de reactivos de Grignard al grupo carbonilo (aldehídos, cetonas, ésteres y acil derivados) y a epóxidos. Mediante este procedimiento se pueden obtener ácoholes primarios, secundarios y terciarios:
    • Alcoholes primarios. Cuando la adición se lleva a cabo sobre el metanal.

    • Alcoholes secundarios. Cuando la adición se lleva a cabo sobre cualquier otro aldehído:

    • Alcoholes terciarios. Cuando la adición se lleva a cabo sobre una cetona:

    • Reacciones con ésteres y halogenuros (haluros) de ácido. Los reactivos de Grignard reaccionan con estos derivados de ácido dando alcoholes terciarios, pero se requieren dos equivalentes del reactivo de Grignard por cada equivalente del derivado de ácido:

    • Reacciones con epóxidos. Normalmente con óxido de metileno, para así obtener alcoholes primarios:

 

  1. Reducción de compuestos carbonílicos. Para la reducción de los compuestos carbonílicos se suelen emplear hidruros, como el NaBH4 que es muy selectivo y no reduce ni los ácidos ni los ésteres, o el LiAlH4 que es un reactivo más enérgico que reduce también los ácidos, los ésteres y otros derivados de ácidos. Normalmente los aldehídos se reducen a alcoholes primarios y las cetonas a alcoholes secundarios. Los ácidos y ésteres se reducen a alcoholes primarios.

 

A escala industrial podemos citar los siguientes procesos:

  1. Síntesis a partir de monóxido de carbono e hidrógeno (para el metanol)
  2. Oxosíntesis (la mayor parte de las veces combinada con hidrogenación de los aldehídos formados inicialmente; alcoholes de C3 a C20)
  3. Hidrogenación de aldehídos, ácidos carboxílicos o ésteres.
  4. Condensación aldólica de aldehídos inferiores e hidrogenación de los alquenilos (C3→C6, C4→C8, C8→C16)
  5. Oxidación de compuestos de trialquilaluminio (proceso Ziegler)
  6. Oxidación de hidrocarburos saturados.
  7. Hidratación de olefinas (alcoholes de C2 a C4)
  8. Homologación de alcoholes
  9. Hidrocarbonilación mediante el proceso Reppe
  10. Hidrocarboximetilación
  11. Procesos de fermentación (alcoholes de C2 a C5)
  12. Proceso Guerbet

Probablemente los procesos industriales más importantes son la síntesis de metanol y la oxosíntesis, aunque la hidratación de etileno y de propeno a etanol y a 2-propanol, y la oxidación de los compuestos de trialquilaluminio (proceso Alfol o proceso Ziegler) también ha logrado una considerable importancia comercial. La fermentación, especialmente para la producción de etanol, ha vuelto a ser importante en ciertas regiones debido al aumento de precio del petróleo.

 

Síntesis a partir de monóxido de carbono e hidrógeno (para el metanol)4

Sólo el metanol se prepara a partir de gas de síntesis (El gas de síntesis, que contiene cantidades variables de monóxido de carbono (CO) e hidrógeno (H2), es un combustible gaseoso obtenido sometiendo ciertas sustancias ricas en carbono (hulla, carbón, coque, nafta, biomasa, etc.) a un proceso químico a alta temperatura):

CO + H2 ⇔ CH3OH

CO2 + H2 ⇔ CH3OH + H2O

CO2 + H2 ⇔ CO + H2O

 

Oxosíntesis4,9

Los alcoholes en el rango C3-C20 pueden prepararse mediante oxosíntesis, haciendo reaccionar olefinas con gas de síntesis (CO + H2) para formar aldehídos usando la reacción de hidroformilación, y luego hidrogenando el aldehído para obtener el alcohol:

R-CH=CH2 + CO + 2 H2 → R-CH2CH2CH2OH

Algunas veces se aplica una etapa intermedia para agregar dos aldehídos y obtener un aldehído con mayor número de átomos de carbono (reacción de condensación aldólica), antes de proceder a la hidrogenación. Una versión particular de la oxosíntesis es el proceso Shell, en el cual la fuerte actividad hidrogenante del catalizador, HCo(CO)3PR3, conduce a la hidrogenación directa en el reactor oxo del aldehído inicialmente formado.

Los principales alcoholes obtenidos mediante este proceso (oxo-alcoholes) son: 1-butanol (CAS 71-36-3), 2-metil-2-butanol (CAS ), 2-etil-1-hexanol (CAS 75-85-4), 2-propil-1-heptanol (CAS 10042-59-8), 7-metil-1-octanol (CAS 27458-94-2) y 8-metil-1-nonanol (25339-17-7)

 

Hidrogenación de aldehídos, ácidos carboxílicos o ésteres4

Los aldehídos se pueden hidrogenar en presencia de catalizadores homogéneos o heterogéneos. Generalmente se prefieren catalizadores heterogéneos que son efectivos tanto en fase gaseosa a temperaturas de 90-180 °C y presiones de 25 bar, como en fase líquida a temperaturas de 80-220 °C y presiones de hasta 300 bar. La temperatura de hidrogenación empleada en los distintos procesos industriales es un compromiso entre el menor consumo energético posible y la más larga vida útil del catalizador.

 

Condensación aldólica de aldehídos inferiores e hidrogenación de los alquenales4 (C3→C6, C4→C8, C8→C16)

En la industria, la única fuente de aldehídos para la condensación aldólica es la oxosíntesis. Después de eliminados los isoaldehídos y otros subproductos, se realiza la condensación catalizada por ácidos o bases. Dado que la reactividad de cada aldehído depende de la longitud de la cadena y del grado de ramificación, las condiciones de reacción deben adaptarse para cada aldehído en particular. Los aldehídos insaturados (alquenales), formados por eliminación de agua en los aldoles, se hidrogenan sobre catalizadores heterogéneos.

Mediante este método, se preparan 2-etilhexanol, 2-metilpentanol y cantidades limitadas de alcoholes isómeros C16 y C18 altamente ramificados.

 

Oxidación de compuestos de trialquilaluminio (proceso Ziegler)4

El etileno puede agregarse al trietilaluminio para formar una mezcla de compuestos de trialquilaluminio de mayor masa molecular. Estos productos pueden oxidarse con aire a loscorrespondientes alcóxidos de aluminio, que luego se hidrolizan a una mezcla de alcoholes primarios lineales con el mismo número de átomos de carbono que los grupos alquilo que constituyen el trialquilaluminio:

Al(CH2CH3)3 + 3x CH2=CH2 → Al((CH2CH2)xCH2CH3)3

Al((CH2CH2)xCH2CH3)3 + 3/2 O2 → Al(O(CH2CH2)xCH2CH3)3

Al(O(CH2CH2)xCH2CH3)3  + 3 H2O → Al(OH)3 + 3 HO(CH2CH2)xCH2CH3

Esta reacción conocida como proceso Ziegler (también como síntesis Ziegler-Alfol) es el fundamento de dos procesos comerciales, uno conocido como proceso Conoco (Conoco y Deutsche Texaco) que produce alcoholes entre C2-C28, prácticamente lineales en un 100%, empleando una temperatura lo más baja posible, y otro conocido como proceso Ethyl Corporation que produce predominantemente alcoholes entre C12-C14, lineales en un 95%.

Comparación de la composición de las mezclas de alcoholes del proceso Ziegler.

Nº átomos de carbono

Proceso Conoco

Proceso Ethyl Corporation

6

9,6%

1,4%

8

16,9%

3,2%

10

20,7%

7,7%

12

19,4%

34,5%

14

15,1%

26,3%

16

9,8%

16,7%

18

5,3%

8,9%

20

3,2%

1,3%

 

Oxidación de hidrocarburos saturados4

La oxidación de los hidrocarburos alifáticos con aire en presencia de ácido metabórico, HBO2, (oxidación de Bashkirov) produce ésteres de ácido bórico con un alto rendimiento. Estos se hidrolizan en un segundo paso a alcoholes secundarios en los que los grupos hidroxilo se distribuyen estadísticamente a lo largo de la cadena molecular.

Normalmente, se utiliza como producto de partida una mezcla de n-hidrocarburos con longitudes de cadena entre 10 y 16 átomos de carbono. La oxidación se lleva a cabo en la fase líquida a 150-170 °C en presencia de 4-5% en peso de ácido metabórico empleando una mezcla de nitrógeno y oxígeno (con aproximadamente un 3,5% de O2), a presión normal o ligeramente elevada.

El producto de partida y los subproductos de oxidación se eliminan mediante evaporación instantánea y se limpian mediante lavadores de gases alcalinos y de agua. Los ésteres de ácido metabórico en el fondo de la columna de evaporación instantánea  se hidrolizan mediante la adición de pequeñas cantidades de agua a 80- 00 °C. Después de la destilación fraccionada, se obtienen alcoholes con una pureza superior al 98%. El procesado finaliza con una hidrogenación sobre catalizadores heterogéneos de níquel para eliminar las sustancias coloreadas y olorosas.

Por ejemplo, la oxidación por este método del ciclohexano permite obtener una mezcla de ciclohexanol y ciclohexanona conocida como aceite KA. El ciclohexano que se obtiene en su mayor parte por  hidrogenación del benceno es oxidado en fase líquida con aire en presencia de catalizadores solubles de cobalto o ácido bórico para producir una mezcla de ciclohexanol y de ciclohexanona (aceite KA). El ciclohexanol puede ser oxidado a ciclohexanona, que se usa para producir caprolactama, un monómero para la producción de nylon-6 (policaprolactama). El aceite de KA puede convertirse en ácido adípico y hexametilendiamina, los monómeros para la producción de nylon 66 (poli-hexametilenadipamida).

 

Hidratación de olefinas (alcoholes de C2 a C4)4

Un método común para la producción de alcoholes inferiores es la hidratación de alquenos. La hidratación de alquenos es Markovnikov, es decir, el protón se adiciona al carbono menos sustituido del alqueno (carbono con más hidrógenos) de modo que se obtienen alcoholes secundarios y terciarios (excepto en el caso del etileno):

El mecanismo transcurre con formación de un carbocatión intermedio, y la velocidad de la reacción viene determinada por la estabilidad de dicho carbocatión (terciario> secundario> primario). Por ello, la hidratación del isobuteno se produce a temperatura ambiente en presencia de bajas concentraciones de protones debido a la relativa estabilidad del carbocatión terciario intermedio, mientras que la hidratación del etileno requiere temperaturas y presiones elevadas.

La hidratación se emplea para la preparación de etanol a partir de etileno y de alcohol isopropílico a partir de propeno. También se emplea en la producción de 2-butanol a partir de una mezcla de 1-buteno y 2-buteno (raffinato II) y de alcohol terc-butílico (2-metil-2-propanol) a partir de isobuteno (isobutileno ó 2-metilpropeno).

 

Homologación de alcoholes4

Una reacción de homologación, también conocida como «homologización», es cualquier reacción química que convierte el reactivo en el siguiente miembro de la serie homóloga. Una serie homóloga es un grupo de sustancias químicas similares que difieren entre sí en un átomo de carbono, generalmente un grupo -CH2-.

La homologación de alcoholes es la reacción de alcoholes con gas de síntesis en presencia de complejos sistemas catalíticos multicomponentes. Dependiendo de las condiciones de reacción, los productos resultantes son aldehídos o alcoholes que contienen un grupo -CH2– más que los materiales de partida:

Aunque la reacción se concibió originalmente para la síntesis de etanol a partir de metanol, el alcance se ha ampliado para incluir la producción de aldehídos homólogos (acetaldehído a partir de metanol), ácidos carboxílicos (ácido propiónico a partir de ácido acético), ésteres de ácidos carboxílicos (acetato de etilo a partir de acetato de metilo), así como la síntesis de estireno (mediante la homologación de alcohol bencílico a 2-feniletanol con posterior deshidratación).

El proceso no goza de gran utilización industrial porque la conversión y la selectividad, a pesar de los considerables avances, todavía son insuficientes y porque existen problemas con el reciclaje de los complejos catalizadores de homologación.

 

Hidrocarbonilación mediante el proceso Reppe4

La hidrocarbonilación de olefinas mediante el proceso Reppe (en honor al químico alemán  Walter Reppe) con monóxido de carbono y agua, y el uso de sales amónicas del dihidruro tetracarbonilo de hierro (H2Fe(CO)4) como catalizador, conduce a alcoholes con un átomo de carbono adicional. Al igual que en la oxosíntesis, también se forman productos de cadena ramificada (la relación molar de alcoholes de cadena lineal a ramificada es de aproximadamente 9:1).

El propeno reacciona a 90-110 °C y 5-20 bar para formar butanoles con rendimientos del 90%. Aproximadamente el 4% del propeno se hidrogena a propano.

La conversión de olefinas superiores requiere condiciones más extremas. El proceso no puede competir con la hidroformilación.

 

Hidrocarboximetilación4

La hidrocarboximetilación es una variante del proceso Reppe en el que las olefinas superiores reaccionan con monóxido de carbono y metanol en presencia de un catalizador de cobalto-piridina. Los productos son ésteres de ácidos carboxílicos que contienen un átomo de carbono más en la cadena madre que la materia prima olefínica. Los ésteres se pueden hidrogenar a los alcoholes. Puesto que estos productos pueden prepararse de manera más económica a partir de materias primas naturales, el proceso apenas tiene ahora importancia industrial.

 

Procesos de fermentación (alcoholes de C2 a C5)4

La fermentación, que es probablemente el proceso más antiguo para la fabricación de etanol, todavía se practica a gran escala. La fermentación de butanolacetona de las materias primas de carbohidratos ya no tiene importancia. En pequeña escala, los pentanoles se recuperan de los aceites de fusel (mezcla de alcoholes alifáticos de longitud de cadena C3, C4 y C5, en proporciones que varían según la procedencia. Normalmente contiene 2-metil-1-butanol, 3-metil-1-butanol (alcohol isoamílico), 2-metil-1-propanol (alcohol isobutílico) y n-propanol, en un medio etanólico).

 

Proceso Guerbet4

En el proceso Guerbet, los alcoholes primarios saturados se dimerizan en alcoholes primarios ramificados en posición a. Normalmente, la reacción se lleva a cabo con el alcohol a reflujo en presencia de un agente de condensación alcalino y un catalizador de hidrogenación-deshidrogenación, por ejemplo:

El agua y las pequeñas cantidades de hidrógeno producidas en la reacción se eliminan en continuo. Si el calentamiento se prolonga durante mucho tiempo también se forman alcoholes primarios a-ramificados triméricos.

El rendimiento de alcoholes diméricos es de aproximadamente el 80%. Se puede aumentar mediante el reciclaje de los residuos y la adición en porciones de catalizador nuevo. El sodio metálico, así como otras sustancias, se han propuesto como agentes de condensación. Para fines industriales, se prefieren los hidróxidos de metales alcalinos.

Debido a que los alcoholes con la típica ramificación en posición a se preparan más fácilmente por otros métodos, por ejemplo, el 2-etil-1-hexanol por hidroformilación de propeno para dar butanal y posterior condensación de aldol, la reacción de Guerbet no se ha establecido como un proceso industrial a gran escala.

 

 

Conclusión

  • No todos los alcoholes son iguales, pues algunos, muy pocos, están incluidos en las Listas incluidas en el Anexo sobre sustancias químicas de la CAQ o en la Lista del Rrupo Australia, mientras que la mayoría de los alcoholes no están incluídos en Lista alguna.
  • Sin embargo la CAQ incluye la exigencia de destruir la cantidad estequiométrica de un alcohol, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.
  • A la hora de preparar un agente químico de guerra mediante un proceso de síntesis a partir de un alcohol es probable que además de la toxicidad del producto final se tenga muy en cuenta la disponibilidad y pureza del alcohol a emplear en la síntesis, sobre todo cuando lo que prima son los efectos psicológicos sobre los efectos letales de la dispersión de un agente neurotóxico.

 

 

Referencias

  1. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción», https://www.opcw.org/sites/default/files/documents/2019/02/CWC_es.pdf
  2. «Grupo Australia», https://australiagroup.net/es/listas.html
  3. «Fluorine chemistry at the millennium-fascinated by fluorine», R.E. Banks, Elsevier Science Ltd., 2000
  4. «Ullmann’s Encyclopedia of Industrial Chemistry», «Alcoholes alifáticos», 7th ed, Wiley-VCH (Editor), 2011
  5. «Química orgánica», I.L. Finar, Ed. Alhambra, 3ª ed., 1975
  6. «Química orgánica superior», L.F.Fieser & M. Fieser, Ed. Grigalbo, 1966
  7. «Química orgánica», N.L. Allinger y otros, Ed. Reverté, 1973
  8. «Reacciones de síntesis de alcoholes», https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwi71YHJtsjhAhUp8uAKHT98DVQQFjAAegQIARAC&url=https%3A%2F%2Fwww2.ulpgc.es%2Fhege%2Falmacen%2Fdownload%2F4%2F4545%2FReacciones_de_los_Alcoholes.doc&usg=AOvVaw2sYf0-92GWbgom2704PDWq
  9. «Oxo alcohols», Wikipedia, https://en.wikipedia.org/wiki/Oxo_alcohol

 

 

 

El DC, un desconocido

Hace ya varios meses en un artículo titulado «El DF, un precursor clave»1 mencionaba la importancia del metilfosfonil difluoruro (CAS 676-99-3) como componente clave en la síntesis binaria del sarín. Los fosfonildifluoruros de alquilo (metilo, etilo, n-propilo e isopropilo) constituyen la familia 1B.9 de la CAQ, y son sustancias que ya no están comercialmente disponibles2.

metilfosfonil difluoruro

CAS 676-99-3

etilfosfonil difluoruro

CAS 753-98-0

propilfosfonil difluoruro

CAS 690-14-2

isopropilfosfonil difluoruro

CAS677-42-9

Los fosfonildicloruros de alquilo, son casi unos desconocidos, pero a diferencia de los fosfonildifluoruros son sustancias comercialmente disponibles (Sigma-Aldrich, Alfa-Chemistry). Son miembros de la familia más numerosa de las Listas de la CAQ, la familia 2B.4, que incluye aquellas sustancias químicas, excepto las enumeradas en la Lista 1, que contienen un átomo de fósforo al que está enlazado un grupo metilo, etilo, n-propilo o isopropilo, pero no otros átomos de carbono2.

El DC (DC es el acrónimo del metilfosforil dicloruro (CAS 676-97-1), es un importantísimo reactivo de síntesis utilizado por ejemplo para la síntesis del sarín. Los fosfonildicloruros de alquilo (metilo, etilo, n-propilo e isopropilo) están todos ellos incluidos en la Lista 2B.42:

metilfosfonil dicloruro

CAS 676-97-1

228052

Sigma-Aldrich

etilfosfonil dicloruro

CAS 1066-50-8

275964

Sigma-Aldrich

propilfosfonil dicloruro

CAS 4708-04-7

455873

Sigma-Aldrich

isopropilfosfonil dicloruro

CAS 1498-46-0

ACM1498460

Alfa-Chemistry

 No deben confundirse los «alkylphosphonous dichlorides», esto es, las dicloroalquilfosfinas, con los «alkylphosphonyl dichlorides» o «alkylphosphonic dichlorides», esto es, los fosfonildicloruros de alquilo:

«alkylphosphonous dichlorides»

dicloroalquilfosfinas

«alkylphosphonyl dichloride

«alkylphosphonic dichlorides»

fosfonildicloruros de alquilo

 

 

Síntesis de los agentes neurotóxicos3,4

La producción de los agentes neurotóxicos requiere materiales y equipos bastante sofisticados. La mayoría de las sustancias químicas que se requieren o se forman durante el proceso de producción son corrosivas, y requieren equipos especiales de producción, resistentes a la corrosión. Con la excepción del tabún (GA), fabricado por los alemanes durante la Segunda Guerra Mundial y por los iraquíes durante la guerra entre Irán y Iraq, la producción de los agentes neurotóxicos de la familia G implica tanto pasos de cloración como de fluoración. Ambos pasos requieren equipos de producción especiales y costosos. Los reactores, desgasificadores, columnas de destilación y equipos auxiliares tienen que estar hechos de aleaciones de níquel, cromo, titanio, circonio, etc, o/y recubiertos de vidrio o de fluoropolímeros. Además dada la toxicidad de las sustancias químicas que se manejan o producen se debe prestar especial atención a los sistemas de confinamiento y ventilación3.

Existen varios métodos para la producción de algunos de los agentes neurotóxicos de la familia G, y la mayoría de estos métodos emplean en alguna etapa el metilfosfonil dicloruro (DC). EEUU en su momento, llegó a diseñar y construir plantas para la producción de DC mediante cuatro procesos diferentes, dos de los procesos para la producción y almacenamiento del sarín (GB), un tercer proceso, mejorado para minimizar los residuos, también para la producción y almacenamiento del sarín y un cuarto proceso para la producción de los componentes de los sistemas binarios. La Unión Soviética por su  parte utilizó un proceso diferente para de producción de DC, e Iraq utilizó un proceso similar al empleado por EEUU para la producción de los componentes de los sistemas binarios3.

Síntesis del sarín (Procedimiento con fluoruro sódico)4

 

El DC y el DF son los precursores más importantes de los metilfosfonofluoridatos de alquilo (sarín, soman, ciclosarin, etc. La mezcla Di-Di reacciona con alcohol isopropílico para producir sarin, mediante un procedimiento bien documentado5.

Síntesis del sarín (Procedimiento preferido) 4

Síntesis del sarín (Procedimiento modificado con fluoruro sódico) 4

Síntesis del ciclosarín (Procedimiento con fluoruro sódico) 4

Síntesis del somán (Procedimiento con fluoruro sódico) 4

El DC es un material relativamente fácil de almacenar y transportar, de modo que no es necesaria su producción en el mismo lugar en el que va a llevarse a cabo la síntesis del producto final, y como es bastante estable, es posible su almacenamiento, con muy poco deterioro, por periodos de tiempo del orden de 30 años3.

Las instalaciones para la producción de DC en cantidades significativas desde el punto de vista militar pueden tener tamaños muy diferentes, desde instalaciones muy grandes hasta instalaciones muy modestas que caben en una habitación de tamaño normal. Ya se ha indicado que los procesos para la producción de DC requieren equipos especiales resistentes a la corrosión, generalmente reactores y tanques de almacenamiento revestidos de vidrio, pero no requieren equipos tan costosos como los que se requieren para la producción de los agentes neurotóxicos en etapas posteriores3.

En el proceso actual de producción de algunos agentes neurotóxicos de la serie G, el DC parcialmente fluorado (una mezcla transitoria denominada coloquialmente Di-Di) se hace reaccionar con la parte alcohólica, y el producto final se desgasifica, y generalmente se destila. Esta es la etapa tóxica de la reacción, que requiere especial atención a los sistemas de confinamiento y ventilación, con filtración del aire, y que por las condiciones altamente corrosivas de las sustancias químicas involucradas, requiere equipos altamente resistentes y muy costosos (por ejemplo de Hastelloy C). La mayoría de los alcoholes involucrados en la producción de los agentes de la serie G tienen un empleo comercial a gran escala y no están en las Listas de la CAQ, excepto el alcohol pinacolílico, necesario para la producción del GD, que tiene un uso farmacéutico muy limitado, y se encuentra recogido en la Lista 2B.143.

Para la producción de los agentes V no se emplea el DC pero se requiere la obtención de la correspondiente dicloro alquilfosfina, familia de sustancias recogidas también por la CAQ en su Lista 2B.4.

 

 

El DC, un desconocido6,7,8,9

El DC o metilfosfonil dicloruro, también es conocido como óxido de diclorometilfosfina, dicloruro metilfosfónico o ácido metilfosfonodicloridico. Es un sólido de bajo punto de fusión y olor acre, de fórmula empírica CH3Cl2OP y estructura tetraédrica. Tiene un peso molecular de 132,93, con punto de fusión de 28-34 °C, punto de congelación de 32,74 °C8, punto de ebullición de 59-60 °C a 11mmHg de presión (165,3 °C a 760mmHg9), punto de inflamabilidad  >110 °C, densidad  1,456 g/cm3 a 25 °C8, índice de refracción n35D = 1,45698, temperatura de punto triple 32,99 °C9, y calor de fusión 18,08 J/mol9.

Cuando se calienta hasta su descomposición, emite humos tóxicos de cloruro de hidrógeno y óxido de fósforo. Sensible a la humedad, reacciona con el agua, de manera exotérmica, para producir ácido metilfosfónico (MPA, Methyl Phosphonic Acid) y ácido clorhídrico, por lo que se recomienda mantenerlo alejado de la húmedad, evitar su contacto con el agua, y almacenarlo en recipientes adecuados, herméticamente cerrados.

A efectos de comercio y transporte, su número EC es 211-634-4 y su número ONU es 9206. La guía GRE-2016 le asigna la guía de respuesta número 137 «sustancias – reactivas con el agua – corrosivas»10pero también aparece en la literatura con otros números ONU, por ejemplo UN 339011 UN 29287.

Con UN 3390 6.1/PG 111 se hace referencia a un líquido tóxico por inhalación, corrosivo, N.E.P. (materia no especificada en otra parte, del inglés, N.O.S., Not Otherwise Specified), con una concentración letal CL50 £ 1000 mL/m3 y una concentración de vapor saturado £ 10 CL50. El código 6.1 se refiere a la clase de peligro (sustancias tóxicas) y PG 1 se refiere al grupo de embalaje I (materias muy tóxicas)12.

Con UN 29287 se hace referencia a un sólido tóxico, corrosivo, orgánico, N.E.P., incluido en la clase de peligro 6.1.

Al ser una sustancia que reacciona con el agua produciendo gases tóxicos la GRE-2016 recoje las siguientes distancias de aislamiento inicial y de acción protectora10:

DERRAMES PEQUEÑOS

(De un envase pequeño o una fuga pequeña de un envase grande)

DERRAMES GRANDES

(De un envase grande o de muchos envases pequeños)

UN NOMBRE DEL MATERIAL Primero AISLAR en todas las direcciones Luego, PROTEJA a las personas en la dirección del viento, durante el Primero AISLAR en todas las direcciones Luego, PROTEJA a las personas en la dirección del viento, durante el
DÍA NOCHE DÍA NOCHE
9206 Dicloruro metilfosfónico 30 m 0,1 km 0,2 km 30 m 0,4 km 0,5 km

El DC (CH3POCl2) es un precursor del sarín y de otros metilfosfonofluoridatos de alquilo (agentes químicos de guerra, incluidos en la Lista 1A.1 de la CAQ), y está incluido en la Lista 2B.4 de la CAQ. Puede presentarse como tal o en ciertos casos puede presentarse en forma de «mezcla Di-Di» (mezcla con difluoruro de metilfosfonilo, DF)5.

 

 

Reacciones de los dicloruros alquilfosfónicos13

Los dicloruros alquilfosfónicos son precursores químicos de gran importancia ya que son materiales de partida esenciales para una amplia gama de compuestos organofosforados13.

El DC es, como ya hemos visto, precursor necesario para la síntesis del sarín, soman, ciclohexilsarin y otros metilfosfonofluoridatos de O-alquilo incluídos en la Lista 1.A1 de la CAQ, y los otros tres alquilfosfonil dicloruros (etilfosfonil, propilfosfonil e isopropilfosfonil) serían también precursores para la síntesis de los diversos etil-, propil- e isopropil-fosfonofluoridatos de O-alquilo incluídos en la Lista 1.A1 de la CAQ.

Los dicloruros alquilfosfónicos, reaccionan enérgicamente con agua para producir los correspondientes ácidos alquilfosfónicos14:

Los dicloruros alquilfosfónicos se pueden convertir en alquilfosfonocloridatos por tratamiento con un mol de alcohol y un mol de una base terciaria (por ejemplo, trietilamina). Con dos moles de alcohol y dos moles de amina terciaria se obtienen los alquilfosfonatos de dialquilo13:

Mediante esta reacción es posible preparar metilfosfonato de dietilo, libre de etilfosfonato de dietilo, a partir de etanol y dicloruro de metilfosfónico (en la reacción de Arbuzov con yoduro de metilo y fosfito de trietilo se forma también etilfosfonato de dietilo)13:

La reacción de Arbuzov, llamada así en honor a su descubridor, el químico ruso Aleksandr Erminingeldovich Arbuzov, proporciona un método muy útil para obtener compuestos organofosforados pentavalentes a partir de compuestos organofosforados trivalentes, y también para introducir el enlace fósforo-carbono. En su forma más simple, la reacción consiste en calentar un trialquil fosfito con el correspondiente yoduro de alquilo13:

En la reacción del fosfito trietílico con yoduro de metilo se forma sobre todo metilfosfonato de O,O-dietilo y algo de etilfosfonato de O,O-dietilo, consecuencia de la formación de yoduro de etilo13:

En la reacción del fosfito de O,O-dimetilo y O-etilo con yoduro de metilo el producto formado es casi exclusivamente metilfosfonato de O-etilo y O-metilo13:

 

 

Síntesis del DC

Los dicloruros alquilfosfónicos fueron preparados por primera vez en 1873 por los químicos alemanes August Wilhelm von Hofmann y August Michaelis10.

El DC puede obtenerse mediante la reacción de Michaelis-Becker a partir de dietilfosfito y posterior cloración con PCl515:

También mediante la reacción de Arbusov a partir de trimetil fosfito y posterior cloración con PCl515:

Otra posibilidad, empleada por Alemania durante la II Guerra Mundial, y también luego por Estados Unidos, es la pirólisis del dimetil fosfito y posterior cloración con PCl55,15:

La reacción de los ésteres alquilfosfónicos con el pentacloruro de fósforo no es una reacción tan simple como muestran las reacciones indicadas. Por ejemplo, al tratar el DMMP con PCl5, no solo se forma CH3POCl2 (DC), sino que también se forman otros productos como por ejemplo, (CH3O)POCl2, cuya separación resulta muy difícil16:

La cloración del ácido metilfosfónico (MPA) también produce CH3POCl2 (DC)16, de modo que otra posible ruta de síntesis podría ser la hidrólisis del DMMP para producir MPA, que por reacción con PCl5 conduciría al DC16:

Los dicloruros alquilfosfonotióicos, RPSCl2, tratados con SOCl2, a presión y a 150 °C durante varias horas, producen los correspondientes dicloruros alquilfosfónicos con un excelente rendimiento16:

Así, el dicloruro metilfosfonotióico (CAS 676-98-2) tras su calentamiento, durante 8 horas a 150 °C, y a presión, con  cloruro de tionilo, SOCl2 (CAS 7719-09-7), produce dicloruro metilfosfónico (DF) con un rendimiento prácticamente del 100%16:

También se puede obtener DC mediante oxidación de la metildiclorofosfina, por ejemplo con cloruro de sulfurilo, SO2Cl2 (CAS 7791-25-5), de acuerdo con la siguiente reacción5,17:

El DC también se puede sintetizar a partir de diversos metilfosfonatos, como el DMMP, mediante la cloración con cloruro de tionilo, SOCl2 (CAS 7719-09-7). Se pueden utilizar diversas aminas para catalizar este proceso, obteniéndose diferentes rendimientos (por ejemplo, un 94,4% con dimetilformamida y un 99,2% con N-formilpiperidina)5,18:

Los ingleses tras los interrogatorios a los científicos alemanes que habían participado en el descubrimiento de los agentes neurotóxicos, se mostraron muy interesados en la síntesis de los dicloruros alquilfosfónicos, como precursores de tales agentes. Una de las sugerencias más atractivas para su síntesis fue la posibilidad de condensar tricloruro de fósforo con un cloruro de alquilo y convertir el producto de adición resultante en el intermedio deseado, de acuerdo con la ecuación:

De este modo el DC puede obtenerse mediante la reacción del tricloruro de fósforo, con cloruro de metilo y el tricloruro de aluminio, en un proceso conocido como reacción de Kinnear-Perren (KP), en honor a los dos químicos que la descubrieron:

Este método de síntesis fue desarrollado en 1952 por A. M. Kinnear y  Edward Arthur Perren, trabajando en el Establecimiento Experimental de Defensa Química (CDEE) de Porton Down, en Salisbury, Reino Unido. Cinco documentos técnicos clasificados de Kinnear y Perren, depositados en Porton Down entre 1948 y 1950, se condensaron en un único documento que apareció en la literatura abierta un poco más tarde, en 195219. Este documento entró en impresión un año después de que una publicación similar de J. P. Clay, del Hunter College, en Nueva York, describiera el mismo proceso20. Parece que la prioridad del descubrimiento se debe a Kinnear y Perren, y que el trabajo de Clay contribuyó a desarrollar el proceso y confirmar su validez (por esta razón, algunos químicos prefieren referirse a este proceso como la reacción de Clay-Kinnear-Perren).

 

 

Referencias

  1. «El DF, un precursor clave», J.Domingo, https://cbrn.es/?p=944
  2. «Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction», https://www.opcw.org/sites/default/files/documents/cwc/cwc_en.pdf
  3. «Synthesis of Nerve Agents», http://fas.org/programs/bio/chemweapons/production.html
  4. «The Preparatory Manual of Chemical Warfare Agents-A laboratory manual», Jared Ledgard, The Paranoid Publications Group, 2003
  5. «Precursors of Nerve Chemical Warfare Agents with Industrial Relevance: Characteristics and Significance for Chemical Security», J. Quagliano, Z. Witkiewicz, E. Sliwka & S. Neffe, ChemistrySelect 2018, 3, 2703 – 2715
  6. «Handbook Of Chemical And Biological Warfare Agents», Hank Ellison
  7. «Methylphosphonic dichloride Safety Data Sheet», AlfaAesar, https://www.alfa.com/es/content/msds/british/A14790.pdf
  8. «Properties, Interaction and Esterification of Methylphosphonic Dihalides», B. M. Zeffert, P. B. Coulter, and Harvey Tannenbaum, J. Am. Chem. Soc., 1960, 82 (15), pp 3843–3847
  9. «Thermodynamic Properties of Some Methylphosphonyl Dihalides From 15 to 335°K», George T. Furukawa, Martin L. Reilly, Jeanette H. Piccirelli, and Milton Tenenbaum, Journal of research of the National Bureau of Standards-A. Physics and Chemistry, Vol. 68A, No.4, July-August 1964
  10. «Guía de respuesta en caso de emergencia», GRE2016, https://www.tc.gc.ca/media/documents/tmd-fra/SpanishERGPDF.pdfGRE2016
  11. «FDS Dicloruro metilfosfónico», Sigma Aldrich 228052 https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=ES&language=es&productNumber=228052&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F228052%3Flang%3Des
  12. «HAZMAT Class 6 Toxic and infectious substances», https://en.wikipedia.org/wiki/HAZMAT_Class_6_Toxic_and_infectious_substances
  13. «Best Synthetic Methods-Organophosphorus (V) Chemistry», «2.3 Alkylphosphonic dichlorides», C. M. Timperley, Academic Press, 2015.
  14. «The Thermochemistry of Organic Phosphorus Compounds-Part 1-Heats of Hydrolysis and Oxidation», E. Neale & L. T. D. Williams, J. Chem. Soc., 1955,0, 2485-2490
  15. «The Chemistry of Organophosphorus Pesticides-reactivity, synthesis, mode of action & toxicology», C. Fest & K.-J. Schmidt, Springer-Verlag, 1973
  16. «A New Method for the Synthesis of Phosphonic Dichlorides», L. Maier, Helvetica Chimica Acta, Vol. 56, Fasc. 1 (1973) – Nr. 42
  17. «Ullman’s Encyclopaedia of Industrial Chemicals»-«Phosphorus Compounds, Organic», J. Svara, N. Weferling, T. Hofmann, Wiley-VCH, 2008
  18. «Organic phosphorus compounds 90. A convenient, one-step synthesis of alkyl- and arylphosphonyl dichlorides», Ludwig Maier, Phosphorus, Sulfur, and Silicon and the Related Elements, 1990, 47, 3–4, pp. 465–470.
  19. «Formation of Organo-phosphorus Compounds by the Reaction of Alkyl Chlorides with Phosphorus Trichloride in the Presence of Aluminium Chloride», A. M. Kinnear & E. A. Perren, Chem. Soc. 1952, 3437-3445
  20. «A new method for the preparation of alkane phosphonyl dichlorides», John P. Clay, J. Org. Chem. 1951, 16, 892-894.

 

 

 

 

 

 

 

 

 

 

 

Se les ve el plumero

En el informe del octogésimo noveno periodo de sesiones del Consejo Ejecutivo, EC-89/3 de 22 de octubre de 2018, en el apartado l) del punto 6 relativo al «Informe del Consejo Consultivo Científico sobre los nuevos tipos de agentes neurotóxicos» se indica lo siguiente1:

  • que el Consejo ha considerado el informe del Consejo Consultivo Científico (CCC) sobre los nuevos tipos de agentes neurotóxicos («Response to the Director-General’s request to the Scientific Advisory Board to provide advice on new types of nerve agents», SAB-28/WP.1, de fecha 3 de julio de 2018), elaborado en respuesta a la petición formulada por el Director General al CCC de que preste asesoramiento sobre las sustancias químicas tóxicas que, según se ha determinado, son nuevos tipos de agentes neurotóxicos o se sospecha que lo son2.
  • que con fecha 30 de mayo la Federación de Rusia ha remitido al Director General, un documento de 329 páginas, titulado «New Types of Nerve Agents», en relación con la solicitud de información S/1621/2018.
  • que Canadá, los Estados Unidos de América y los Países Bajos han informado al Consejo de su intención de presentar al Director General una propuesta técnica conjunta de actualización del Anexo sobre sustancias químicas de la CAQ, de conformidad con el párrafo 5 de su artículo XV.

 

Actualización del Anexo sobre sustancias químicas de la Convención

El Artículo XV de la CAQ relativo a «Enmiendas», indica que cualquier Estado Parte podrá proponer enmiendas a la Convención, y también modificaciones de los Anexos. En el párrafo 4 se especifica que todas las modificaciones del Anexo sobre sustancias químicas se harán de conformidad con el párrafo 5, el cual indica que tales propuestas de modificación seguirán el siguiente procedimiento3:

  1. El texto de la propuesta de modificación será transmitido junto con la información necesaria al Director General. Cualquier Estado Parte y el Director General podrán aportar información adicional para la evaluación de la propuesta. El Director General comunicará sin demora cualquier propuesta e información de esa índole a todos los Estados Partes, al Consejo Ejecutivo y al Depositario;
  2. El Director General, 60 días después, a más tardar, de haber recibido la propuesta, la evaluará para determinar todas sus posibles consecuencias respecto de las disposiciones de la presente Convención y de su aplicación y comunicará tal información a todos los Estados Partes y al Consejo Ejecutivo;
  3. El Consejo Ejecutivo examinará la propuesta a la vista de toda la información de que disponga, incluido el hecho de si la propuesta satisface los requisitos del párrafo 4. El Consejo Ejecutivo, 90 días después, a más tardar, de haber recibido la propuesta, notificará su recomendación a todos los Estados Partes para su examen, junto con las explicaciones correspondientes. Los Estados Partes acusarán recibo de esa recomendación dentro de un plazo de diez días;
  4. Si el Consejo Ejecutivo recomienda a todos los Estados Partes que se adopte la propuesta, ésta se considerará aprobada si ningún Estado Parte objeta a ella dentro de los 90 días siguientes a haber recibido la recomendación. Si el Consejo Ejecutivo recomienda que se rechace la propuesta, ésta se considerará rechazada si ningún Estado Parte objeta al rechazo dentro de los 90 días siguientes a haber recibido la recomendación;
  5. Si una recomendación del Consejo Ejecutivo no recibe la aceptación exigida en virtud del apartado d), la Conferencia adoptará una decisión sobre la propuesta como cuestión de fondo en su próximo período de sesiones, incluido el hecho de si la propuesta satisface los requisitos del párrafo 4;
  6. El Director General notificará a todos los Estados Partes y al Depositario cualquier decisión adoptada con arreglo al presente párrafo;
  7. Las modificaciones aprobadas en virtud de este procedimiento entrarán en vigor para todos los Estados Partes 180 días después de la fecha de la notificación de su aprobación por el Director General, salvo que otra cosa recomiende el Consejo Ejecutivo o decida la Conferencia.

 

La propuesta de modificación

La mencionada propuesta técnica conjunta de actualización del Anexo sobre sustancias químicas de la Convención planteada por Canadá, los Estados Unidos de América y los Países Bajos parece que ya ha sido trasmitida al Director General, y en ella se contemplaría la inclusión en la Lista 1A de dos nuevas familias de agentes químicos, los N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos y los N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo:

N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo

Ya en 2011, en un artículo titulado «Potenciales sustancias químicas de combate» (Potenciální Bojové Chemické Látky), Emil Halámek y Zbynek Kobliha, describían, en el apartado titulado «13. El proyecto FOLIANT/NOVICHOK» (13. Sloučeniny projektu FOLIANT/NOVIČOK), las posibles estructuras de los agentes «novichok» y su posible método de síntesis4:

Además, hace un par de años, en su artículo «Fragmentation pathways and structural characterization of organophosphorus compounds related to CWC by electron ionization and electrospray ionization tandem mass spectrometry» químicos iraníes describían las rutas de fragmentación y la caracterización estructural de ciertos compuestos organofosforados relacionados con la Convención de Armas Químicas (CAQ) y también describían su método de síntesis5:

En la actualidad, los compuestos descritos en estos artículos y que quieren incluirse en estas dos nuevas familias de Lista 1A, o no están incluidos en lista alguna, o pertenecen a la Lista 2, y sus precursores pertenecen, bien a la Lista 1B.9, bien a la Lista 2B.14, o no están incluidos en Lista alguna.

En la tabla siguiente se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov6 y los compuestos descritos por Hosseini, así como su situación actual y futura dentro de las Listas de la CAQ.

  Listas actuales Listas futuras
Mirzayanov

A-230 Lista 2B.4

A-230 Lista 1A.*

Mirzayanov

A-242 Lista 2B.4

A-242 Lista 2B.4

Hosseini

Lista 2B.4 CAS 2074608-43-6

Lista 2B.4 CAS 2074608-43-6

Mirzayanov

A-232 No listado

A-232 Lista 1A.**

Mirzayanov

A-234 No listado

A-234 Lista 1A.**

Mirzayanov

A-262 No listado

A-262 No listado

Hosseini

Lista 2B.4 CAS 2096401-97-5

Lista 2B.4 CAS 2096401-97-5

Hosseini

Lista 2B.4 CAS 2096401-99-7

Lista 2B.4 CAS 2096401-99-7

Hosseini

Lista 2B.4 CAS 2096402-01-4

Lista 2B.4 CAS 2096402-01-4

Hosseini

Lista 2B.4 CAS 2096402-03-6

Lista 2B.4 CAS 2096402-03-6

Hosseini

Lista 2B.4 CAS 2096402-05-8

Lista 2B.4 CAS 2096402-05-8

Como puede verse, algunos agentes «novichok» descritos por Mirzayanov ahora pertenecientes a la Lista 2 o no incluidos en Lista alguna, de aprobarse la propuesta, pasarían a pertenecer a la Lista 1, por estar incluidos en alguna de las dos nuevas familias de la Lista 1. Sin embargo algunos agentes «novichok» descritos por Mirzayanov quedarían incluidos en la Lista 2, o no quedarían incluidos en Lista alguna.

En cambio todos los compuestos descritos por Hosseini que pertenecen ahora a la Lista 2 seguirían todos perteneciendo a la Lista 2.

Parece que el único interés es incluir tan solo los agentes A-230, A-232 y A234.

 

Propuesta de actualización sesgada y escasa

Teniendo presente que la CAQ indica claramente que está totalmente prohibido el empleo de cualquier sustancia química como método de guerra, y que las Listas recogidas en el Anexo no suponen una definición de agentes químicos de guerra, la propuesta busca recoger tan sólo algunos de los famosos agentes «novichock», sobre todo el agente A-234, por su utilización, presuntamente por parte de Rusia, en el incidente de Salisbury. Los agentes «novichock» A-230 y A-234 ya fueron recogidos en la base de datos de espectros de masas del NIST98, como aportación del CBDCOM/ERDEC, Edgewood, Maryland, USA:

A-230 A-234

Está propuesta está sesgada pues no recoge todos los agentes «novichock» citados por Mirzayanov, ni otras familias de sustancias químicas organofosforadas, inhibidoras de la acetilcolinesterasa y extremadamente tóxicas, como por ejemplo, los agentes de volatilidad intermedia (IVAs, Intermediate Volatility Agents).

También es una propuesta escasa pues sólo propone la inclusión en Lista 1 de las dos familias de sustancias químicas mencionadas, y no contempla la inclusión de sus precursores.

Empleando los procedimientos de microsíntesis mencionados por Halámek y por Hosseini se requeriría o bien el correspondiente ácido alquilfosfonocianidofluoridico (Lista 2B.4) y la correspondiente N,N-dialquilalcanimidamina, o bien el correspondiente alquilfosfonildifluoruro (Lista 1B.9) y la correspondiente N,N-dialquilalcanimidamina. Sin embargo las N,N-dialquilalcanimidamina no están incluidas en Lista alguna:

Por analogía con otras sustancias químicas o familias de sustancias químicas, precursoras de agentes químicos de la Lista 1, que vienen recogidas en las Listas 1B y 2B, las N,N-dialquilalcanimidaminas también deberían estar recogidas en la Lista 2B.

Situación actual (No listada) Situación lógica (Lista 2B)

 

Referencias

  1. «Report of the eighty-ninth session of the Executive Council», EC-89/3, de fecha 22 octubre de 2018, https://www.opcw.org/sites/default/files/documents/2018/10/ec8903%28e%29.pdf
  2. «Request for information from States Parties on new types of nerve agents», S/1621/2018, de fecha 2 de mayo de 2018, https://www.opcw.org/sites/default/files/documents/S_series/2018/en/s-1621-2018_e_.pdf).
  3. «Enmiendas», Artículo XV de la CAQ, https://www.opcw.org/es/convencion-sobre-las-armas-quimicas/articulos/articulo-xv-enmiendas
  4. «Potenciální Bojové Chemické Látky», Emil Halámek & Zbynek Kobliha, Chem. Listy 105, 323-333 (2011), http://www.chemicke-listy.cz/docs/full/2011_05_323-333.pdf
  5. «Fragmentation pathways and structural characterization of organophosphorus compounds related to CWC by electron ionization and electrospray ionization tandem mass spectrometry», S. E. Hosseini, H. Saeidian, A. Amozadeha, M. T. Naserib & M. Babrib, Rapid Commun Mass Spectrom. 2016 Dec 30;30(24):2585-2593.
  6. “State Secrets. An Insider’s Chronicle of the Russian Chemical Weapons Program”, Vil S. Mirzayanov, Outskirts Press, 2008

La doctrina química «Pá Ná»

A las cinco de la tarde del día 22 de abril de 1915, en Ypres, las tropas alemanas  liberaban del orden de 168 toneladas de cloro contenidas en unas 5730 bombonas metálicas (unas 1600 cargadas con 40 kg de cloro cada una, y las otras 4130 cargadas con 20 kg de cloro). El cloro liberado, formó una inmensa nube amarillo verdosa y el viento arrastró estos vapores, más densos que el aire, hacia las trincheras donde se encontraban las fuerzas argelinas y francesas. Las tropas, sorprendidas y sin medios de protección, trataban de escapar corriendo hacia su retaguardia, en la misma dirección que los vapores de cloro, aumentado con ello su exposición a los mismos. Las tropas alemanas que no esperaban semejante efecto, no estaban preparadas para la explotación del éxito y desaprovecharon el factor sorpresa, que ya no se repetiría en posteriores ocasiones, pues las tropas aliadas estarían preparadas con pañuelos mojados con agua u orina, con los que se tapaban la nariz y la boca1.

A la vista de estos hechos parece claro que las armas químicas son especialmente eficaces empleadas por sorpresa, en grandes cantidades (para conseguir una elevada concentración), contra tropas sin protección (que no se encuentren dispersas).

Para conseguir el efecto tóxico deseado, ya sea incapacitante o letal, es necesario que las víctimas inhalen o reciban la dosis apropiada. En el caso de inhalación de una sustancia química tóxica la dosis letal en función del tiempo, por ejemplo, LCt50 es la dosis letal resultado de la inhalación de una determinada concentración durante un determinado tiempo, que produciría la muerte al 50 por ciento de la población expuesta. Cuanto más pequeño sea el valor de la LCt50 menor concentración o menor tiempo de exposición se requiere para conseguir los mismos efectos letales.

Por ejemplo, si la LCt50 para el sarín fuese 100 mg×min/m3, en un ambiente con una concentración de sarín de 1000 mg/m3, bastarían 6 segundos de inhalación para alcanzar el valor de la dosis letal 50 en función del tiempo. En cambio, para el cloro, con una la LCt50 de 10 000 mg×min/m3, sería necesario un tiempo de inhalación de 10 minutos (600 segundos). Aplicando el mismo razonamiento, la inhalación durante un minuto en un entorno contaminado, requiere una concentración de sarín de tan solo 100 mg/m3, para alcanzar la dosis letal 50 en función del tiempo, mientras que se requiere una concentración de 10 000 mg/m3 de cloro para alcanzar la dosis letal 50 correspondiente.

En campo abierto, las condiciones meteorológicas influyen mucho en el movimiento y dispersión de la nube tóxica, de ahí que se requieran grandes cantidades del agente químico de guerra, y que el objetivo no esté disperso, para conseguir una concentración suficientemente alta en la zona del objetivo, que inhalada el tiempo conveniente permita se alcance la dosis letal.

 

Guerra química y agentes químicos de guerra

La guerra química se define como el empleo de agentes químicos para matar, herir, o incapacitar durante un periodo de tiempo significativo, hombres y animales, y prohibir o dificultar el uso de áreas, instalaciones o material, o defenderse contra este empleo2.

También se define agente químico como una sustancia química que se pretende usar en operaciones militares para matar, herir seriamente, o incapacitar, por medio de sus efectos fisiológicos. El término excluye los agentes antidisturbios cuando se emplean el mantenimiento del orden, los herbicidas, los fumígenos y los incendiarios2.

La Convención sobre las Armas Químicas (CAQ) en su artículo II, «Definiciones y criterios», entiende por «armas químicas», conjunta o separadamente3:

  • Las sustancias químicas tóxicas o sus precursores, salvo cuando se destinen a fines no prohibidos por la presente Convención, siempre que los tipos y cantidades de que se trate sean compatibles con esos fines;
  • Las municiones o dispositivos destinados de modo expreso a causar la muerte o lesiones mediante las propiedades tóxicas de las sustancias especificadas en el apartado a) que libere el empleo de esas municiones o dispositivos; o
  • Cualquier equipo destinado de modo expreso a ser utilizado directamente en relación con el empleo de las municiones o dispositivos especificados en el apartado anterior.

Y entiende por «sustancia química tóxica»: «Toda sustancia química que, por su acción química sobre los procesos vitales, pueda causar la muerte, la incapacidad temporal o lesiones permanentes a seres humanos o animales.  Quedan incluidas todas las sustancias químicas de esa clase, cualquiera que sea su origen o método de producción, y ya sea que se produzcan en instalaciones, como municiones o de otro modo»3. A los efectos de la aplicación de la CAQ, las sustancias químicas tóxicas respecto de las que se ha previsto la aplicación de medidas de verificación están enumeradas en Listas incluidas en un Anexo B sobre sustancias químicas.

En caso de una liberación intencionada las sustancias químicas tóxicas penetrarían en el organismo básicamente por dos vías:

  • Por vía inhalatoria, en forma de vapor, gas o aerosol, la sustancia química tóxica ejercería su acción a través del sistema respiratorio con efectos rápidos y peligrosos.
  • Por vía cutánea, en forma líquida, gaseosa o aerosol, la sustancia química tóxica ejercería su acción a través de la piel, heridas y ojos.

Aunque cada sustancia química, en función de sus propiedades, ejerce su acción tóxica preferentemente por una de estas dos vías, dependiendo fundamentalmente de las condiciones meteorológicas existentes, podrían hacerlo por ambas vías.

Las sustancias químicas de bajo peso molecular y/o bajo punto de ebullición tienen una volatilidad elevada, y una baja persistencia, y son consideradas «agentes no-persistentes», que actúan fundamentalmente por vía inhalatoria, durante un periodo de tiempo relativamente breve. Por el contrario, las sustancias químicas de alto peso molecular y/o alto punto de ebullición tienen una volatilidad reducida, y una alta persistencia, son consideradas «agentes persistentes», que actúan fundamentalmente por vía cutánea, durante un periodo de tiempo bastante prolongado, contaminando personal, medios y terreno.

Con el empleo de agentes químicos de guerra, se busca, además de matar, herir, o incapacitar al enemigo, obligar a éste a emplear medios de protección, disminuyendo con ello sus capacidades operativas. Para su empleo en operaciones militares los agentes químicos se clasifican en:

  • Agentes químicos no persistentes, que actúan fundamentalmente por inhalación durante un breve período de tiempo, que tienen como objetivo causar bajas y abrir una brecha en las posiciones enemigas, de modo que transcurrido un cierto tiempo, esa zona pueda ser utilizada por las tropas propias sin necesidad de utilizar equipo de protección, y
  • Agentes químicos persistentes, que actúan fundamentalmente por contacto, cuyo objetivo es impedir o limitar la utilización del material y/o el terreno al contaminar durante un largo período de tiempo los mismos.

Durante la Primera Guerra Mundial los alemanes contemplaban en su doctrina el empleo de proyectiles de iperita y de proyectiles «rompe-máscaras», seguidos de proyectiles de fosgeno, en una táctica desarrollada por el teniente coronel Georg Bruchmüller, conocida como «cruces multicolores» (Buntkreuz), o «disparos multicolores» (Buntshiessen). La doctrina de empleo de armas químicas de los británicos era algo distinta, pues consistía en realizar ataque químicos sobre unidades seleccionadas, con vistas a debilitarlas y desmoralizarlas, a través de un hostigamiento continuado, que producía un efecto devastador sobre la moral de las tropas1,4,5.

En los años treinta, el Servicio de Guerra Química de EE. UU. incluía en su doctrina el empleo de aeronaves que volasen a baja altura y a baja velocidad, para el rociado con iperita que permitiese contaminar rápidamente grandes extensiones velocidad. Se comprobó la necesidad de conseguir gotas de un cierto tamaño (no muy pequeño) para que el viento no las arrastrase y disminuir además su evaporación. La solución fue «espesar» la iperita (y otros agentes), con algún espesante, como por ejemplo, poliestireno y metacrilato de metilo, para aumentar el tamaño y viscosidad de las gotas1,6.

Los japoneses desarrollaron una doctrina de empleo de agentes persistentes, iperita y lewisita, que consistía en lanzarlos por detrás de las líneas de las tropas enemigas cuando éstas iniciaban su retirada, con el fin de ralentizarla1,7.

En 1984, durante la guerra Irán-Iraq, los iraquíes siguiendo su doctrina de empleo de armas químicas, contaminaron con iperita las rutas de suministro de las unidades a vanguardia, cortando así su apoyo logístico. Más tarde ante la ofensiva iraní recurrieron al empleo de tabún, un agente no-persistente, para abrir brechas y recuperar objetivos1,8,9.

Atendiendo a sus efectos fisiológicos los agentes químicos de guerra se pueden clasificar en:

  • Agentes sofocantes o neumotóxicos
  • Agentes tóxicos sanguíneos o cianogénicos
  • Agentes vesicantes o dermotóxicos
  • Agentes neurotóxicos o nerviosos, que se subdividen en agentes de la serie G (básicamente, no-persistentes) y agentes de la serie V (persistentes)
  • Agentes incapacitantes

Todos los agentes químicos de guerra, sean del tipo que sean, presentan además efectos psicológicos muy importantes. El miedo y el horror que inspiran alteran la moral y el estado anímico de las personas (personal militar y civil) provocando incluso pánico.

El empleo de armas químicas está considerado hoy como una flagrante violación de la legalidad internacional y un crimen contra la humanidad, de modo que a nadie en su sano juicio, ni siquiera en la situación más adversa, se le ocurriría emplear armas químicas, y menos contra personal civil, especialmente niños.

 

La CAQ

Después del empleo de armas químicas durante la Primera Guerra Mundial, y ante la opinión pública favorable a la prohibición de las armas químicas, el 17 de junio de 1925, treinta y ocho naciones firmaron el Protocolo de Ginebra de 1925, denominado «Protocolo relativo a la prohibición del empleo en la guerra de gases asfixiantes, tóxicos o similares y de medios bacteriológicos», que prohibía «el empleo en la guerra de gases asfixiantes, tóxicos o similares. Algunos países que ratificaron el Protocolo lo hicieron con la reserva de que la prohibición desaparecería en el momento en que el enemigo o sus aliados no respetasen el Protocolo. Además el Protocolo prohibía el uso de armas químicas y armas biológicas, pero no decía nada acerca de su producción, su almacenamiento o su transferencia1.

Tras varios años de negociaciones, en la Conferencia de Desarme, en Ginebra, finalizó la redacción del texto de la Convención sobre las Armas Químicas (su título completo es Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas y sobre su destrucción), que se abrió a la firma el 13 de enero de 1993, en París, y entró en vigor el 29 de abril de 1997, 180 días después de haber sido depositado el 65º instrumento de ratificación (Hungría).

Con el fin de asegurarse de que se toman las medidas necesarias para el cumplimiento de esos ambiciosos objetivos, la CAQ prevé un complejo régimen de verificación. Con sus actividades de inspección in situ y de seguimiento de los datos, el sistema permite verificar que las actividades realizadas en los Estados Partes son coherentes con los objetivos de la CAQ y con el contenido de las declaraciones presentadas a la Organización para la Prohibición de las Armas Químicas (OPAQ). Las inspecciones son cruciales para la aplicación de la CAQ, pudiéndose distinguir tres tipos de inspección: las inspecciones ordinarias de las instalaciones relacionadas con las armas químicas y de las instalaciones de industria química, que emplean ciertas sustancias químicas «de doble uso» (es decir, que pueden ser empleadas para fines tanto pacíficos como prohibidos); las inspecciones por denuncia, notificadas con muy poca antelación, que pueden ser efectuadas en cualquier lugar de cualquier Estado Parte que revista preocupación en relación con el no cumplimiento para otro Estado Parte; y las investigaciones sobre el presunto empleo de armas químicas. Todo lo referente a las inspecciones está detallado en el anexo sobre la aplicación y la verificación (anexo de verificación) que muchas veces parece ignorarse3,10.

 

Las armas químicas en Siria

Recordemos que el 14 de septiembre de 2013 el Secretario General de la ONU comunicaba haber recibido de Siria, conforme estipula el artículo XXIII de la CAQ, su solicitud de adhesión a la Convención de Armas Químicas (CAQ) y que también ese día, EE.UU. y Rusia hacían público un acuerdo para destruir el arsenal químico sirio y evitar así una acción de castigo solicitada insistentemente tras los incidentes de Ghouta, el 21 de agosto de 2013. En este acuerdo, EE.UU. y Rusia se comprometían a preparar y remitir al Consejo Ejecutivo de la OPAQ un borrador con “procedimientos especiales” para la destrucción rápida del programa sirio de armas químicas y su rigurosa verificación. Este acuerdo incluía la destrucción de toda la capacidad química siria antes de la primera mitad del año 2014, es decir, antes del 30 de junio de 201411.

El 14 de octubre de 2013 la Republica Árabe Siria pasó a ser el Estado Parte número 190 en la Convención para la prohibición de las Armas Químicas (CAQ). En consecuencia, no más tarde de transcurridos treinta días, el 24 de octubre de 2013, presentaba formalmente a la OPAQ su declaración inicial, de carácter confidencial, acerca de su programa de armas químicas, y también un plan para la destrucción de las mismas, en el que indicaba que la única forma de destruir su arsenal químico de manera rápida y segura conforme a las condiciones recogidas por la CAQ era realizando la misma fuera de su territorio11.

El 15 de noviembre de 2013 el Consejo Ejecutivo de la OPAQ aprobaba el plan detallado de destrucción para eliminar el arsenal sirio de armas químicas de la «manera más rápida y segura», que tenía como objetivo más importante completar la destrucción antes de la primera mitad de 2014, según lo que había establecido en la decisión del Consejo Ejecutivo de la OPAQ y en la resolución del Consejo de Seguridad de la ONU 2118 (2013), ambas de 27 de septiembre de 201311.

Las primeras noticias sobre el arsenal químico sirio hablaban de unas 1300 toneladas de iperita, sarín y VX, sin detallar más, con un texto ambiguo que daba a entender que las 1300 toneladas se referían a agentes químicos de guerra (sustancias de lista 1A de la CAQ).

Hoy sabemos que el arsenal declarado de sustancias químicas se reducía a 20,25 toneladas de iperita, 540 toneladas de metilfosfonildifluoruro (DF), precursor de Lista 1, 290 toneladas de sustancias de Lista 2, 110 toneladas de sustancias de Lista 3, 398 toneladas de sustancias no incluidas en las Listas de la OPAQ, algunas ni siquiera incluidas en el Grupo Australia, y una cantidad no detallada de alcohol isopropílico, que aunque está incluido en lista alguna forma parte del sistema binario del sarín. No declaró poseer ni sarín, ni VX11.

Después de algo más de dos años, el lunes 4 de enero de 2016, se anunciaba que había finalizado la destrucción de todas las sustancias químicas declaradas por la República Árabe Siria, retiradas de su territorio en 2014. A pesar de ello sus problemas con las armas químicas están aún lejos de concluir11.

Para el gobierno sirio, las armas químicas, lejos de ser una solución a sus problemas, han resultado ser uno de sus principales quebraderos de cabeza. Desde que se inició el conflicto sirio en 2011, se han realizado por diferentes entidades y países, de uno y otro bando, numerosas denuncias acerca del empleo de armas químicas, sarín y cloro fundamentalmente, y alguna vez iperita12,13.

Puesto que Siria no había ratificado aún la CAQ, las primeras investigaciones sobre algunas de las múltiples denuncias sobre el empleo de armas químicas se llevaron a cabo mediante el Mecanismo del Secretario General (MSG) para la investigación del supuesto empleo de armas químicas y biológicas, puesto en marcha por el Secretario General de la ONU, Ban Ki-moon, el 21 de marzo de 2013, tras la denuncia del Gobierno sirio acerca del empleo de armas químicas en la localidad de Khan Al Asal. A la investigación sobre el incidente de Kahn Al Asal ocurrido el 19 de marzo de 2013, se acabaron incorporando otros incidentes: el de Sheik Maqsood, ocurrido el 13 de abril, el de Saraqeb, ocurrido el 29 de abril, el de Ghouta, ocurrido el 21 de agosto 2013, el de Bahhariyeh, ocurrido el 22 de agosto, el de Jobar, ocurrido el 24 de agosto, y el de Ashrafiah Sahnaya, ocurrido el 25 de agosto14.

El 13 de diciembre se presentaba el informe A/68/663–S/2013/735 que confirmaba el empleo armas químicas (sarín), no solo en la zona de Ghouta (Damasco) el 21 de agosto de 2013 como se concluyó en el documento A/67/997-S/2013/553, sino también en menor escala en Jobar, el 24 de agosto de 2013, Saraqueb, el 29 de abril de 2013, Ashrafiah Sahnaya, el 25 de agosto de 2013 y Khan al-Asal, el 19 de marzo de 2013. El informe no aportaba información sobre quién era el responsable de los hechos15,16.

El 29 de abril de 2014, el Director General  de la Organización para la Prohibición de Armas Químicas (OPAQ) anunció la creación de una Misión para la Determinación de los Hechos en relación con el supuesto empleo de armas químicas en Siria (Fact-Finding Mission)17.

La OPAQ dio a conocer el primer informe sobre la misión para la determinación de los hechos en relación con el supuesto empleo de cloro en la República Árabe Siria, el 16 de junio de 2014 (S/1191/2014) y el 10 de septiembre de 2014, dio a conocer el segundo informe  (S/1212/2014), que concluía que los testimonios aportados por 37 testigos constituían una «confirmación convincente» (compelling confirmation), de que se había empleado, sistemática y repetidamente, una sustancia química tóxica como método de guerra, y que, con un «alto grado de confianza» (high degree of confidence), esa sustancia química tóxica era cloro. El informe NO indicaba quién había podido ser el autor de los hechos. El tercer informe, fechado el 18 de diciembre de 2014 (S/1230/2014) no decía nada nuevo que no dijeran los anteriores informes. Simplemente proporcionaba una descripción más detallada sobre la labor realizada y el proceso que condujo a los resultados presentados en su segundo informe. El documento concluía de nuevo que, con un «alto grado de confianza», se había empleado cloro como método de guerra, y recalcaba que su trabajo, consistente con su mandato, no incluía la cuestión de la atribución de responsabilidad por la presunta utilización18.

Dado que la Misión de Determinación de los Hechos de la OPAQ no tenía el mandato de llegar a una conclusión sobre la atribución de responsabilidad por el empleo de armas químicas, el consejo de seguridad de Naciones Unidas, aprobaba en su 7501ª sesión, celebrada el 7 de agosto de 2015, Resolución 2235 (2015), la creación del Mecanismo Conjunto de Investigación de la OPAQ y las Naciones Unidas (JIM, Joint Investigative Mechanism) para identificar en la mayor medida posible a las personas, entidades, grupos o gobiernos que hayan empleado sustancias químicas como arma, incluido el cloro o cualquier otra sustancia química tóxica, en la República Árabe Siria o que hayan organizado o patrocinado su empleo o participado en él de cualquier otro modo19. El 17 de noviembre de 2016  el Consejo de Seguridad en Resolución 2319 (2016)  renovaba el mandato del  JIM por otro año, pero el 24 de octubre de 2017, primero,  y luego el 17 de noviembre, rechazaba las propuestas para prorrogar su mandato por otro año más.

Durante su mandato el Mecanismo de Investigación Conjunto de la Organización para la Prohibición de Armas Químicas (OPAQ) y de la ONU (JIM) presentó siete informes, y concluyó que, en cuatro ocasiones, desde 2015 a 2107, el Gobierno sirio era responsable de tres ataques con cloro y uno con sarín.  Esto indicaría que o bien en 2013 el Gobierno sirio no habría declarado la totalidad de su programa químico o bien lo habría conservado una pequeña capacidad de producción de agentes neurotóxicos (sarín) y habría vuelto a utilizar cloro, una sustancia química industrial tóxica,  como arma química.

 

Terrorismo químico

La CAQ está muy cerca de conseguir la destrucción de la totalidad de las armas químicas declaradas, pues solo le queda la destrucción de dos instalaciones sirias, en vías de destrucción y la finalización de la destrucción de las armas química de Estados Unidos prevista para el año 2023.

Además tan sólo quedan cuatro estados por ratificar la CAQ y conseguir así la membresía total. Estos cuatro estados son Corea del Norte, Egipto, Israel (la ha firmado pero no la ha ratificado) y Sudán del Sur.

A la vista de los acontecimientos más recientes, una de las mayores amenazas para la CAQ es el empleo terrorista de las sustancias químicas tóxicas ya sea para cometer asesinatos más o menos selectivos, o para sembrar el pánico y el terror entre la población civil.

Los supuestos agentes «novichok» son según dicen del orden de 5-7 veces más tóxicos que el VX, es decir, utilizados de manera similar al VX, se requerirían cantidades del orden de 5-7 menores para producir la misma dosis letal. Para facilitar los cálculos supongamos que la dosis letal LD50 para el VX es de 10 µg/Kg (vía dérmica), y supongamos que nuestras personas tienen un peso de 100 Kg; entonces la LD50 sería de 1mg/persona. Supongamos, para facilitar los cálculos, que la densidad del VX fuese 1 mg/mL (la densidad real es 1,008 mg/mL a 20°C), entonces 1 mg de VX sería equivalente a 1 µL de VX, es decir, la LD50 sería de 1 µL/persona (El 50% de las personas de 100 Kg de peso que entrasen en contacto con 1 µL de VX fallecerían). Observe que desde el punto de vista clínico se considera que 20 gotas equivalen a 1 mL, es decir que 1 gota sería del orden de 50 µL, y que la LD50 calculada para el VX es de tan solo 1 µL, algo así como la cabeza de un alfiler.

Si en vez de VX empleásemos un supuesto agente «novichok», la cantidad requerida sería mucho menor de 1 µL, y de emplear esa cantidad la letalidad obtenida sería mucho mayor.

En cuanto a cómo hacer llegar la dosis a nuestros individuos de modo que los daños colaterales fueran mínimos, existen numerosas posibilidades, función sobre todo de su toxicidad y persistencia.

Los últimos casos de asesinatos selectivos con armas químicas, el asesinato, en el aeropuerto de Kuala Lumpur (Malasia), de Kim Jong-un, en 2017, empleando VX y el intento de asesinato del ex espía ruso Sergei Skripal y su hija Yulia, en Salisbury (Reino Unido), en 2018, empleando un agente «novichok», demuestran que, en este tipo de acciones, el empleo de agentes químicos no es más efectivo que el empleo de armas de fuego, pero eso sí, provocan el caos a nivel organizativo y político.

 

Doctrina Pá Ná

A la vista del empleo de armas químicas durante el conflicto sirio, antes y después de la adhesión de la República Árabe de Siria a la Convención, ya sea con agentes químicos de guerra, sarín e iperita, o con sustancias químicas industriales tóxicas, cloro, parece que la doctrina de guerra química siria, nada tiene que ver con la de los alemanes durante la Primera Guerra Mundial, pareciéndose algo a la doctrina inglesa durante ese mismo conflicto, que se enfocaba sobre todo en el aspecto psicológico sobre los combatientes. Esta doctrina podríamos denominarla «Doctrina Pá Ná», pues los agentes químicos lejos de afectar a los combatientes enemigos, afectan a civiles, y sobre todo a niños, con lo que en vez de conseguir algún tipo de ventaja o beneficio militar lo que consigue es la repulsa e indignación del resto del mundo.

Los hechos corroboran, desde el punto de vista táctico, el supuesto empleo «pá ná»  de armas químicas por parte del Gobierno sirio.

Después de múltiples denuncias sobre incidentes químicos, el Gobierno sirio ratifica la Convención a finales del año 2013, y evita una intervención militar internacional de castigo, que era inminente.

La guerra continua y los incidentes químicos siguen produciéndose, a pesar de que a principios de 2016 se diera por finalizada la destrucción de todas las sustancias químicas declaradas en su arsenal químico.

Cuando parece que el curso de la guerra es favorable al gobierno sirio, tiene lugar, el 4 de abril de 2017, el incidente de Khan Shaykhun, un ataque con armas químicas (con sarín o con una sustancia parecida al sarín, según el informe de la Misión de Determinación de los Hechos de la OPAQ), que causó al menos 86 muertos, todos ellos civiles, según el Observatorio Sirio de Derechos Humanos (OSDH)20.

Según Estados Unidos y los grupos armados opositores al gobierno sirio, dos aviones del gobierno bombardearon la ciudad en su totalidad, especialmente los centros de concentración de civiles como clínicas y hospitales. Las Autoridades sirias y Rusia alegaron que se había bombardeado un almacén donde los rebeldes, que controlaban Khan Shaykhun, guardaban armas químicas. Numerosos líderes internacionales, entre ellos el presidente estadounidense, Donald Trump, acusan al Gobierno sirio de los hechos, y antes de que se lleve a cabo investigación alguna, Donald Trump ordena el bombardeo, el 7 de abril de 2017, de la base de Sharyat mediante el lanzamiento desde buques estadounidenses de 59 misiles de crucero Tomahawk. Antes del bombardeo advierte a Rusia del ataque, y esto permite retirar algunos aviones de la zona, pero aún así, destruyen de nueve a veinte aviones, y fallecen casi una decena de soldados sirios.

No contentos con el éxito conseguido con el ataque químico en Khan Shaykhun, el 7 de abril de 2018 tiene lugar otro incidente químico, supuestamente con una mezcla de cloro y sarín, esta vez, en Douma. El ataque dejó como saldo 50 personas muertas y alrededor de 500 heridos. Según la Organización de Voluntarios de la Defensa Civil Siria (pro-oposición siria) el ataque lo realizó el gobierno del presidente Bashar al-Asad para eliminar a los remanentes rebeldes, y lograr la conquista definitiva de Ghouta oriental. Sin esperar a investigación alguna, el 14 de abril de 2018, Estados Unidos, Reino Unido, y Francia bombardean objetivos que se suponen instalaciones de armas químicas del gobierno sirio.

El 4 de mayo de 2018, la OPAQ informa que el despliegue inicial de la Misión de Investigación de los Hechos (FFM) en Douma, se ha completado y que las muestras tomadas han sido remitidas al Laboratorio de la OPAQ, donde una vez divididas serán enviadas a los Laboratorios acreditados para su análisis, que se estima tardarán por lo menos tres ó cuatro semanas. Hasta la fecha nada se sabe de estos análisis, ni del informe correspondiente de la Misión de Investigación de los Hechos21.

 

Referencias:

  1. «Armas químicas: la ciencia en manos del mal», René Pita, Plaza y Valdés Editores, 2008
  2. «NATO glossary of terms and definitions (english and french)», AAP-06, Edition 2015, https://www.unap.ro/ro/news/aap6.pdf
  3. «Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas, y sobre su destrucción», https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf
  4. «Chemical Warfare in World War I: The American Experience, 1917-1918», Charles E. Heller, Combat Studies Institute, Leavenworth Papers, 1984
  5. «Steel Wind: Colonel Georg Bruchmuller and the Birth of Modern Artillery», David T. Zabecki, Praeger, 1994
  6. «The Chemical Warfare Service: from laboratory to field», L. P. Brophy, W. D. Miles & R. C. Cochrane, Center of Military History, United States Army, 1959.
  7. «The problem of chemical and biological warfare, Volume 2: CB weapons today», Stockholm International PEACE Research Institute (SIPRI), Estocolmo,1973
  8. «Chemical Weapons and the Iran-Iraq War:A Case Study in Noncompliance», Javed Ali, The Nonproliferation Review, 2001, vol. 8, n.º 1
  9. «A poisonous affair: America, Iraq, and the gassing of Halabja», Joost R. Hiltermann, Cambridge University Press, 2007.
  10. «Tres tipos de inspecciones», Ficha descriptiva nº 5, OPAQ, https://www.opcw.org/fileadmin/OPCW/Fact_Sheets/Spanish/Fact_Sheet_5_-_Inspections.pdf
  11. «¿Completada la destrucción de las armas químicas sirias?», J. Domingo, https://cbrn.es/?p=433
  12. «Use of chemical weapons in the Syrian Civil War», Wikipedia, https://en.wikipedia.org/wiki/Use_of_chemical_weapons_in_the_Syrian_Civil_War
  13. «Timeline of Syrian Chemical Weapons Activity, 2012-2018», The Arms Control Association, https://www.armscontrol.org/factsheets/Timeline-of-Syrian-Chemical-Weapons-Activity
  14. «United Nations mission to investigate allegations of the use of chemical weapons in the Syrian Arab Republic» https://unoda-web.s3.amazonaws.com/wp-content/uploads/2015/01/UN-Mission-Syrian-Chemical-Weapons-Fact-Sheet-Jan2015.pdf
  15. «Informe de la Misión de las Naciones Unidas para Investigar las Denuncias de Empleo de Armas Químicas en la República Árabe Siria sobre el presunto empleo de armas químicas en la zona de Ghouta (Damasco) el 21 de agosto de 2013», Naciones Unidas, A/67/997–S/2013/553, http://www.un.org/es/comun/docs/?symbol=S/2013/553
  16. «Informe final de la Misión de las Naciones Unidas para Investigar las Denuncias de Empleo de Armas Químicas en la República Árabe Siria», Naciones Unidas, A/68/663–S/2013/735, http://www.iri.edu.ar/images/Documentos/Boletines_IRI/139/ONU_informe_final_sobre_siria.pdf
  17. «Decisión (PESC) 2017/2303 del Consejo, de 12 de diciembre de 2017, de apoyo a la aplicación continua de la Resolución 2118 (2013) del Consejo de Seguridad de las Naciones Unidas y la Decisión EC-M-33/DEC.1 del Consejo Ejecutivo de la Organización para la Prohibición de las Armas Químicas sobre la destrucción de las armas químicas sirias, en el marco de la aplicación de la Estrategia de la UE contra la proliferación de armas de destrucción masiva», https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32017D2303&from=EN
  18. «Sobre el cloro como método de guerra», J.Domingo, https://cbrn.es/?p=10
  19. «Resolución 2235 (2015) acerca de la creación de un mecanismo conjunto de investigación de la OPAQ y las Naciones Unidas», Unidas, S/RES/2235 (2015), http://undocs.org/es/S/RES/2235(2015)
  20. S/1510/2017 de fecha 29 de junio de 2017, «REPORT OF THE OPCW FACT-FINDING MISSION IN SYRIA REGARDING AN ALLEGED INCIDENT IN KHAN SHAYKHUN, SYRIAN ARAB REPUBLIC  APRIL 2017», https://www.opcw.org/fileadmin/OPCW/Fact_Finding_Mission/s-1510-2017_e_.pdf
  21. «OPCW Spokesperson’s Statement on Fact-Finding Mission Deployment to Douma», OPCW, https://www.opcw.org/news/article/opcw-spokespersons-statement-on-fact-finding-mission-deployment-to-douma/

 

Oxima mala, la oxima del fosgeno

Las oximas son un grupo de compuestos orgánicos de fórmula general R1R2C=NOH, donde R1 es una cadena orgánica y R2 puede ser un hidrógeno o una cadena orgánica. La palabra oxima parece que proviene de la contracción de las palabras oxígeno e imina; las iminas son compuestos orgánicos, con estructura general R1R2C=NR3, donde R3 puede ser un H o una cadena orgánica, producto de condensación del amoníaco o de una amina primaria con una cetona o un aldehído. Las oximas cuando provienen de la condensación de la hidroxilamina con un aldehído, se denominan aldoximas, mientras que si provienen de la condensación con una cetona se denominan cetoximas1:

       
Aldehido Aldoxima Cetona Cetoxima

Al igual que el doble enlace de los alquenos, el doble enlace de las oximas puede presentar isomería cis-trans (Z/E) cuando los sustituyentes R1 y R2 son diferentes. La estabilidad relativa de un isómero respecto del otro es de esperar que siga los mismos criterios que para los alquenos.

Las oximas pueden prepararse por condensación de un aldehído o de una cetona con hidroxilamina:

Las oximas son habitualmente sólidos cristalinos, que antes de la aparición de los métodos espectroscópicos, se utilizaban para separar y caracterizar compuestos con el grupo carbonilo. Las oximas también se utilizan como agentes formadores de complejos en algunas extracciones metálicas o para la determinación de ciertos iones metálicos, por ejemplo, la dimetilglioxima se utiliza para la determinación gravimétrica del Ni2+:

En el ámbito NBQ, determinadas oximas se utilizan como antídotos para las intoxicaciones con agentes neurotóxicos. Los agentes neurotóxicos inactivan la acetilcolinesterasa por fosforilación y ciertas oximas pueden reactivar la acetilcolinesterasa uniéndose al átomo de fósforo para formar el fosfo-derivado correspondiente que deja libre la molécula de acetilcolinesterasa:

Inactivación de la acetilcolinesterasa por fosforilación

Reactivación de la acetilcolinesterasa por acción de la oxima, con liberación del fosfoderivado correspondiente

Entre las oximas empleadas como antídotos frente a los agentes neurotóxicos podemos citar la pralidoxima (también conocida como 2-PAM), la obidoxima, la metoxima, la HI-6, la HLö-7 y la TMB-4:

 
Cloruro de pralidoxima, CAS 51-15-0 Cloruro de obidoxima, CAS 114-90-9
Bromuro de metoxima, CAS 2058-89-1 Cloruro de asoxima (HI-6), CAS 34433-31-3
 
Yoduro de HLö-7, CAS 120103-35-7 Bromuro de trimedoxima (TMB-4), CAS 56-97-3

 

Sin embargo la oxima del fosgeno no tiene utilidad industrial ni tampoco analítica, y es considerada un agente químico de guerra.

La oxima del fosgeno es una oxima mala.

 

 

La oxima del fosgeno2,3,4,5,6,7

La oxima del fosgeno, de fórmula empírica CHNCl2O y peso molecular 113,93, es la oxima del dicloruro de carbonilo, con número CAS 1794-86-1, y estructura química:

También se conoce como dicloroformoxima, 1,2-dichloroformoxima, dicloroformaldoxima, dicloroximinometano, dicloroformaldehido oxima, diclorometilen-hidroxilamina y CK (acrónimo militar). La oxima del fosgeno no está incluida en ninguna de las tres Listas de la CAQ, ni tampoco está recogida en el Grupo Australia.

La dicloroformoxima forma cristales prismáticos, incoloros y delicuescentes, que funden entre 39 °C y 40 °C. Incluso a las temperaturas ordinarias presenta una presión de vapor bastante alta. Tiene un punto de ebullición de 129 °C (con descomposición si no está muy pura), y a 28 mmHg de presión hierve a 53-54° C. Sus vapores tienen un olor penetrante y desagradable, y son más densos que el aire (drel=3,9). A 50 °C presenta una presión de vapor de 2,43 x 101 torr y una volatilidad estimada de 1,37 x 105 mg/m3.

La dicloroformoxima fue preparada en 1929 por los químicos alemanes Wilhelm Prandtl y Kurt Sennewald mediante la reducción del tricloronitrosometano (CAS 3711-49-7) con sulfuro de hidrógeno (CAS 7783-06-4)8:

Concluida la reacción, la dicloroformoxima se lava con agua, se filtra para eliminar el azufre, se seca con cloruro cálcico, se extrae con éter y se destila a vacío.

En vez de sulfuro de hidrógeno que es un gas tóxico, puede utilizarse como reductor una amalgama de aluminio. También puede prepararse por cloración del fulminato de mercurio, con posterior extracción con éter y destilación a vacío, lográndose un rendimiento del 65%:

La patente «Process for preparing phosgene oxime», United States Patent 2299742, Philip J. Ehman and Walter O. Walker, Oct. 27, 1942, describe la obtención de la oxima del fosgeno por cloración de una solución acuosa de cloroisonitrosoacetona9:

La patente «Electrolytic production of dichloroformoxime», United States Patent 2918418, John H. Madaus & Herman B. Urbach, Dec. 22, 1959, describe la producción de dicloroformoxima por la reducción electrolítica de cloropicrina en un electrolito de ácido sulfúrico-alcohol, seguido de la recuperación de la dicloroformoxima mediante un procedimiento de extracción con cloropicrina10.

El procedimiento de obtención más habitual, muy sencillo pero algo más costoso, se basa en la reducción de la cloropicrina con ácido clorhídrico y estaño, que produce dicloroformoxima con una pureza del 85%. La reacción se lleva a cabo a 0 °C empleando tetrahidrofurano como disolvente. Al cabo de unas 6 horas, finalizada la reacción, se filtra para eliminar las sales insolubles de estaño, se evapora el tetrahidrofurano y el residuo se destila a vacío un par de veces11:

El procedimiento es similar al descrito en la patente «Production of dichloroformoxime», United States Patent US4558160, William R. Hydro, Dec. 10,198512.

La dicloroformoxima es una sustancia relativamente estable, soluble en agua y en los disolventes orgánicos más comunes. En solución acuosa sufre una hidrólisis lenta, según la reacción:

En presencia de ácidos diluidos la velocidad de hidrólisis aumenta y la hidrólisis es cuantitativa.

Los hidróxidos alcalinos y los carbonatos reaccionan enérgicamente con las soluciones acuosas de dicloroformoxima, con desprendimiento de calor, mientras la solución se vuelve amarilla.

Por la acción del amoníaco acuoso sobre una solución etérea de dicloroformoxima, se forma cianamido cloroformoxima junto con otros productos, según la reacción:

La cianamido cloroformoxima, que forma cristales incoloros que funden a 168° C, no tiene poder vesicante alguno.

Por la acción de la hidracina sobre una solución acuosa de dicloroformoxima, se forma ácido cianhídrico según la siguiente reacción:

Con ácido nítrico fumante se transforma en diclorodinitrometano (CAS 1587-41-3):

El diclorodinitrometano es un líquido de punto de ebullición 121,5 °C y densidad 1,872 g/mL, que explosiona si se intenta destilar a presión atmosférica, de modo que se destila a 31 °C/13 mbar (9,8 mmHg) (a 40 ºC a una presión de 12 mmHg).

La dicloroformoxima sometida a calentamiento bajo reflujo, se descompone poco a poco en las proximidades de su punto de ebullición generando vapores de color marrón, de cloruro de cianógeno y ácido hipocloroso:

La dicloroformoxima, incluso cuando se almacena en recipientes sellados de vidrio o de cuarzo, se descompone a temperaturas ordinarias con formación de fosgeno y separación de un compuesto líquido. La descomposición es prácticamente completa en 3-4 semanas, pero está influenciada por la humedad y la temperatura. Los vapores de dicloroformoxima atacan el caucho y el corcho.

Aunque la oxima del fosgeno puede estimarse mediante técnicas colorimétricas y mediante pirolisis-cromatografía de gases, no existen apenas detectores portátiles que permitan su detección en un incidente. Un detector como el AP4C, que emplea la técnica de fotometría de llama (y detecta azufre, fósforo, arsénico y nitrógeno), si podría detectar la presencia de nitrógeno.

 

 

Toxicidad6,13,14,15,16

Aunque la oxima del fosgeno (dicloroformoxima o CX) es considerada un agente vesicante, no forma ampollas como los agentes vesicantes clásicos (mostazas de azufre, lewisitas y mostazas de nitrógeno), de modo que se considera también como un agente urticante, irritante o corrosivo, frente al cual no hay antídoto específico disponible. En términos coloquiales, los agentes vesicantes son sustancias químicas que provocan la aparición de ampollas en los tejidos afectados.

Las oximas halogenadas: diiodoformoxima, dibromoformoxima, monocloroformoxima y dicloroformoxima, fueron sintetizadas a finales de la década de 1920. La dicloroformoxima es la más irritante y se conoce comúnmente como la oxima del fosgeno. La oxima de fosgeno aunque sintetizada en 1929, muy probablemente nunca se haya utilizado en el campo de batalla. La oxima del fosgeno es uno de los agentes químicos de guerra menos conocido, y también uno de los menos estudiados.

No existen datos toxicológicos experimentales en humanos, pero la DL50 estimada para la oxima de fosgeno por contacto con la piel es de 25 mg×kg-1. Probablemente la oxima de fosgeno no tiene efectos directos adversos sobre la función reproductiva. El riesgo de exposición depende de lo cerca que se encuentren los individuos al lugar donde se haya liberado la oxima de fosgeno. Si se liberan vapores de la oxima de fosgeno existirá riesgo de exposición tanto a la inhalación de los vapores como al contacto de los mismos con la piel o con los ojos.

La oxima del fosgeno en forma de líquido y de vapor provoca, en contacto con ojos, piel y membranas mucosas, un dolor intenso y la destrucción local de los tejidos. Como ya se ha indicado no produce ampollas pero suele incluirse junto a los agentes vesicantes porque produce en los ojos, en los pulmones y en la piel daños similares a los producidos por los agentes vesicantes clásicos. En concentraciones inferiores al 8% hace poco daño biológico. En concentraciones más altas, sin embargo, causa daños más graves que cualquier otro vesicante, y las lesiones son similares a los causadas por la iperita o «gas mostaza». Provoca de manera instantánea un dolor tan intenso que los afectados tratan de quitarse las ropas o el equipo de protección para aliviar de algún modo el dolor producido. Al dolor producido tras la exposición le sigue una rápida necrosis de los tejidos.

Aunque tras la exposición a la oxima del fosgeno, el dolor inmediato advierte de la necesidad de utilizar equipo de protección y de proceder a la descontaminación, concentraciones bajas producen en los ojos lagrimeo y daños importantes, con inflamación y ceguera temporal, mientras que concentraciones altas pueden provocar ceguera y lesiones corneales permanentes. Al igual que los agentes vesicantes clásicos también aparece conjuntivitis, blefaritis, blefaroespasmo, lagrimeo y queratitis.

Las lesiones cutáneas son eritomatosas y extremadamente dolorosas. La irritación cutánea es inmediata y se asemeja a la producida por las ortigas. El contacto breve con sólo unos pocos miligramos produce dolor y picazón muy intensos. En menos de un minuto el área expuesta se vuelve blanca y queda rodeada por una zona eritomatosa circular que se asemeja a una diana, momento en el que la oxima del fosgeno es absorbida completamente por la piel. En menos de una hora la zona se convierte en edematosa, y en el plazo de 24 horas aparece el edema, la lesión se pigmenta de un color más oscuro, y aparece necrosis grave. Aparece descamación con la necrosis de la piel con formación durante los 7-10 días siguientes de una costra purulenta. La lesión necrótica acaba extendiéndose al panículo y al músculo, rodeada por una inflamación intensa.

La urticaria provocada en la piel por la oxima del fosgeno se asemeja a la causada por reacciones alérgicas y no alérgicas a diferentes sustancias ambientales y se cree que puede ser debida principalmente a la activación de los mastocitos y a la liberación de histamina. Aunque se desconoce el mecanismo de acción se ha sugerido que probablemente posea propiedades alquilantes y nucleofílicas semejantes a las de los agentes vesicantes clásicos, y por lo tanto sus efectos pueden ser directos, con lesiones corrosivas, muerte celular y destrucción de tejidos, e indirectos, relacionados con las células inflamatorias como los mastocitos y los neutrófilos que provocan lesiones tardías en los tejidos.

La exposición por inhalación puede causar irritación inmediata del tracto respiratorio, disnea e incluso edema pulmonar, pues la absorción es completa en segundos. El edema pulmonar puede venir acompañado por bronquiolitis necrotizante y por trombosis venosa pulmonar. La exposición a 0,2 mg×min×m-3 produce irritación, que resulta intolerable a 3 mg×min×m-3. La CLt50 estimada es de 1500-2000 mg×min×m-3. La intoxicación por vía oral es muy similar en curso a la intoxicación por vía inhalatoria.

No hay tratamiento específico disponible para lesiones producidas por la oxima del fosgeno. Los afectados deberían ser trasladados inmediatamente a zona limpia para así reducir la exposición, y puesto que los vapores son más densos que el aire, las zonas más altas son las más apropiadas. El objetivo de la terapia será aliviar los síntomas, prevenir las infecciones y promover la curación. En casos de ingestión oral se recomienda la dilución con agua o leche. Debido a los efectos irritantes y corrosivos de la oxima del fosgeno no se recomiendan ni el vómito (emesis) ni el empleo de carbón activo. Las lesiones necróticas de la piel deben tratarse quirúrgicamente, y el edema pulmonar tratarse apropiadamente. La recuperación total tarda de 1 a 3 meses, pero algunas quemaduras pueden tardar más de 6 meses en sanar.

Los ojos deben enjuagarse con abundante agua tibia hasta que los lixiviados tengan pH neutro. La descontaminación de los ojos debe ser inmediata pues la oxima del fosgeno oxima se absorbe en cuestión de segundos. Las úlceras corneales deben tratarse atropina oftálmica para prevenir daños mayores. No se recomienda el uso de anestésicos tópicos para aliviar el dolor, ya que pueden aumentar el daño corneal. Por el contrario, la ausencia de luz (oscuridad) y el uso sistémico de analgésicos opiodes pueden resultar beneficiosos.

 

 

Descontaminación3,6

La descontaminación de la piel se basa en la adsorción física o en la combinación de adsorción física y de inactivación química. La adsorción física se consigue con polvos adsorbentes, por ejemplo, polvo de talco, o tierra de fullers (arcilla a base de silicatos de aluminio hidratados), mientras que la inactivación química se consigue por la acción de sustancias alcalinas. Los agentes clorados como la lejía no funcionan con fosgeno oxima. La descontaminación de los agentes vesicantes no debería realizarse con agua, excepto los ojos, ya que con ello puede producirse la diseminar del agente. La descontaminación cutánea debe llevarse a cabo inmediatamente, ya que la absorción total por la piel se produce en cuestión de minutos. La oxima del fosgeno reacciona rápidamente con el tejido y una vez que aparece el dolor la descontaminación no resulta eficaz (10).

Las sustancias utilizadas para la descontaminación cutánea suelen ser demasiado irritantes para su uso en los ojos, de modo que los ojos deben ser enjuagados inmediatamente con copiosas cantidades de agua o bicarbonato sódico isotónico (solución acuosa de hidrogeno carbonato sódico al 1,26%).

La ropa contaminada con oxima del fosgeno supone un peligro inmediato, por lo que se recomienda su retirada inmediata, y su colocación en una bolsa de plástico que debe cerrarse convenientemente para evitar la salida de los vapores.

 

 

Referencias

  1. «IUPAC Gold Book-Oximes», http://goldbook.iupac.org/html/O/O04372.html
  2. «Potential military CB agents and compounds», FM 3-11.9, 2005, https://fas.org/irp/doddir/army/fm3-11-9.pdf
  3. «Handbook of Chemical and Biological Warfare Agents», D. Hank Ellison, CRC Press, 2Ed., 2007
  4. «Compendium of Chemical Warfare Agents», Steven L. Hoenig, Springer, 2007
  5. «The war gases», Mario Sartori, D. Van Nostrand Co., 1939
  6. «Phosgene oxime-forgoten chemical weapon», Jiří Patočka & Kamil Kuča, Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2011, vol. 80, p. 38-41.
  7. «A Review of the Scientific Literature as it Pertains to Gulf War Illnesses», Volume 5: Chemical and Biological Warfare Agents, Chapter Three: «Skin-Damaging Agents», William Augerson, RAND Corporation, 2000, https://www.rand.org/pubs/monograph_reports/MR1018z5.html
  8. «Trichloronitrosomethane, Dichloroformoxime (Phosgene Oxime) and Their Derivatives», Wilhelm Prandtl & Kurt Sennewald, Chemische Berichte, Vol. 62, p. 1766, 1929.
  9. «Process for preparing phosgene oxime», United States Patent 2299742, Philip J. Ehman and Walter O. Walker, Oct. 27, 1942.
  10. «Electrolytic production of dichloroformoxime», United States Patent 2918418, John H. Madaus & Herman B. Urbach, Dec. 22, 1959
  11. «A Laboratory History of Chemical Warfare Agents», Jared Ledgard, 2Ed., 2006
  12. «Production of dichloroformoxime», United States Patent US4558160, William R. Hydro, Dec. 10,1985.
  13. «A Toxico-Pathologic Study of Phosgene Oxime», Arthur J.McAdams, & Milton H. Joffe, Medical Laboratories Research Report No. 381, July 1955.
  14. «Handbook of Toxicology of Chemical Warfare Agents», Ramesh C. Gupta, Elsevier,2ªEd., 2015
  15. «Cutaneous exposure to vesicant phosgene oxime-Acute effects on the skin and systemic toxicity», N. Tewari-Singh, D. G. Goswami, R. Kant, C. R. Croutch, R. P. Casillas, D. J. Orlicky & R. Agarwal, Toxicology and Applied Pharmacology 317 (2017) 25–32
  16. «Phosgene oxime: Injury and associated mechanisms compared to vesicating agents sulfur mustard and lewisite «, G. Goswami, R. Agarwal & N. Tewari-Singh, Toxicology letters, 2017

 

 

 

 

 

 

 

IVAs, agentes de volatilidad intermedia

En la segunda mitad de década de 1970 surgieron algunos informes que indicaban que Estados Unidos estaba buscando un agente químico de guerra de volatilidad intermedia (IVA, Intermediate Volatility Agent) para solventar algunos inconvenientes observados con sus agentes neurotóxicos sarín y VX, que eran, en aquel momento, sus agentes neurotóxicos operacionales1.

El sarín, GB, agente neurotóxico no-persistente, resultaba demasiado volátil, sobre todo en verano o en climas calientes, mientras que el VX, agente neurotóxico persistente, pese a la elevada toxicidad tanto por inhalación como por contacto de sus vapores, resultaba demasiado poco volátil en invierno o en climas fríos, y esto limitaba enormemente sus efectos tóxicos1.

La solución sería un agente neurotóxico de volatilidad intermedia menos volátil que el sarín, y más volátil que el VX, tóxico por inhalación como el sarín, y tóxico por contacto como el VX, que pudiese ser utilizado en verano y en invierno, en climas calientes y en climas fríos. Además según las informaciones se introduciría como un agente neurotóxico binario, IVA-2, al igual que los ya existentes GB-2 y VX-2, simplificando sustancialmente los futuros arsenales químicos de Estados Unidos1.

Poco o nada llegó a transcender acerca del desarrollo de tal agente o agentes, desconociéndose su estructura química, sus propiedades físico-químicas y su toxicidad, así como cualesquiera otros datos de interés en relación a su detección, descontaminación y tratamiento médico1.

Fueron los investigadores checos del NBC Defense R&D Establishment en Brno (entonces el Research Institute 070 en Brno) bajo la dirección de su coronel director Jiri Matousek, los que después de un cuidadoso análisis de diversas fuentes, iniciaron la investigación de un nuevo grupo de compuestos, que consideraron potenciales agentes de volatilidad intermedia1,2,3.

En mayo de 1983, Matousek y su equipo de químicos militares (J. Moravec, J. Chalupa, I. Macek, M. KoneNy y R. Slejska) sintetizaron y caracterizaron una nueva familia de agentes neurotóxicos que designaron como «GV» ya que combinaban las características de los agentes neurotóxicos de las familias «G» y «V». Los resultados de la investigación evidenciaban que esta nueva familia de agentes neurotóxicos, «GV», presentaban una volatilidad intermedia, resultaban muy tóxicos por inhalación y muy tóxicos por contacto, y era posible su empleo en un sistema binario de armas químicas1,2,3.

Lista 1A.1

IVA

Lista 1A.3

Lista 1A.2

Como puede apreciarse de sus estructuras químicas, los nuevos agentes «GV» poseen unidos al átomo de fósforo, algún átomo o grupo de átomos iguales o muy similares a los que tienen los agentes «G» y «V»:

  • Poseen un enlace P-F, como el sarín, GB, y el somán, GD, miembros de la Lista 1A.1 de la CAQ, «fosfonofluoridatos».
  • Poseen un enlace P-N(R1)2, como el tabún, GA, miembro de la Lista 1A.2 de la CAQ, «fosforamidocianidatos».
  • Poseen un enlace P-O(CH2)nN(R3)2, parecido al P-SCH2CH2N(R3)2 del VX y el VR, agentes «V», miembros de la Lista 1A.3 de la CAQ, «fosfonotiolatos».

Los agentes «GV» no están recogidos en la Lista 1, y como «no contienen un átomo de fósforo al que esté enlazado un grupo metilo, etilo, propilo o isopropilo, pero no otros átomos de carbono», tampoco están recogidos en la Lista 2B.4 de la CAQ.

Pese a no estar recogidos de manera explícita en las Listas de la CAQ, debido a su elevada toxicidad y a su nula utilidad para fines no prohibidos, cumplen los criterios para su inclusión en la Lista 1 tal y como se define en las Directrices para las listas de sustancias químicasde la CAQ4:

Directrices para la Lista 14

  1. Al examinar si se debe incluir en la Lista 1 una sustancia química tóxica o un precursor, se tendrán en cuenta los siguientes criterios:
    1. Se ha desarrollado, producido, almacenado o empleado como arma química según la definición del artículo II;
    2. Plantea de otro modo un peligro grave para el objeto y propósito de la presente Convención debido a su elevado potencial de empleo en actividades prohibidas por ella al cumplirse una o más de las condiciones siguientes:
      1. Posee una estructura química estrechamente relacionada con la de otras sustancias químicas tóxicas enumeradas en la Lista 1 y tiene propiedades comparables, o cabe prever que las tenga;
      2. Posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;
      3. Puede emplearse como precursor en la fase tecnológica final única de producción de una sustancia química tóxica enumerada en la Lista 1, con independencia de que esa fase ocurra en instalaciones, en municiones o en otra parte;
    3. Tiene escasa o nula utilidad para fines no prohibidos por la presente Convención.

La tabla 1 recoge algunos agentes «GV» que tienen asignado número CAS1,5,6,7.

 

Nombre Número CAS Fórmula empírica R1 -(CH2)n- R3
GV, GP, GP-11, EA-5365, VR-55, DMAEDMAFP 141102-74-1 C6H16FN2O2P Metilo -CH2CH2 Metilo
GV1, DMAEDEAFP 141102-75-2 C8H20FN2O2P Etilo -CH2CH2 Metilo
GV2, DEAEDMAFP 141102-77-4 C8H20FN2O2P Metilo -CH2CH2 Etilo
GV3, DEAEDEAFP 141102-78-5 C10H24FN2O2P Etilo -CH2CH2 Etilo
GV4, EA-5414, DMAPDMAFP 158847-17-7 C7H18FN2O2P Metilo -CH2CH2CH2 Metilo
GV5, DMAPDEAFP 158847-18-8 C9H22FN2O2P Etilo -CH2CH2CH2 Metilo
DMAEDIPAFP 141102-76-3 C10H24FN2O2P Isopropilo -CH2CH2 Metilo
DEAEDIPAFP 141102-79-6 C12H28FN2O2P Isopropilo -CH2CH2 Etilo
DIPAEDMAFP 141102-80-9 C10H24FN2O2P Metilo -CH2CH2 Isopropilo
DIPAEDEAFP 141102-81-0 C12H28FN2O2P Etilo -CH2CH2 Isopropilo
DIPAEDIPAFP 141102-82-1 C14H32FN2O2P Isopropilo -CH2CH2 Isopropilo

Tabla 1. Agentes «GV» que tienen asignado número CAS

Por supuesto existen muchos más homólogos que no tienen asignado número CAS.

 

Los agentes «GV», los IVA

Los agentes «GV» son dialquilamido fluorofosfatos de O-dialquilaminoalquilo:

donde los grupos –N(R1)2 y –N(R3)2 suelen ser simétricos, R1 y R3 suelen ser grupos metilo, etilo, propilo, o isopropilo, y en la cadena –(CH2)n–, el numero de n suele ser 2 ó 3 (etilo o propilo).

Para su obtención se buscaron métodos potencialmente adecuados para conseguir un sistema binario de armas químicas, que permitiesen la obtención de buenos rendimientos y altas purezas.

La reacción del apropiado difluoruro de N,N-dialquilfosforamida (Lista 2B.5) con el apropiado N,N-dialquil aminoalcanol (incluido o no en la Lista 2B.11) produciría el correspondiente dialquilamido fluorofosfato de O-dialquilaminoalquilo1,7:

La reacción se lleva a cabo utilizando n-hexano como disolvente, y los productos son purificados luego por destilación. Aunque estos compuestos presentan una estabilidad limitada, ello no limitaría su posible uso en un sistema binario porque los precursores son bastante estables1,7.

Los difluoruros de N,N-dialquilfosforamida empleados están incluidos en la Lista 2B.5 (coloreados de magenta para indicar Lista 2) que incluye los dihaluros de N,N-dialquilfosforamida, donde los grupos alquilo pueden ser metilo, etilo, propilo o isopropilo.

Los N,N-dialquil aminoalcanoles pueden estar, o no, recogidos en la Lista 2B.11 que incluye los N,N-dialquil (metil,etil, propil e isopropil) aminoetan-2-oles y sus sales protonadas correspondientes. Son excepciones en esta familia, el N,N-dimetilaminoetanol (CAS 108-01-0) y el N,N-dietilaminoetanol (CAS 100-37-8) y las sales protonadas de ambos. Tampoco estarían incluidos en la lista 2B.11 los N,N-dialquil (metil,etil, propil e isopropil) aminopropan-2-oles.

El DMAEDMAFP mostró el menor punto de fusión y DMAPDMAFP demostró el más alto punto de fusión. Todos los dialquilamido fluorofosfatos de O-dialquilaminoalquilo estudiados mostraron un estado mesomórfico en las proximidades de su punto de fusión, con aspecto turbio y consistencia similar a la miel, que al seguir calentando adquieren un aspecto más claro y brillante a la vez que aumentan su viscosidad7.

Cuando se exponen al calor, experimentan descomposición para formar productos sólidos, y sólo en caso del DMAPDMAFP y del DMAPDEAFP con cadenas alquílicas (propilo) más largas se aprecia oscurecimiento y espesamiento del líquido sin la precipitación de sólidos. El punto de ebullición de sólo pudo ser medido bajo presión reducida. El punto de ebullición más bajo se determinó en el DMAEDMAFP y el más alto en el DMAPDEAFP7.

Esta descomposición por acción del calor parece ser una isomerización espontánea con formación del correspondiente dialquilamidofluorofosfato de dialquilaziridinio. Por ejemplo, se ha comprobado que el (dimetilfosforamido)fluoridato de 2-(dimetilamino)etilo se isometiza formando dimetilamidofluorofosfato de dimetilaziridinio, una sustancia cristalina blanca que tiene propiedades físicas y químicas diferentes y muestra una toxicidad mucho menor. Esta isomerización sucede incluso en la ausencia de aire, agua o luz y su velocidad depende sólo de la temperatura8.

Isomerización del (dimetilfosforamido)fluoridato de 2-(dimetilamino)etilo

La isomerización del DMAEDMAFP finaliza a una temperatura entre -20 °C y 40 °C. El dimetilamidofluorofosfato de dimetilaziridinio funde a 267-272 °C, es soluble en agua, etanol, metanol y xileno, y entre moderadamente soluble o prácticamente insoluble en cloroformo, tetracloruro de carbono, dicloroetano, benceno, tolueno, éter dietílico y acetona. Su análisis elemental indica una composición C6H16N2FO2P idéntica a la del (dimetilfosforamido)fluoridato de 2-(dimetilamino)etilo, y la espectrometría de masas revela la presencia de grupo dimetilaziridinio8.

Los agentes GV son fácilmente destruidos por la acción de disoluciones de pH elevado (es decir, soluciones básicas). Se requiere una solución alcohólica alcalina con un 20% de alcohol y un mínimo de un 10% en peso de  hidróxido sódico o de carbonato sódico, o bien lejía comercial (hipoclorito sódico) sin dilución. Puesto que la hidrólisis produce subproductos ácidos se requiere un exceso de solución alcalina para asegurar una destrucción segura. También pueden utilizarse productos sólidos que contengan cloro activo como por ejemplo, HTH, STB y » Dutch powder». También pueden utilizarse productos a base de peróxidos, como por ejemplo, una solución de bicarbonato sódico con un alcohol y un 30-50% de peróxido de hidrógeno6.

La tabla 2 muestra un resumen de las propiedades físicas de algunos de estos agentes de volatilidad intermedia1,5,6,7.

 

-R2 (CH2)n -R1 nD20 densidad p.f., °C p.eb., °C/Pa Estructura
DMAEDMAFP

141102-74-1

-CH3 -(CH2)2 -CH3 1,4198 1,1096 – 110,2 39,0/2,0
DMAEDEAFP

141102-75-2

-CH3 -(CH2)2 -CH2CH3 1,4099 1,0722 – 95,3 56,7/6,5
DEAEDMAFP

141102-77-4

-CH2CH3 -(CH2)2 -CH3 1,4267 1,0463 – 84,1 53,0/0,3  
DEAEDEAFP

141102-78-5

-CH2CH3 -(CH2)2 -CH2CH3 1,4308 1,0184 – 91,0 56,0/0,1
DMAPDMAFP

158847-17-7

-CH3 -(CH2)3 -CH3 1,4250 1,0370 – 82,1 56,0/0,7  
DMAPDEAFP

158847-18-8

-CH3 -(CH2)3 -CH2CH3 1,4282 1,0190 – 85,6 68,0/4,5

Tabla 2. Resumen de las propiedades físicas de los IVAs

 

En cuanto a su toxicidad todos los homólogos estudiados poseen toxicidades muy altas y elevadas actividades enzimáticsa, comparables a los agentes más toxicos de las serie «G» y «V»8,9,10,11. Sin embargo parece que el tratamiento con oximas y atropina no es tan eficiente porque su union con la acetilcolinesterasa es prácticamente irreversible. Esta irreversibilidad sería diferente de la observada para el somán (envejecimiento), y podría ser causada por impedimento estérico en la cavidad de la acetilcolinesterasa5.

La tabla 3 muestra datos acerca de la toxicidad de algunos de estos agentes de volatilidad intermedia.

 

LD50 (µg/kg) para P=0,95, administración i.m. en ratones LD50 (µg/kg) para P=0,95, administración i.m. en ratas Inhibición de la butirlcolinesterasa, I50 (mmol/mL) Estructura
DMAEDMAFP

141102-74-1

30,5 (28-55) 17 (15,5-23,6) 2,91×10-9  
DMAEDEAFP

141102-75-2

191 (180-203) 35 (33-38) 2,80×10-9  
DEAEDMAFP

141102-77-4

162 (150-175) 94 (87-101) 2,36×10-9  
DEAEDEAFP

141102-78-5

409 (378-441) 261 (238-286) 1,50×10-9  
DMAPDMAFP

158847-17-7

105 (94-118) 59 (52-67) 1,14×10-9
DMAPDEAFP

158847-18-8

1222 (1118-1336) 261 (238-286) 3,76×10-9  
i.m. intramuscular

P=0,95 indica probabilidad estadística del 95%

Tabla 3. Comparación de la toxicidad de los diferentes IVAs8,9,10,11

El agente más simple, el dimetilamidofluorofosfato de O-2-dimetilaminoetilo (DMAEDMAFP), es el que presenta la toxicidad percutánea más elevada (menor valor para la DL50, pero es menos tóxico que el VX. En la tabla 4 se muestra una comparativa de la toxicidad de algunos agentes neurotóxicos de diferentes familias8,9,10,11.

 

Compuesto Valores medios de LD50 (mg/kg) para ratas
i.m. (intramuscular) p.c. (percutánea)
GB 0,096 84,00
GD 0,069 11,25
GF 0,080 3,94
VX 0,015 0,077
DMAEDMAFP 0,017 1,37

Tabla 4. Comparación de la toxicidad del DMAEDMAFP frente a otros agentes neurotóxicos1

 

 

Referencias

  1. «On the new potential supenoxic lethal organophosphorus chemical warfare agents with intermediate volatility», J. Matousek & I. Masek, ASA Newsletter, 1994, 94-5, l.
  2. «War of nerves,chemical warfare from Worl War I to Al-Qaeda», Jonathan B. Tucker, Pantheon Books,2006
  3. «Chapter 1 Development, Historical Use and Properties of Chemical Warfare Agents», Robin Black en «Chemical Warfare Toxicology, Volume 1: Fundamental Aspects», F. Worek, J. Jenner & H. Thiermann, Royal Society of Chemistry, 2016
  4. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción», https://www.opcw.org/sp/convencion-sobre-las-armas-quimicas/texto-completo/
  5. «Compendium of Chemical Warfare Agents», Steven L. Hoenig, Springer, 2007
  6. «Handbook of Chemical and Biological Warfare Agents», Hank Ellison, CRC Press, 2008
  7. «Interesting group of high-toxic organophosphorus compounds», Ivan Mašek, Otakar Jiří Mika, Zdeněk Šafařík & Dušan Vičar, The science for population protection 2/2015, Bezpečnostní Výzkum, http://www.population-protection.eu/prilohy/casopis/30/212.pdf
  8. «Identification of the isomeric transformation product from 2-(dimethylamino)ethyl-(dimethylphosphoramido)fluoridate», Emil Halamek, Zbynek Kobliha & Richard Hrabal, Phosphorus, Sulfur, and Silicon and the Related Elements, 179:1, 49-53, 2004
  9. «Acute toxicities of 2-dialkylaminoalkyl-(dialkylamido)-fluoro-phosphates», J. Bajgar, J. Fusek, V. Hrdina, J. Patocka & J. Vachek, Physiol Res. 1992;41(5):399-402.
  10. «Identification, Purification, and Partial Characterization of the GV-Degrading Enzyme from ATCC # 29660 Alteromonas undina«, Steven P. Harvey & Tu-chen Cheng, ADA411415, ECBC-TR-229, 2002
  11. «A Comparison of Two Oximes (HI-6 and Obidoxime) for 2-Dimethylaminoethyl-(dimethylamido)-phosphonofluoridate Poisoning», J. Kassa, Pharmacology & Toxicology 1995,11, 382-385.

 

Apadrina un novichok, que está de moda

Tras varios años de negociaciones, el 3 de septiembre de 1992, en Ginebra, la Conferencia de Desarme aprobó el texto de la Convención sobre las Armas Químicas (CAQ), que se abrió a la firma el 13 de enero de 1993, en París, y entró en vigor el 29 de abril de 1997. Los Estados Unidos y Rusia firmaron la CAQ el mismo día que ésta se abrió para su firma pero Estados Unidos la ratificó el 25 de abril de 1997, justo cuatro días antes de que entrase en vigor, y Rusia la ratificó el 5 de noviembre de 1997, unos meses más tarde, ya entrada en vigor1.

Casi tres años antes, el 23 de septiembre de 1989, y a propuesta de Estados Unidos,  el entonces Secretario de Estado James Baker y el  Ministro de Exteriores soviético Edward Shevardnadze habían firmado en Jackson Hole, Wyoming, el «Memorando de entendimiento» sobre las armas químicas, un acuerdo bilateral entre la Unión Soviética y los Estados Unidos en relación con el intercambio de datos y la verificación de sus capacidades nacionales sobre armas químicas. El acuerdo se conoce como el Memorando de Entendimiento de Wyoming (Memorandum Of Understanding, MOU).2

El acuerdo incluía dos fases. En la primera fase, que concluyó en febrero de 1991, la Unión Soviética y los Estados Unidos intercambiaron datos generales sobre sus capacidades de armas químicas, y realizaron visitas a instalaciones relevantes, civiles y militares, elegidas por el país anfitrión. En la segunda fase, se intercambiaron datos detallados sobre sus capacidades de guerra química (completado en junio de 1994) y se permitía la realización de cinco inspecciones in situ para confirmar los datos declarados (dos inspecciones de rutina y tres inspecciones por denuncia, una de ella de prueba) en las instalaciones seleccionadas entre una lista de las instalaciones declaradas en el intercambio de datos. La experiencia obtenida en el intercambio de datos y en las visitas e inspecciones resultó muy útil en las negociaciones de la Convención sobre las Armas Químicas.2,3

Además, en 1990 el presidente de EE. UU., George Bush, y el de la Unión Soviética, Mijail Gorbachov, firmaron el Acuerdo bilateral de destrucción (Bilateral Destruction Agreement, BDA) por el que se obligaban a no producir armas químicas, a reducir sus arsenales de armas químicas a niveles igualmente bajos, a desarrollar procedimientos de inspección y a cooperar en la destrucción segura de las armas químicas. El Acuerdo especificaba que las reservas se reducirían hasta las 5.000 t, a fecha de 31 de diciembre de 2002 o, en caso de entrar en vigor un tratado multilateral de prohibición de armas químicas, hasta 500 t, el octavo año de la entrada en vigor de dicho tratado.4

El «Memorando de entendimiento» y el «Acuerdo bilateral de destrucción» han ampliamente superados por Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción, conocida simplemente como la Convención sobre Armas Químicas.5

En este ambiente de distensión, el químico Vil Mirzayanov, publicó una serie de artículos en los que delataba la existencia de un programa secreto de armas químicas denominado Foliant que habría desarrollado una nueva generación de agentes neurotóxicos, mucho más tóxicos que el VX y sus análogos ruso y chino, que habrían recibido el nombre de «novichok» («recién llegado», en ruso)6,7,8,9,10,11.

En mayo de 1971, el Comité Central del Partido Comunista y el Consejo de Ministros de la Unión Soviética aprobaron la creación de lo que sería una «cuarta generación» de armas químicas. El programa, denominado Foliant, habría permitido que, entre 1973 y 1975, dos químicos del Instituto Estatal para Investigación Científica de Química Orgánica y Tecnología (GosNIIOKhT) en Shikhany, Pyotr Petrovich Kirpichev y Vladimir Ivanovich Uglev, sintetizaran agentes neurotóxicos más tóxicos que el VX. Se habrían desarrollado también las formas binarias de estos agentes, denominadas «novichok». La existencia de estos nuevos agentes la hizo pública por primera vez Vil Mirzayanov en un artículo publicado en el diario soviético Kuranty en octubre de 1991. En él se indicaba que a pesar de la declaración de Gorbachov de que los programas de armas químicas habían finalizado, la Unión Soviética había seguido fabricando y desarrollando nuevas armas químicas. En 1992, Mirzayanov, con la colaboración del profesor Lev Fedorov, publicó otro artículo en el semanario Moscow News y concedió una entrevista al diario norteamericano The Baltimore Sun haciendo pública la existencia del programa de armas químicas Foliant. Semanas después de estas declaraciones, Mirzayanov fue arrestado durante once días y, en 1994, fue juzgado por divulgar secretos de Estado, aunque finalmente los cargos serían retirados. En febrero de 1993, el doctor Uglev apoyaba a Mirzayanov y confirmaba ante los medios de comunicación su participación en el programa Foliant.

Según Mirzayanov, se llegaron a sintetizar unas 100 sustancias químicas, pero solo las denominadas A-230 y  A-232 fueron seleccionadas para cargar en municiones y realizar pruebas de campo en Nukus (Uzbekistán), a finales de los años 80. En pruebas de laboratorio, ambas eran hasta 5 veces más tóxicas que los agentes químicos de guerra similares conocidos hasta entonces. A pesar de que el A-232 era poco estable en ambientes húmedos, resultaba de especial interés ya que su estructura química no figuraba en las listas de sustancias sometidas a inspecciones de verificación en los borradores de la Convención de Armas Químicas que, por aquel entonces, todavía se estaba negociando. Este interés llevó al desarrollo de una forma binaria del A-232, que se denominó «novichok-5», en la que los precursores, más estables y menos tóxicos, se almacenaban en recipientes separados y solo se mezclaban al lanzar la munición.

No resulta razonable suponer que Rusia destruyera sus arsenales más modernos antes de ratificar la CAQ ni tampoco hay motivos razonables para suponer que mintiera a la hora de realizar las obligadas declaraciones iniciales.

Estos nuevos agentes neurotóxicos habrían sido diseñados para conseguir varios objetivos12:

  • Conseguir un manejo y un almacenamiento más seguros mediante un sistema binario de armas químicas.
  • Ser indetectables mediante el empleo de los equipos estándar de detección utilizados por la OTAN;
  • Atravesar los equipos de protección química utilizados por la OTAN
  • Pasar desapercibido para los sistemas de verificación, al ser sustancias no incluidas en las Listas de la CAQ y emplear precursores que tampoco están incluidos en dichas Listas.

Aunque hay quien afirma que todos estos objetivos se han alcanzado, no existe evidencia alguna de ello, y además casi todos los objetivos, salvo el primero, no resisten un simple razonamiento:

  • Con respecto a propiedad de ser indetectables, si se trata de compuestos con fósforo en su molécula, la mayoría de los ejércitos de OTAN disponen de detectores fotométricos de llama, AP2C y AP4C, que detectan cualquier molécula que contenga fósforo;
  • Por otro lado, los equipos de protección modernos están diseñados para retener o impedir el paso de un gran número de sustancias químicas, incluidos diferentes tipos de ésteres organofosforados, y
  • Por último, la CAQ no trabaja tan sólo con las sustancias químicas tóxicas incluidas en sus tres Listas, el artículo VI establece en su punto 2: «Cada Estado Parte adoptará las medidas necesarias para garantizar que las sustancias químicas tóxicas y sus precursores solamente sean desarrollados, producidos, adquiridos de otro modo, conservados, transferidos o empleados, en su territorio o en cualquier otro lugar bajo su jurisdicción o control, para fines no prohibidos por la presente Convención».

A pesar de la información divulgada por Mirzayanov, Rusia en ningún momento ha reconocido oficialmente la existencia de los agentes «novichok». En septiembre de 2017, la Organización para la Prohibición de Armas Químicas (OPAQ) hizo público que Rusia había finalizado la destrucción de todas sus armas químicas13. No ha transcendido que los agentes «novichok» se encontrasen dentro de las 39 967 toneladas declaradas por Rusia desde su adhesión, en 1997, a la Convención de Armas Químicas, y en ningún momento la OPAQ ha admitido su existencia.

En el Informe del Consejo Consultivo Científico (CCC) sobre los adelantos científicos y tecnológicos, presentado en el tercer periodo extraordinario de sesiones de la Conferencia de los Estados Parte, para el examen del funcionamiento de la Convención sobre las Armas Químicas, referencia RC-3/DG.1 de fecha 29 de octubre de 2012, el propio Consejo Consultivo Científico reconocía que «con respecto a la existencia y las propiedades de una clase supuestamente nueva de agentes neurotóxicos denominados «novichok», el CCC no tenía suficiente información científica validada por expertos para hacer una evaluación técnica», y tan solo indicaba que14:

«En 2008, se informó en un libro de Vil Mirzayanov, antiguo científico soviético, de que científicos soviéticos habían investigado un nuevo tipo de agente neurotóxico denominado comúnmente «novichok» (recién llegado), adecuado para uso como arma binaria. Las estructuras que se mostraban en el libro incorporaban un grupo acetamidinio o guanidina a una estructura afín al sarín, en lugar del grupo alcoxi. Si bien algunas de estas estructuras corresponden a la definición genérica de las sustancias químicas de la Lista 2B4, se informó de que en algunos casos se trataba de sustancias análogas no incluidas en las Listas, en las que el grupo alquilo enlazado directamente con el fósforo se había sustituido por un grupo alcoxi. Según se informó, los compuestos eran sumamente tóxicos y no constaba que tuvieran empleo industrial.

En las publicaciones disponibles, se cuenta con muy poca información sobre esos compuestos y en las publicaciones examinadas por expertos no se han verificado su existencia ni sus propiedades. Por consiguiente, el CCC no está en situación de formular más observaciones.»

 

La química de los «novichok»

En lo único que coinciden todos los expertos acerca de la posible naturaleza química de los supuestos «novichok» es que serían agentes neurotóxicos organofosforados.

Según la información proporcionada por Mirzayanov, en su libro «State secrets: an insider’s chronicle of the Russian chemical weapons program» de 2009, el primero que mencionó la existencia de los «novichok», estos serían ésteres organofosforados del tipo fluorofosfonamidatos. Dependiendo de si tienen un grupo metilo unido directamente al átomo de fósforo, o de si ese grupo metilo está ligado al átomo de fósforo a través de un átomo de oxígeno, el compuesto y sus análogos estarían recogidos en la Lista 2B.4, o no estarían recogidos en Lista alguna, respectivamente. Por otro lado el amidato de metilideno puede tener dos grupos alquilamino idénticos, o un grupo alquilo y un grupo alquilamino unidos al átomo de carbono metilidénico (Véase la tabla 1).

Tabla 1. Estructuras descritas por Mirzayanov en su libro «State secrets: an insider’s chronicle of the Russian chemical weapons program«
Sustancias con enlace P-C Sustancias sin enlace P-C
A-230

metilfluorofosfonamidato de N- [metil(dietilamino)metilideno]

A-232

N– [metil(dietilamino)metilideno] fluorofosfonamidato de O-metilo

A-242

metilfluorofosfonamidato de N- [bis(dietilamino)metilideno]

A-234

N– [metil(dietilamino)metilideno] fluorofosfonamidato de O-etilo

A-262

N- [bis(dietilamino)metilideno] fluorofosfonamidato de O-metilo

No hay mucha más información disponible en fuentes abiertas sobre los «novichok» descritos por Vil Mirzayanov. En su libro «War of nerves: chemical warfare from World War I to Al-Qaeda«, publicado en 2006, Jonathan Tucker ya aportaba información similar sobre estos agentes, aunque sin aportar ninguna estructura química concreta, obtenida tras una entrevista con Mirzayanov.

El primer agente, denominado A-230 (también K-84), habría sido desarrollado por el químico Pyotr Petrovich Kirpichev en 1973 y sería un agente neurotóxico derivado del ácido fosfónico (enlace fósforo-carbono) con nitrógeno, similar a los agentes neurotóxicos tradicionales. Tras la incorporación, en 1975, del químico Vladimir Ivanovich Uglev al programa, se estudiaron más de cien variantes del A-230, de las cuales sólo cinco resultaron tener una estabilidad adecuada. Uno de ellas, el A-232, resultó de especial interés, porque no era un derivado del ácido fosfónico, sino del ácido fosfórico, lo que permitiría encubrir más fácilmente la producción de este agente. Sus dos principales inconvenientes, frente al A-230, eran su menor toxicidad y su menor estabilidad, ya que se hidrolizaba más rápidamente. En las pruebas llevadas a cabo en ensayos in vivo en 1976 en Shikhany, tanto con el A-230 como con el A-232, mostrarían ser entre cinco y ocho veces más tóxicos que el VX.

En marzo de 1983, la Unión Soviética inició su programa de armas binarias dentro del programa Foliant. A la forma binaria del VX ruso se le asignó el nombre en clave «novichok» y a la forma binaria del A-232 se le asignó el nombre en clave «novichok-5». Los componentes binarios del A-232, uno a base de fósforo y otro a base de nitrógeno, tenían aplicaciones en la industria civil y presentaban una baja toxicidad. A mediados de los años ochenta se habría construido en Pavlodar, al norte de Kazajistán una planta química para la producción de estos precursores binarios, y entre 1989 y 1990 se habrían realizado, en Nukus (Uzbekistán), las primeras pruebas con el «novichok-5».  En 1993 se habría descubierto el «novichok-7», diez veces más potente que el somán, del cual se habrían producido unas pocas toneladas para hacer pruebas tanto en Nukus como en Shikhany.

Los agentes del programa Foliant y los agentes «novichok» no estarían incluidos dentro de la declaración que la Unión Soviética presentó a EE. UU. tras el MOU de Wyoming, pues las autoridades soviéticas alegaban que el MOU de Wyoming y el BDA sólo exigían declarar las armas químicas almacenadas, pero no las pequeñas cantidades producidas con fines de investigación.

Por otro lado, tendríamos los «novichok» que menciona Steven L. Hoenig en su libro «Compendium of chemical warfare agents«, de 2007. Los «novichok» descritos por Hoenig, que no indica la fuente de la que procede su información, serían ésteres organofosforados que contienen el grupo clorofluoroformaloxima, donde los halógenos pueden ser flúor, cloro o bromo, pero los descritos por Hoenig contienen flúor y cloro (véase la tabla 2)15:

Grupo dihaloformaloxima

Sobre los «novichok» descritos por Hoenig se ha descrito su síntesis y algunos de sus precursores de los sistemas binarios. Se parte del correspondiente alquil derivado del 2-fluoro-1,3,2-dioxafosfolano (CAS 765-40-2) que se hace reaccionar con el diclorofluoronitrosometano (CAS 1495-28-9) para formar un intermedio cíclico, que por calentamiento se desdobla para dar el agente correspondiente:

Reacción con diclorofluoronitrosometano

Desdoblamiento por calentamiento

 

Tabla 2. Agentes «novichok» descritos por Hoenig en su libro «Compendium of chemical warfare agents«
Sistema Precursor Código Agente
«novichok-?»

2-fluoro-1,3,2-dioxafosfolano

CAS 765-40-2

A-230

[(clorofluorometilen)amino]oxifosfonofluoridato de 2-cloropropilo

CAS 26102-97-6

«novichok-5»

2-fluoro-4-metil-1,3,2-dioxafosfolano

CAS 16415-09-1

A-232

[(clorofluorometilen)amino]oxifosfonofluoridato de 2-cloropropilo

CAS 26102-98-7

«novichok-7»

2-fluoro-4,5-dimetil-1,3,2-dioxafosfolano

CAS 19952-57-9

A-234

[(clorofluorometilen)amino]oxifosfonofluoridato de 3-cloro-2-butilo CAS 26102-99-8

 

En la tabla 3 se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov y por Hoenig, donde con un simple vistazo se aprecia la gran diferencia entre las estructuras químicas propuestas por los dos autores, que tan solo coinciden en el hecho de ser ésteres organofosforados, inhibidores de la acetilcolinesterasa.

Tabla 3. Comparativa de agentes «novichok» según Mirzayanov y Hoenig
Mirzayanov Hoenig
A-230

metilfluorofosfonamidato de N- [metil(dietilamino)metilideno]

 

[(clorofluorometilen)amino]oxifosfonofluoridato de 2-cloroetilo

CAS 26102-97-6

A-232

N- [metil(dietilamino)metilideno] fluorofosfonamidato de O-metilo

 

[(clorofluorometilen)amino]oxifosfonofluoridato de 2-cloropropilo

CAS 26102-98-7

A-234

N- [metil(dietilamino)metilideno] fluorofosfonamidato de O-etilo

 [(clorofluorometilen)amino]oxifosfonofluoridato de 3-cloro-2-butilo

CAS 26102-99-8

A-242

metilfluorofosfonamidato de N- [bis(dietilamino)metilideno]

A-262

N- [bis(dietilamino)metilideno] fluorofosfonamidato de O-metilo

 

Sin embargo, otros autores describen como «novichok» a un grupo de ésteres organofosforados del tipo N-[bis(dimetilamino)metilideno]-P-metilfosfonamidatos de O-alquilo. Describen su estructura, su método de síntesis y cómo es su fragmentación en espectrometría de masas16:

En la tabla 4 se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov y los descritos por Hosseini. Como puede apreciarse, en este caso sí parece existir una cierta similitud en las estructuras propuestas por los dos autores. Por supuesto, todos son ésteres organofosforados, inhibidores de la acetilcolinesterasa.

Tabla 4. Comparativa de los agentes «novichok» según Mirzayanov y Hosseini
Mirzayanov Hosseini

metilfluorofosfonamidato de N– [metil(dietilamino)metilideno]

N– [bis(dimetilamino)metilideno] metilfosfonamidato de O-metilo

CAS 2096401-97-5

metilfluorofosfonamidato de N– [bis(dietilamino)metilideno]

metilfluorofosfonamidato de N– [bis(dimetilamino)metilideno]

CAS 2074608-43-6

N– [metil(dietilamino)metilideno] fluorofosfonamidato de O-metilo

N– [bis(dimetilamino)metilideno] metilfosfonamidato de O-etilo

CAS 2096401-99-7

N– [metil(dietilamino)metilideno] fluorofosfonamidato de O-etilo

N– [bis(dimetilamino)metilideno] metilfosfonamidato de O-isopropilo

CAS 2096402-01-4

N– [bis(dietilamino)metilideno] fluorofosfonamidato de O-metilo

N– [bis(dimetilamino)metilideno] metilfosfonamidato de O-fenilo

CAS 2096402-03-6

N– [bis(dimetilamino)metilideno] metilfosfonamidato de O-(2,6-dimetilfenilo)

CAS 2096402-05-8

 

 

Evidencias

Parece evidente que todos los posibles «novichok», como ésteres oganofosforados que son, pueden detectarse con la misma facilidad que otros agentes neurotóxicos. Pueden sintetizarse en laboratorios químicos de muchos países, en cantidades pequeñas más que suficientes para atentar contra objetivos selectivos (aunque para esto no es necesario recurrir a medios «exóticos», siendo suficiente el empleo de armas blancas o armas de fuego, y su identificación inequívoca en una muestra no es prueba inequívoca de su síntesis y empleo por parte de alguien en concreto. Si a esto añadimos que no parece haber prueba «oficial» evidente de la existencia de los «novichok» (al menos para la OPAQ y la comunidad científica), ni existe una relación evidente entre los «novichok» y Rusia (salvo el nombre ruso), el tema es susceptible de todo tipo de conjeturas con muy diverso grado de credibilidad.

Tampoco el Reino Unido ha hecho público hasta este momento en qué se basa para aseverar que es «altamente probable» que la sustancia empleada contra Skripal tenga su origen en Rusia (comparación con patrones obtenidos directamente de Shikhany por los servicios de inteligencia, otro tipo de pruebas de la investigación policial distintas a los análisis de muestras, etc.), de modo que nada más sabemos hasta la fecha.

Nosotros no queremos ser menos y ya hemos elegido nuestro «novichok» para apadrinar, se llama MSPI. Tiene una estructura química inusual, es un organofosforado que inhibe fuertemente la acetilcolinesterasa, y el tratamiento antidótico con atropina y trimedoxima (con y sin diazepam) no consigue revertir la inhibición de la acetilcolinesterasa en los ensayos in vitro e in vivo17:

1-metil-S-(3-metiltiofosforil) imidazolio (MSPI)

CAS 70951-04-1

Nuestro «novichok» tiene padres franceses, fue sintetizado en 1979, y mientras alguien no lo desmienta podría ser el «novichok asesino» de Salisbury, aunque no esta teoría no debería sustentarse durante mucho tiempo, pues el 20 de marzo el Director General de la OPAQ, Ahmet Üzümcü, informaba que los análisis de las muestras tomadas en Salisbury tardarían entre dos y tres semanas en completarse. Si todo funciona como debiera, a mediados del mes de abril deberíamos saber quién es el ganador del premio «novichok», aunque parece poco probable que alguien suba a recogerlo.

 

Referencias

  1. «OPCW Member States», https://www.opcw.org/about-opcw/member-states/
  2. «U.S.-Russian Wyoming Memorandum Of Understanding on Chemical Weapons», http://dosfan.lib.uic.edu/acda/factshee/wmd/cw/cwmou.htm
  3. «Coming to Terms with Security: A Lexicon for Arms Control», Volumen 319, Steve Tulliu,Thomas Schmalberger
  4. «Agreement between the United States of America and the Union of Soviet Socialist Republics on destruction and non-production of chemical weapons and on measures to facilitate the multilateral convention on banning chemical weapons», https://fas.org/nuke/control/bda/text/bda.htm
  5. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción», https://www.opcw.org/sp/convencion-sobre-las-armas-quimicas/texto-completo/
  6. «Dismantling the Soviet-Russian Chemical Weapons Complex-a insider´s view» en «Chemical Weapons Disarmament in Russia: Problems and Prospects», Vil S. Mirzayanov, The Henry L. Stimson Center, 1995, https://www.stimson.org/sites/default/files/file-attachments/Report17_1.pdf
  7. «The Pavlodar chemical weapons plant in Kazakhstan: History and legacy», Gulbarshyn Bozheyeva, The Nonproliferation Review, 7:2, 136-145, (2000).
  8. «The perversion of knowledge», Vadim J. Birstein, Westview Press, 2001.
  9. «War of nerves, chemical warfare from World War I to Al-Qaeda», Jonathan B. Tucker, Pantheon Books,2006
  10. «The Mirzayanov affair: Russia’s ‘military‐chemical complex’», D. L. Averre, European Security, 4:2, 273-305, 2007
  11. «State Secrets. An Insider’s Chronicle of the Russian Chemical Weapons Program», Vil S. Mirzayanov, Outskirts Press, 2008
  12. «History of Russia’s chemical weapons», Györgyi Vásárhelyi & László Földi, AARMS, Vol. 6, No. 1 (2007) 135–146
  13. «OPCW Director-General Commends Major Milestone as Russia Completes Destruction of Chemical Weapons Stockpile under OPCW Verification», https://www.opcw.org/news/article/opcw-director-general-commends-major-milestone-as-russia-completes-destruction-of-chemical-weapons-stockpile-under-opcw-verification/
  14. «Report of the Scientific Advisory Board on Developments in Science and Technology for the Third Special Session of the Conference of the States Parties to Review the Operation of the Chemical Weapons Convention», RC-3/DG.1 de 29 de octubre de 2012, https://www.opcw.org/fileadmin/OPCW/CSP/RC-3/en/rc3dg01_e_.pdf
  15. «Compendium of Chemical Warfare Agents», Steven L. Hoenig, Springer, 2007
  16. «Fragmentation pathways and structural characterization of organophosphorus compounds related to CWC by electron ionization and electrospray ionization tandem mass spectrometry», Seyed Esmaeil Hosseini, Hamid Saeidianc, Ali Amozadeha, Mohammad Taghi Naserib, & Mehran Babrib, Rapid Commun Mass Spectrom. 2016 Dec 30;30 (24):2585-2593
  17. «In vivo and in vitro Inhibition of Cholinesterase by Methyl-1 (S-Methyl Phosphoryl-3) Imidazolium (MSPI), a Model of an «instantly» Aged Phosphorylated Enzyme», P. E. Chabrier & J. Jacob, Arch. 45, 15-20 (1980)

 

El teniente coronel (reserva) Juan Domingo es especialista en Defensa NBQ y editor de la página web cbrn.es.

El teniente coronel René Pita es jefe del Departamento de Defensa Química de la Escuela Militar de Defensa NBQ.

 

 

El DF, un precursor clave

El difluoruro de metilfosfonilo (DF), CAS 676-99-3, es un precursor de Lista 1 de la Convención sobre la prohibición de las Armas Químicas (CAQ) (1B.9), que está en la Lista de control de exportaciones del Grupo Australia, como precursor de armas químicas, junto con el dicloruro de metilfosfonilo (DC), CAS 676-97-1, precursor de Lista 2 de la CAQ (2B.4). Ambas sustancias se emplean como precursores en la síntesis de numerosos agentes neurotóxicos entre los que podemos citar el sarín (GB), el somán (GD) y el ciclosarín (GF).1

Muy probablemente, el DF era, antes de octubre del 2013, un completo desconocido para la inmensa mayoría de los lectores. A raíz del incidente con armas químicas en Ghouta (Siria) y de la adhesión de Siria a la CAQ en el año 2013, el DF se hizo muy popular y también la declaración inicial realizada por Siria sobre su arsenal químico.

Recordemos que las primeras noticias sobre el arsenal químico sirio hablaban de unas 1300 toneladas de iperita, sarín y VX, sin detallar más, pero con un texto ambiguo que daba a entender que las 1300 toneladas se referían a sustancias de lista 1A de la CAQ (agentes químicos de guerra). Lo cierto es que con los datos aparecidos el arsenal químico consistiría en 20,25 tm de iperita o gas mostaza (sustancia química tóxica de Lista 1A.4), 540 tm de DF o difluoruro de metilfosfonilo (precursor de Lista 1B.9), 290 tm de sustancias de Lista 2, 110 tm de sustancias de Lista 3, y 398 tm de sustancias químicas NO incluidas en el anexo de verificación de la CAQ, entre las cuales figuraban varios alcoholes (isopropanol, 1-butanol y metanol). Las cantidades de DF e iperita pueden variar ligeramente, en función de la fuente y la fecha de citación (570 tm de DF y 20,25 tmde iperita, 581 tm de DF y 19.8 tm de iperita, etc).2,3,4

El DF es un precursor llave, pues mezclado con diferentes alcoholes permite la obtención de manera muy sencilla de diversos agentes neurotóxicos, por ejemplo, sarín, somán y ciclosarín, todos ellos metilfosfonofluoridatos de O-alquilo. El DF es uno de los constituyentes del sistema binario de armas químicas más conocido, el GB2, para la obtención del sarín.

 

El DF5,6,7

El difluoruro de metilfosfonilo (DF), tiene fórmula empírica CH3F2OP, estructura tetraédrica, y peso molecular 100,00:

El difluoruro de metilfosfonilo (DF), también es conocido con otros nombres y sinónimos, como por ejemplo, difluoro, EA 1251, difluorometilfosfonato, óxido de difluorometilfosfina, metil difluorofosfito, ácido metilfosfonodifluorídico, etc.. El DF es una sustancia líquida de aspecto claro y olor acre, de punto de fusión -36,9 °C y punto de ebullición 99,7 °C, con una presión de vapor de 36 mmHg a 25 °C, la sustancia líquida es más densa que el agua (1,359 a 25 °C) y sus vapores son más densos que el aire (densidad relativa de los vapores = 3,4).

Los vapores de DF tienen un olor acre y pueden causar irritación dolorosa y severa de los ojos, nariz, garganta y pulmones. La exposición aguda severa puede causar edema pulmonar, cuya aparición podría retrasarse varias horas. En contacto con la piel el DF provoca una irritación severa de la misma, como consecuencia de la hidrólisis del DF por contacto con la humedad de la piel, con formación de fluoruro de hidrógeno, que podría causar quemaduras en la piel, de segundo o tercer grado. La ingestión del DF por via oral puede provocar una destrucción tisular severa en el tracto gastrointestinal.

Para una exposición laboral al DF, el valor límite sugerido para una jornada normal de trabajo de 8 horas y una semana laboral de 40 horas es de 0,008 mg/m3 (≅0,002 ppm). El valor establecido como Inmediatamente Peligroso para la Vida y la Salud, IPVS (Immediately Dangerous to Life or Health, IDLH) es de 0,01 ppm.

En caso de emergencia se recomienda emplear la guía de respuesta a emergencia nº 154 (GRE2016), correspondiente a sustancias tóxicas o/y corrosivas (no combustibles). El DF no es inflamable pero como reacciona con el agua para producir HF, en caso de incendio no se debería emplear agua, y debería emplearse CO2 o polvo.

 

Obtención8

  • Los difluoruros de alquilfosfonilo pueden obtenerse a partir de los correspondientes dicloruros de alquilfosfonilo por reacción de éstos con fluoruro de hidrógeno anhidro, con excepción de los difluoruros de tert-butilfosfonilo que requieren un agente fluorante más potente, como por ejemplo, el trifluoruro de antimonio, y aún así, la reacción de fluoración puede no completarse, y quedarse en la formación del clorofluoruro de alquilfosfonilo:

Normalmente, la reacción entre el fluoruro de hidrógeno y el dicloruro de metilfosfonilo es tan rápida que puede realizarse en el laboratorio con equipos de vidrio. La reacción con un mol de fluoruro de hidrógeno no conlleva a la formación del clorofluoruro de metilfosfonilo (CAS 753-71-9), sino más bien una mezcla de difluoruro de metilfosfonilo y dicloruro de metilfosfonilo que se pueden separarse por destilación.

Se funde el dicloruro de metilfosfonilo aumentando la temperatura hasta aproximadamente unos 35 °C y se añade fluoruro de hidrógeno anhidro a un ritmo tal que la temperatura se eleve hasta unos 75 °C. Durante la reacción se genera de manera ininterrumpida cloruro de hidrógeno. Si el sistema está perfectamente seco la reacción puede llevarse a cabo en vidrio Pyrex, con la línea de suministro de la bombona de fluoruro de hidrógeno hecha de polietileno, con un tubo de borboteo de cobre. El producto se desgasifica a presión reducida y el residuo se calienta a reflujo durante 30 minutos. El difluoruro de metilfosfonilo se separa mediante fraccionamiento con una pureza del 90%.

  • También puede utilizarse como material de partida el ácido O-metil metilfosfónico en vez del dicloruro de metilfosfonilo:

El ácido O-metil metilfosfónico (110 gramos ≅ 1 mol) y el fluoruro de hidrógeno anhidro (400 gramos ≅ 20 moles) se calientan a 110 °C y una presión de 7 atmósferas, durante 2 horas, en un autoclave de acero forrado de plata. La mezcla resultante se separa de la solución acuosa de fluoruro de hidrógeno y por destilación fraccionada se elimina el metanol. El rendimiento es del 60 %.

  • Una ruta de síntesis diferente, hace reaccionar el metiltetrafluorofosforano (CAS 420-64-4) con el anhídrido acético (CAS 108-24-7) (puede utilizarse también anhídrido propiónico o anhídrido butírico):

La reacción produce difluoruro de metilfosfonilo (DF) y fluoruro de acetilo (CAS 557-99-3) (con anhídrido propiónico o anhídrido butírico se formarían los correspondientes fluoruros de propionilo y de butirilo). El anhídrido del ácido se calienta a 80 °C y se hace pasar lentamente a través del metiltetrafluorofosforano. Para obtener el producto con buena pureza los productos se destilan dos veces.

 

 

Destrucción9

Para algunos agentes químicos de guerra existen los denominados sistemas binarios, donde los precursores (el denominado componente clave y un segundo componente) se encuentran en compartimentos separados por una membrana que se rompe con la inercia del disparo, de modo que los precursores se mezclan y reaccionan para formar el agente químico.

Para la destrucción de las armas químicas binarias la CAQ establece (en la Parte IV (A) – «Destrucción de armas químicas y su verificación de conformidad con el artículo IV», apartado «C. Destrucción», artículo 18) lo siguiente:

  1. A los efectos del orden de destrucción, se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto final tóxico específico equivale a la cantidad (en toneladas) de ese producto final tóxico calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;
  2. La exigencia de destruir una cantidad determinada del componente clave implicará la exigencia de destruir una cantidad correspondiente del otro componente, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario; y
  3. Si se declara una cantidad mayor de la necesaria del otro componente, sobre la base de la relación efectiva de peso entre componentes, el exceso consiguiente se destruirá a lo largo de los dos primeros años siguientes al comienzo de las operaciones de destrucción.
  4. Al final de cada año operacional siguiente, cada Estado Parte podrá conservar una cantidad del otro componente declarado determinada sobre la base de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.

El apartado b. implica que no sólo se debe destruir todo el difluoruro de metilfosfonilo (DF) declarado, componente clave del sarín (Lista 1B), sino también la parte estequiométrica de alcohol isopropílico (sustancia no listada), por ser ambos componentes de un sistema binario del sarín. Es decir, por cada tonelada de DF se deben destruir 609 kilogramos de alcohol isopropílico.

 

100,00 tm de DF + 60,90 tm de alcohol isopropílico producen 140,09 tm de sarín

Pero el DF es capaz de reaccionar con otros alcoholes para producir otros agentes neurotóxicos de la misma familia que el sarín (metilfosfonofluoridatos de O-alquilo, incluidos en la Lista 1A.1).

 

100,00 tm de DF + 102,17 tm de alcohol pinacolilico producen 82,17 tm de somán

100,00 tm de DF + 100,16 tm de ciclohexanol producen 180,16 tm de ciclosarín

100,00 tm de DF + 46,07 tm de etanol producen 126,07 tm de metilfosfonofluoridato de O-etilo

100,00 tm de DF + 74,12 tm de n-butanol producen 154,12 tm de metilfosfonofluoridato de O-butilo

Habría que destruir el DF y en cada caso la correspondiente cantidad estequiométrica  del alcohol en cuestión.

 

 

Hidrólisis5,7

El DF se hidroliza (reacciona con el agua) de manera prácticamente instantánea produciendo ácido metilfosfonofluorídico (MF, MethylphosphonoFluoridic acid, CAS 1511-67-7) y fluoruro de hidrógeno (HF), ambos tóxicos.

Como puede apreciarse, un mol de agua (18 gramos) reacciona con un mol de DF (100 gramos) para producir un mol de MF. El MF es una sustancia incluida en la Lista 2B.4 de la CAQ, y no sirve como precursor clave para la síntesis binaria del sarín (ni de ningún otro agente neurotóxico). La simple adición de agua al DF, así como la simple adición de agua al alcohol isopropílico, inutiliza ambos componentes para su utilización en la síntesis binaria del sarín.

La posterior hidrólisis del ácido metilfosfonofluorídico es una reacción lenta que produce ácido metilfosfónico (MPA, MethylPhosphonic Acid, CAS 993-13-5). Para el ácido metilfosfonofluorídico el tiempo de vida media, t½, es de 162 días a pH=7, de 90 días a pH=4 y de 47 días a pH=3.

La reacción global sería:

 

Según el Departamento de Defensa de Estados Unidos, a bordo de US Cape Ray se hidrolizaron 581,5 tm de DF y 19,8 tm de iperita utilizando dos unidades del sistema desplegable de hidrólisis (FDHS, Field Deployable Hidrolysis System)10 desarrollado por las Fuerzas Armadas de Estados Unidos (U.S. Army). El proceso duró 42 días y los efluentes resultantes de la hidrólisis y neutralización se entregaron en Finlandia y en Alemania, respectivamente, para su incineración.

El FDHS mezcla el DF con agua en una proporción 1:5. La hidrólisis produce principalmente una solución de ácido metilfosfonofluorídico (MPA, CAS 993­-13-5) y ácido fluorhídrico (HF, CAS 7681-49-4). Esta solución de pH bastante ácido se transfiere a un contenedor de aleación hastelloy para su posterior neutralización hasta un pH ~7 empleando una solución de hidróxido sódico al 25 % (p/p). Como resultado de la neutralización el MPA se transforma en sus sales mono- y di-sódicas y el ácido fluorhídrico (HF) se transforma en fluoruro sódico (NaF, CAS 7681-49-4), todos ellos en solución acuosa5.

Sistema desplegable de hidrólisis (FDHS, Field Deployable Hidrolysis System)

 

El 11 de junio de 2015 finalizaba la destrucción del DF al concluir, en las instalaciones de Ekokem Riihimäki Waste Disposal, en Finlandia, la incineración de las 5463 tm del efluente procedente de la hidrólisis y neutralización del DF11.

 

Referencias

  1. «The Preparatory Manual of Chemical Warfare Agents», Jared B. Ledgard,The Paranoid Publications Group, 2003
  2. «La destrucción de las armas químicas sirias: la guerra de los números y las letras», Juan Domingo y René Pita, Documento de Opinión del Instituto Español de Estudios Estratégicos 8/2014, 16 de enero de 2014.
  3. «Not so deadlines», Jean Pascal Zanders, The Trench, 24 de noviembre de 2013, disponible en http://www.the-trench.org/not-so-dead-lines/; y «Not so deadlines, – some updates and correction», Jean Pascal Zanders, The Trench, 6 de diciembre de 2013, disponible en http://www.the-trench.org/not-so-dead-lines-%e2%80%92-some-updates-and-corrections/.
  4. «U.S. Completes Destruction of Sarin Precursors from Syria on the Cape Ray», OPCW, https://www.opcw.org/news/article/us-completes-destruction-of-sarin-precursors-from-syria-on-the-cape-ray/
  5. «DF Effluent Characterization Summary», https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj5yYP8s_LTAhWEXhoKHaoBAxEQFggnMAA&url=https%3A%2F%2Fwww.ungm.org%2FUNUser%2FDocuments%2FDownloadPublicDocument%3FdocId%3D242857&usg=AFQjCNFljXnQ_I0AN4W2T6lB-Z3nC9uzHw&sig2=9MipH-4D-gTm–lff1jmlA
  6. «Handbook Of Chemical And Biological Warfare Agents», Hank Ellison
  7. «Potential military chemical-biological agents and compounds», FM 3-11.9, MCRP 3-37.1B, NTRP 3-11.32, AFTTP(I) 3-2.55, January 2005
  8. «Best Synthetic Methods-Organophosphorus (V) Chemistry», «Chapter 2. Phosphonyl Compounds», Christopher M. Timperley, Academic Press, 2015
  9. «Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas y sobre su destrucción», texto completo, https://www.opcw.org/sp/convencion-sobre-las-armas-quimicas/texto-completo/
  10. «The Field Deployable Hydrolysis System (FDHS)», Edgewood Chemical Biological Center (ECBC), https://www.ecbc.army.mil/cbarr/newsletter/2013/CBARR_August2013.pdf)
  11. «Disposal of effluents from neutralised Syrian chemical weapons completed», https://www.opcw.org/news/article/disposal-of-effluents-from-neutralised-syrian-chemical-weapons-completed/