Archivo por meses: julio 2016

Dijiste media verdad, te llamarán mentiroso…

«¿Dijiste media verdad?, dirán que mientes dos veces si dices la otra mitad.»

Antonio Machado

Las verdades a medias, así como las verdades fuera de contexto, son más perjudiciales y dañinas que las mentiras, ya que utilizan la media verdad expuesta para soportar la mentira incluida.

Recientemente se ha publicado una noticia, con títulos muy similares en diferentes medios1,2, acerca de que la OPAQ (Organización para la Prohibición de las Armas Químicas) le ha pedido a la Republica Árabe Siria que explique sus agentes químicos de guerra. Las noticias basadas en un informe del Director General de OPAQ y en el discurso del embajador de Estados Unidos Kenneth D. Ward, aportan poca luz al tema de las armas químicas sirias y además, de manera intencionada o casual, cuentan medias verdades.

 

El discurso de Kenneth D. Ward

El martes 12 de julio, en la 82 sesión del Consejo Ejecutivo de la OPAQ, el embajador de Estados Unidos, Kenneth D. Ward, citaba un informe del Director General de OPAQ (probablemente se refería al informe del Director General, EC-82/DG.18, «Conclusiones de los resultados de las consultas mantenidas con la República Árabe Siria respecto de su declaración de armas químicas» que también había sido entregado a la Agence France Presse) e indicaba en su discurso3 que:

….»El Director General ha informado a este Consejo, como hizo antes de la sesión del Consejo Ejecutivo del mes de marzo, que la Secretaría no es capaz de resolver todas las lagunas, inconsistencias y discrepancias identificadas en la declaración de Siria, y por lo tanto no puede verificar que Siria haya presentado una declaración que pueda considerarse exacta y completa de acuerdo con la CAQ (Convención para la prohibición de las Armas Químicas) o la decisión del Consejo de septiembre de 2013.»

«Quizás son aún más preocupante los resultados de un gran número de muestras tomadas por la Secretaría en las instalaciones sirias. El Director General informa que los resultados indican potenciales actividades no-declaradas relacionadas con armas químicas en múltiples ubicaciones. Además, la toma de muestras y análisis indican potenciales actividades no-declaradas que afectan a cinco agentes químicos de guerra-cuatro de los cuales no han sido identificados o declarados por Siria a la OPAQ.»

….»Siria ha organizado una calculada campaña de intransigencia y ofuscación, de engaño y de desafío: Siria alega que todos sus registros han sido destruidos; las informaciones aportadas por Siria cambian constantemente y contradicen flagrantemente informaciones aportadas con anterioridad; y Siria hace promesas de acceso completo a todos los funcionarios sirios para más tarde negar tal acceso.»

….»Durante más de dos años, la Secretaría y el Consejo han proporcionado a Siria la oportunidad de infundir a nivel internacional, confianza sobre su renuncia a las armas químicas y su conversión en un Estado Parte respetable. Siria no sólo ha desperdiciado la oportunidad, sino que cínicamente la ha explotado.»

 

Las armas químicas sirias

Lo cierto es que Siria entregó su solicitud de adhesión a la CAQ el 14 de septiembre de 2013. La Convención entró en vigor para Siria treinta días después, es decir, el 14 de octubre de 2013, y de este modo pasó a ser el Estado Parte número 190 en la CAQ. El 24 de octubre, Siria presentó formalmente a la OPAQ su declaración inicial acerca de su programa de armas químicas, declaración que tenía carácter confidencial.

Las primeras noticias sobre el arsenal químico sirio hablaban de unas 1.300 toneladas de iperita, sarín y VX, sin detallar más, pero con un texto ambiguo donde se daba a entender que las 1.300 toneladas se referían a sustancias de Lista 1A de la CAQ. Esto es, 1.300 toneladas de agentes químicos de guerra extremadamente tóxicos, sin ningún tipo de aplicación a nivel industrial. Poco a poco la confidencialidad de la declaración siria a la OPAQ se fue diluyendo y se empezó a hablar de 1.300 toneladas de sustancias químicas de las cuales una gran parte consistiría en precursores de agentes neurotóxicos almacenados en contenedores, es decir, en una fase previa a la síntesis, así como municiones vacías.

Además el 22 de noviembre de 2013, el Consejo Ejecutivo de la OPAQ solicitaba al Director General de la Organización «explorar opciones» para la destrucción en instalaciones comerciales de los diversos productos químicos declarados por Siria. De esta manera, el 22 de noviembre la OPAQ invitaba a las empresas a participar en la destrucción de estas sustancias químicas a través de un documento conocido como el EOI (Expression of Interest)5.

El EOI incluía en varias listas un total de 18 productos químicos, en su mayor parte sustancias químicas a granel utilizadas y comercializadas de forma habitual por la industria química en todo el mundo. Estas listas permitieron que algunos autores analizaran las mismas intentando dilucidar qué agentes químicos de guerra había declarado Siria.

Atendiendo a la información aportada por algunos autores, las sustancias denominadas «A», «B» y «BB» se correspondían, respectivamente, con la sal sódica del metilfosfonotioato de O-etilo (CAS 22307-81-9), una solución entre el 23% y el 64% de N-(2-cloroetil)-n-etil propan-2-amina (CAS 13105-93-6) y una solución entre el 23% y el 64% de N-(2-cloroetil)-n-isopropil propan-2-amina (CAS 96-79-7), incluidas en el EOI5. Por tanto, se corresponderían con sustancias de Lista 2 que permitirían la síntesis de sustancias de Lista 1A3, es decir alquilfosfonotiolatos, sustancias de la familia del agente neurotóxico VX, pero no VM.

 

 13105-93-6  96-79-7
dietil cloroetilamina, CAS 13105-93-6 diisopropil cloroetilamina, CAS 96-79-7

 

La sustancia «A» sería la sal sódica de un producto de degradación del VX, conocido como EMPTA (metilfosfonotioato de O-etilo, CAS 18005-40-8), de elevada toxicidad, que podría utilizarse como precursor del VX, pero no como precursor clave en un sistema binario de VX.

 

 22307-81-9 18005-40-8
sal sódica del metilfosfonotioato de O-etilo, CAS 22307-81-9 metilfosfonotioato de O-etilo, CAS 18005-40-8

 

Posteriormente se supo que en el EOI se indicaron incorrectamente los nombres de los precursores «B» y «BB»6, siendo los correctos, clorhidrato de dietil cloroetilamina (diethyl aminoethyl chloride hydrochloride) y clorhidrato de diisopropil cloroetilamina (diisopropyl aminoethyl chloride hydrochloride). De esta manera, si es posible la obtención de los agentes neurotóxicos VX y VM a partir de los precursores declarados por siria. Así, los precursores «A» y «B» permitirían la obtención del VM (S-[2-(dietilamino)etil] metilfosfonotioato de O-etilo) y los precursores «A» y «BB» permitirían la obtención del VX (S-[2-(diisopropilamino)etil] metilfosfonotioato de O-etilo).

 

 VM  VX
VM VX

 

Sin embargo, no es posible deducir que Siria haya declarado componentes binarios de agentes neurotóxicos de la familia del VX únicamente con la información recogida en el EOI. Por ejemplo, para un sistema binario de VX se requeriría poseer O-(2-diisopropilaminoetil) metilfosfonito de O-etilo (QL) y para la obtención de VM, se necesitaría O-(2-dietilaminoetil) metilfosfonito de O-etilo, sustancias recogidas en Lista 1B10 de la CAQ.

 

Conclusión

Visto lo visto, parece que Siria declaró inicialmente cuatro agentes químicos de guerra, pero sólo uno de ellos como tal, la iperita. Estaríamos hablando de:

  • Iperita (aproximadamente unas 20 tm)
  • Programa químico de sarín (DF + alcohol isopropílico)
  • Programa químico de VX («A» + «B»)
  • Programa químico de VM («A» + «BB»)

El 14 de julio2014, gracias a la labor del Grupo de Evaluación de las Declaraciones, la República Árabe Siria presentó una enmienda a su declaración inicial para incluir la instalación de producción de ricina “Al-Maliha”y el 12 de septiembre de 2014, presento un plan detallado para la destrucción de la misma. En su cuadragésima sexta reunión, el Consejo Ejecutivo consideró y adoptó la decisión sobre el plan combinado para la destrucción y la verificación de la instalación (EC-M-46/DEC.1, de fecha 19 de noviembre de 2014), en el marco de la nota del Director General sobre la misma cuestión (EC-M-46/DG.2, de fecha 27 de octubre de 2014) 7. La instalación parece encontrarse en una zona no controlada por el gobierno sirio que señala que la cantidad entera de ricina producida fue eliminada antes de la entrada en vigor de la Convención para Siria.

La ricina sería el quinto agente químico de guerra citado, de modo que a la lista anterior habría que añadir:

  • Programa químico de ricina

El problema radica en que Siria, efectuadas las diversas declaraciones mencionadas es incapaz de explicar de manera satisfactoria su programa de armas químicas, sobre todo en lo referente a algunos aspectos de los agentes no encontrados como tales (sarín, VX, VM y ricina). Tampoco es capaz de explicar satisfactoriamente los resultados procedentes de la toma de muestras y análisis en distintas instalaciones, que apuntan a la presencia de lo que no debería estar presente.

La OPAQ y los políticos deberían ser más transparentes y claros en sus manifestaciones, salvaguardando los límites impuestos por la confidencialidad, y Siria debería facilitar de manera inmediata, clara y sin restricciones, todas las aclaraciones que le solicitan desde la Secretaría de la OPAQ.

 

Referencias

  1. «OPCW to Syria: You must explain chemical warfare agents», http://www.thearabweekly.com/?id=5721
  2. «Syria must explain chemical warfare agents: watchdog», http://www.dailystar.com.lb/News/Middle-East/2016/Jul-13/361877-syria-must-explain-chemical-warfare-agents-watchdog.ashx
  3. «United States of America: Statement at the 82nd session of the Executive Council», https://www.opcw.org/fileadmin/OPCW/EC/82/en/merged.pdf
  4. «Un año del plan de detrucción», J. Domingo, https://cbrn.es/?p=105
  5. «Request for Expression Of Interest (EOI)», http://www.the-trench.org/wp-content/uploads/2013/11/20131121-OPCW-Syria-CW-disposal-EOI.pdf
  6. » Amendments and Modifications to the Arrangement with the Government of the United Kingdom Governing On-Site Inspections at the Ellesmere Port High Temperature Incinerator and Marchwood Military Port, United Kingdom», EC-76/S/8, https://www.opcw.org/fileadmin/OPCW/EC/76/en/ec76s08_e_.pdf
  7. «Nota del Director General: Avances logrados en la eliminación del programa de armas químicas sirias», EC-78/DG.3, https://www.opcw.org/fileadmin/OPCW/EC/78/en/ec78dg03_e_.pdf

La intersección no identifica

El que más y el que menos recuerda, de sus matemáticas de la infancia, lo que era la intersección de dos conjuntos: «La intersección de dos conjuntos A y B es el conjunto A ∩ B que contiene todos los elementos comunes de A y B». Pues bien utilizando cinco sistemas de detección diferentes vamos a estudiar la intersección de los mismos, y veremos que la intersección no identifica.

 

El caso

Un especialista en Defensa NBQ, bien pertrechado que diría yo, dispone para su trabajo de cinco sistemas de detección, comprobados antes de su empleo y en perfecto estado de funcionamiento:

  • Tubos de detección de ésteres fosfóricos, para agentes neurotóxicos de guerra, por ejemplo de Dräger, NSN 6665-01-518-0509
  • Papel detector M8, por ejemplo de Luxfer Magtech Inc., NSN 6665-00-050-8529
  • Detector de fotoionización, por ejemplo, ppbRAE 3000, NSN 6665-01-610-5755
  • Detector fotométrico de llama, por ejemplo, AP2C de Proengin, NSN 6665-14-487-5893
  • Detector de espectroscopía de movilidad iónica, por ejemplo, LCD-3.3 de Smiths Detection, NSN 6665-01-529-7408

Nota: NSN es el acrónimo de Nato Serial Number

El marrón que tiene que resolver es determinar si el contenido de un frasco es o no un agente químico de guerra, pudiendo emplear para ello la información proporcionada por uno, varios, o todos los sistemas de detección de que dispone:

frascoX

 

Tubos de detección de ésteres fosfóricos

Existen en el mercado tubos detectores capaces de medir en el aire más de 200 gases y vapores orgánicos e inorgánicos. Los tubos detectores son tubos de vidrio rellenos de una serie de sustancias apropiadas que reaccionan con un determinado gas o vapor para producir un cambio o aparición de color. Para su funcionamiento emplean una bomba manual (de fuelle o de pistón) para introducir en el tubo indicador un determinado volumen de aire, establecido por el fabricante, de modo que con el cambio de color producido se puede estimar de manera semi-cuantitativa la concentración de la sustancia detectada.

Lo primero y más importante es seleccionar el tubo detector capaz de detectar la sustancia de nuestro interés, en este caso disponemos para la detección de agentes neurotóxicos de guerra, de tubos de detección de ésteres fosfóricos, dado que los primeros son también ésteres fosfóricos.

Comprobado el sistema de aspiración (sistema de bombeo), se toma un tubo y se abre por sus extremos con ayuda de la cuchilla cerámica que se suministra. Se coloca el tubo en la dirección indicada por la flecha y se sigue el procedimiento indicado por el fabricante. Por ejemplo, para los tubos de ésteres fosfóricos de la empresa Dräger (Referencia 6728461, NSN 6665-01-518-0509) sería el siguiente:

Realizar 10 emboladas de 100 mL → romper la ampolla interior del tubo → mojar con el líquido liberado la zona que contiene la enzima → esperar 1 minuto → aspirar el líquido sólo hasta marca anular → esperar 1 minuto → realizar 1 embolada adicional → la aparición de un color rojo, persistente durante al menos 1 minuto, indica presencia de agentes neurotóxicos (el tiempo necesario para realizar el ensayo es del orden de 5 minutos).

Las reacciones que pueden ocurrir dentro del tubo son las siguientes:

  • En ausencia de ésteres fosfóricos la enzima está activa, actúa sobre el yoduro de butirilcolina (CAS 2494-56-6) y produce ácido butírico (CAS 107-92-6) y ioduro de colina (CAS 17773-10-3). El ácido butírico provoca el cambio de color del indicador acido-base rojo de fenol, y aparece coloración amarilla en el tubo indicador (pH<6,8).
  • En presencia de ésteres fosfóricos la enzima está inhibida, no puede actuar sobre el yoduro de butirilcolina, y el indicador ácido-base rojo de fenol provoca la aparición en el tubo indicador de una coloración roja (pH>8,4).

Tubos esteresP

Butcolinreaction

 

Papel detector M8

Los papeles indicadores consisten en un papel sin coloración especial (sin blanquear) impregnado con uno o más colorantes (pigmentos) o colorantes indicadores (indicadores). Cuando una gota de una sustancia química (agente químico de guerra) moja el papel (es absorbida por el papel) se disuelve(n) los pigmentos mostrando su color, provocando en algunos casos un cambio en la coloración del indicador (si el papel contiene indicador). El color que se muestra indica la presencia de la sustancia química. En algún caso la aparición de diferentes colores permite clasificar la sustancia como perteneciente a un determinado grupo, pero nunca identifican la sustancia.

El papel detector M8 (NSN 6665-00-050-8529) fue desarrollado para detectar agentes líquidos, específicamente agentes neurotóxicos, de tipo G y de tipo V, y agentes vesicantes, de tipo H.

El cambio de color del papel depende del tipo de agente presente, por ejemplo los agentes vesicantes, como la iperita, HD, disuelven el colorante rojo y aparece coloración rojiza; los agentes neurotóxicos de tipo G disuelven el colorante amarillo y aparece coloración amarillenta, y los agentes neurotóxicos de tipo V disuelven en colorante amarillo pero al mismo tiempo provoca que el colorante indicador verde cambie a color azul, y aparece una coloración verdosa.

Sobre un tira de papel indicador M8 se añaden unas pequeñas gotas del líquido desconocido, que moja el papel indicador M8, disuelve el indicador amarillo, y aparece una coloración amarilla que indica presencia de agente neurotóxico de tipo G.

El metilfosfonato de dimetilo (DMMP) y el hidróxido sódico (NaOH) cuando mojan el papel indicador M8 también producen coloración amarilla (y por supuesto muchas otras sustancias químicas).

M8 con agente G

 

Detector de fotoionización

Los detectores de fotoionización (PID, PhotoIonization Detector) se utilizan para la detección no específica de una amplia variedad de sustancias químicos, en particular hidrocarburos. Los PIDs son útiles para localizar la fuente de contaminación, o para ver gradientes de concentración en una zona, porque su lectura es proporcional a la concentración de contaminantes presentes. Los PIDs, sin embargo, no pueden identificar la sustancia química contaminante presente y tampoco puede distinguir si hay uno o más contaminantes

Los PIDs utiliza la energía ultravioleta (UV) de una lámpara para ionizar las sustancias químicas presentes en el aire. Las moléculas cargadas se recogen en un electrodo colector, que genera una corriente eléctrica que sería directamente proporcional a la concentración de la sustancia presente en el aire muestreado.

El potencial de ionización (PI) de una sustancia química es la cantidad de energía necesaria para inducir la ionización de la misma. Si la energía de la lámpara UV es mayor o igual a la IP de la sustancia química que está siendo muestreada, la sustancia química podrá ser ionizada y podrá detectarse. Los PIDs pueden ser configurados con lámparas de diferentes energías. Las energías típicas de las lámparas comerciales son 9,5 eV, 10,6 eV y 11,7 eV.

Cuanto mayor sea la energía de la lámpara, mayor es el número de sustancias químicas que pueden ser detectadas. La mayor parte de los agentes químicos de guerra pueden detectarse con la lámpara de 10,6 eV (sarín, somán, tabún, ciclohexilsarin, VX, iperita, HN1, Lewisita 1, etc), así como otras sustancias químicas de interés (arsina, DMMP, fosfato de trietilo, salicilato de metilo, etc.). Se requiere una lámpara de 11,7 eV para el fosgeno y su oxima, pero el HCN y ClCN no pueden detectarse, ni tampoco ni tampoco algunas sustancias químicas industriales tóxicas, tales como HCl, HF, CO, CO2, SO2, etc.

El detector ppbRAE 3000 equipado con una lámpara de 10,6 eV, cuando se expone a los vapores de nuestra sustancia desconocida, rápidamente produce una señal intensa. Aunque nos indica una elevada concentración de isobutano, no es porque haya detectado isobutano, ni porque haya identificado isobutano, es porque ha detectado algo que se ioniza con la lámpara de 10,6 eV, y tenemos seleccionado en el equipo el factor de respuesta del isobutano.

ppbRAE3000horiz

 

Detector fotométrico de llama

Un detector fotométrico de llama mide la radiación emitida por los átomos de una muestra, previamente excitados por el calor de una llama aire-hidrógeno (se alcanzan temperaturas del orden de 2000-2050 °C). La muestra de aire a analizar se aspira mediante un sistema de bombeo (80 L/h) y se lleva a un mechero donde con ayuda de un suministro de hidrógeno (1,9 L/h) se quema en una llama. En la llama se produce la disociación de las moléculas y la creación de un vapor atómico, a continuación los átomos absorben energía de la llama para pasar a un estado excitado y luego al enfriarse emiten radiación característica en forma de líneas de emisión, finas y bien definidas.

La técnica permite un análisis  cualitativo y cuantitativo. La variable cualitativa es la longitud de onda de las líneas emitidas, que permite la identificación de elementos, mientras que la variable cuantitativa es la intensidad de las líneas espectrales.

El diseño básico denominado AP2C (Appareil Portatif de Contrôle de Contamination) permite la detección y la estimación de la concentración de fósforo o/y azufre. Utiliza un filtro para la línea de emisión del fósforo (P-OH) a 526 nm y un filtro para la línea de emisión del azufre (S2) a 394 nm. En su pantalla se muestran las dos líneas de medida, a la izquierda la del fósforo (G,V) y a la derecha la del azufre (HD,V), en dos series de 5 indicadores que indican el nivel de concentración. Si se enciende sólo la del fósforo podemos pensar que éste fósforo se debe a la presencia de agentes neurotóxicos, bien de la familia G o bien de la familia V, dado que todos ellos tienen fósforo en su molécula. Si se enciende la línea del azufre podemos pensar que este azufre se debe a la presencia de mostazas de azufre o a la presencia de agentes neurotóxicos de la familia V, pues todos  ellos tienen azufre en su molécula. Finalmente si se encienden simultáneamente tanto la línea del fósforo como la del azufre podemos pensar que esto se debe a la presencia de agentes neurotóxicos de la familia V, pues todos ellos tiene átomos de fósforo y de azufre en su molécula.

El límite de detección es de 10 µg/m3 para el sarín, y de 400 µg/m3 para la iperita.

Pero recuerde:

  • El AP2C sólo detecta átomos, fósforo o/y azufre. No puede distinguir los agentes químicos de guerra de otras sustancias químicas.
  • El AP2C puede distinguir entre agentes neurotóxicos de la familia G y las mostazas de azufre, y también entre agentes neurotóxicos de las familia G y de la familia V.
  • El AP2C no puede distinguir entre sustancias químicas individuales y mezclas, ni si se trata de precursores, agentes químicos o productos de degradación.

AP2C-GCREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 90

En el caso que nos atañe el detector dan una señal intensa en la línea G (del fósforo), indicando la presencia de átomos de fósforo en la muestra.

 

Detector de espectroscopía de movilidad iónica

La espectrometría de movilidad iónica (IMS, Ion Mobility Spectrometry), también conocida como electroforesis en fase gaseosa o cromatografía de plasma, es una técnica analítica de separación de iones en fase gaseosa, donde las moléculas de interés (en este caso agentes químicos de guerra) son convertidas en agregados iónicos, de mayor masa y mayor estabilidad, que son separados, en base a su menor movilidad y difusividad, por la acción de un campo eléctrico. Los diferentes iones tardan tiempos diferentes en recorrer bajo la acción del campo eléctrico y el flujo de un gas el tubo de separación (tubo de deriva); estos tiempos dependen de la carga, masa, tamaño y forma de los diferentes iones.

La espectrometría de movilidad iónica caracteriza las sustancias químicas en función de la movilidad de sus iones gaseosos pudiéndose emplear para el análisis cualitativo y cuantitativo de sustancias químicas tóxicas, explosivos y drogas, tanto en el campo como en el laboratorio. En cierto modo es similar a la espectrometría de masas – tiempo de vuelo (TOF-MS, Time Of Flight–Mass Spectrometry), con la diferencia que la separación se produce a presión atmosférica, lo que simplifica notablemente la instrumentación y permite conseguir buena sensibilidad, rapidez de respuesta, bajo coste, robustez y portabilidad con una aceptable resolución.

La ionización se realiza mediante intercambio de carga por colisión, o por reacción ión-molécula, de modo que los iones resultantes (moléculas cargadas) tienen baja energía y son estables. Los agentes neurotóxicos (tabún, sarín, somán, VX, etc.), son ésteres fosfóricos, tienen una gran afinidad protónica y forman iones positivos; en cambio los agentes sofocantes, cianogénicos y vesicantes, son por lo general muy electrofílicos y forman iones negativos; los explosivos también suelen formar iones negativos:

  • Agregados iónicos positivos

M + [(H2O)nH]+ → [(M)(H2O)mH]+ + (n-m)H2O

M + [(M)(H2O)mH]+ → [(M)2H]+ + mH2O

  • Agregados iónicos negativos

M + [(H2O)nO2] → [M] + nH2O + O2

M + [(H2O)nO2] → [(M)O2] + nH2O

M + [(H2O)nO2] → [(M)(H2O)m] + (n-m)H2O + O2

Si tenemos interés en analizar tanto iones positivos, como iones negativos, hay que recurrir a cambiar las polaridades del tubo analizador, o a emplear dos tubos, uno con polaridad positiva y otro con polaridad negativa.

El sistema de ionización suele emplear una fuente radiactiva, pero también se puede emplear una descarga en corona o una lámpara de foto-descarga ultravioleta. Las fuentes radiactivas tienen como ventajas que emiten continuamente, no necesitan suministro de potencia, no tienen componentes electrónicos, y  no requieren mantenimiento. Como desventaja tienen su radiactividad (el 63Ni es un emisor de partículas β (e ) con un período de semi-desintegración 92 años y el 241Am es un emisor de partículas ∝ (2He2+) con un período de semi-desintegración 458 años) que dificulta su gestión y las convierte en residuos peligrosos.

imsesquemaLa muestra se aspira de manera continua y se introduce en la zona de ionización donde tiene lugar la formación de los iones. A continuación la rejilla de obturación introduce los iones en la zona de desplazamiento o de deriva, donde por la acción de un campo eléctrico y con la circulación de un gas de deriva que circula en contracorriente, los iones se separan y alcanzan el detector, normalmente un plato de Faraday, y se obtiene un «espectro de movilidad iónica» con la intensidad en las ordenadas y el tiempo en las abscisas. El fabricante ha establecido unas «ventanas de detección»  (tiempos de desplazamiento o deriva de los iones) o «librerías» para los compuestos de su interés, y cuando alguna sustancia química genera iones que caen dentro de estas ventanas salta la alarma indicando que se ha producido una detección.

El tamaño de las «librerías» está relacionado con la resolución del sistema, de modo que  cuanto mejor sea la resolución mayor podrá ser el tamaño de la «librería».

Cuanto más pequeñas sean las «librerías», menos probabilidad de falsos positivos y más probabilidad de falsos negativos (¡El sistema parece funcionar mejor pero podría no detectarse la presencia de un agente químico de guerra! )

Cuanto más grandes sean las «librerías», menos probabilidad de falsos negativos y más probabilidad de falsos positivos (¡El usuario está más protegido pero el sistema tiene más falsas alarmas! )

IMS-GB

La alarma indicando «G» tan sólo indica que un ión ha alcanzado la ventana de tiempo (tiempo de deriva) establecida para el sarín, GB, pero hay muchas sustancias químicas que pueden generar iones que alcancen esta misma ventana. De ninguna manera se ha identificado sarín.

 

 El conjunto intersección de conjuntos

Interseccion

La figura trata de representar el conjunto intersección de conjuntos, donde cada círculo vendría a representar de manera imaginaria las sustancias que puede detectar, y la sustancia X pertenecería al conjunto intersección de conjuntos, indicándose con ello que todos ellos son capaces de detectar esa sustancia.

 

Resultado

  • El líquido contenido en el frasco es un éster organofosforado (los agentes neurotóxicos de guerra lo son), pues da positivo al tubo colorimétrico de ésteres fosfóricos (agentes neurotóxicos de guerra). NO IDENTIFICA.
  • El papel indicador M8 indica que se trata de un agente neurotóxico de guerra de tipo G, pues el papel cambia de color de manera nítida y toma color amarillo dorado. CLASIFICA pero NO IDENTIFICA.
  • El ppbRAE 3000 con una lámpara de 10,6V da una respuesta rápida y clara. Los agentes neurotóxicos de guerra pueden ser ionizados por esta lámpara y por tanto pueden detectarse con este equipo. NO IDENTIFICA.
  • El AP2C da una respuesta rápida y clara en la línea del fósforo, indicando que el líquido contenido en el frasco contiene ÁTOMOS de FÓSFORO.
  • El LCD-3.3 da una alarma clara y rápida de GB, indicando que un agregado iónico de carga positiva con una movilidad iónica similar a la del GB (sarín) ha sido «DETECTADO» al estar incluida en la librería de agentes químicos de guerra. Los detectores basados en espectroscopía de movilidad de iones NO IDENTIFICAN.

Todos los detectores son congruentes en su respuesta de modo que el líquido contenido en el frasco pertenece al conjunto intersección de los cinco conjuntos, pero por mucho más que el especialista en Defensa NBQ quiera empujar, no se llega nada más que a una DETECCIÓN CONFIRMADA de un agente neurotóxico de tipo G.

frasco confirmada¡La intersección no identifica!

Referencias

«Dräger-Tubes & CMS Handbook», 16th ed., http://www.draeger.com/sites/assets/PublishingImages/Master/Oil_and_Gas/Upstream/9092086-Tubes-e-low.pdf

«El papel lo aguanta todo», J.Domingo, https://cbrn.es/?p=515

«Testing of Commercially Available Detectors Against Chemical Warfare Agents: Summary Report», Terri L. Longworth, Juan C. Cajigas, Jacob L. Barnhouse, Kwok Y. Ong, & Suzanne A. Procell, http://www.chem-bio.com/resource/1999/dp_detectors_summary.pdf

«Chemical-Warfare-Agent-Measurements-By-PID», Technical Note TN-159, RAE Systems, http://www.raesystems.com/sites/default/files/content/resources/Technical-Note-159_Chemical-Warfare-Agent-Measurements-By-PID_03-06.pdf

«Using-PIDs-In-Terrorist-Chemical-Attacks», Application Note 216, RAE Systems, http://www.raesystems.com/sites/default/files/content/resources/Application-Note-216_Using-PIDs-In-Terrorist-Chemical-Attacks_04-01.pdf

«LCD 3.2E Lightweight Chemical Detector», Smiths Detection, http://www.vianas.pt/fotos/produtos/LCD3.2E_Brochura.pdf

«A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items», Rodi Sferopoulos, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiRzfCM6aTNAhUJ2BoKHWvqCm4QFggcMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fcgi-bin%2FGetTRDoc%3FAD%3DADA502856&usg=AFQjCNFzu6LE81VHF6xJNSFTyltbXshk-g&bvm=bv.124272578,d.d2s&cad=rja

«Detection technologies for chemical warfare agents and toxic vapors», Yin Sun & Kwok Y. Ong, CRC Press

«Guide for the Selection of Chemical Detection Equipment for Emergency First Responders», Preparedness Directorate Office of Grants and Training, 2007, http://www.nist.gov/oles/upload/DHS_100-06ChemDetFinReport_3-20-07.pdf

«Detection technologies for chemical warfare agents and toxic vapors», Yin Sun & Kwok Y. Ong, CRC Press

«A Review of CWA Detector Technologies and Commercial-Off-The-Shelf Items», https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjP2uGJkdrMAhXD1xQKHbMVAEUQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fcgi-bin%2FGetTRDoc%3FAD%3DADA502856&usg=AFQjCNFzu6LE81VHF6xJNSFTyltbXshk-g&bvm=bv.122129774,d.d24&cad=rja