Archivo de la etiqueta: terrorismo

La doctrina química «Pá Ná»

A las cinco de la tarde del día 22 de abril de 1915, en Ypres, las tropas alemanas  liberaban del orden de 168 toneladas de cloro contenidas en unas 5730 bombonas metálicas (unas 1600 cargadas con 40 kg de cloro cada una, y las otras 4130 cargadas con 20 kg de cloro). El cloro liberado, formó una inmensa nube amarillo verdosa y el viento arrastró estos vapores, más densos que el aire, hacia las trincheras donde se encontraban las fuerzas argelinas y francesas. Las tropas, sorprendidas y sin medios de protección, trataban de escapar corriendo hacia su retaguardia, en la misma dirección que los vapores de cloro, aumentado con ello su exposición a los mismos. Las tropas alemanas que no esperaban semejante efecto, no estaban preparadas para la explotación del éxito y desaprovecharon el factor sorpresa, que ya no se repetiría en posteriores ocasiones, pues las tropas aliadas estarían preparadas con pañuelos mojados con agua u orina, con los que se tapaban la nariz y la boca1.

A la vista de estos hechos parece claro que las armas químicas son especialmente eficaces empleadas por sorpresa, en grandes cantidades (para conseguir una elevada concentración), contra tropas sin protección (que no se encuentren dispersas).

Para conseguir el efecto tóxico deseado, ya sea incapacitante o letal, es necesario que las víctimas inhalen o reciban la dosis apropiada. En el caso de inhalación de una sustancia química tóxica la dosis letal en función del tiempo, por ejemplo, LCt50 es la dosis letal resultado de la inhalación de una determinada concentración durante un determinado tiempo, que produciría la muerte al 50 por ciento de la población expuesta. Cuanto más pequeño sea el valor de la LCt50 menor concentración o menor tiempo de exposición se requiere para conseguir los mismos efectos letales.

Por ejemplo, si la LCt50 para el sarín fuese 100 mg×min/m3, en un ambiente con una concentración de sarín de 1000 mg/m3, bastarían 6 segundos de inhalación para alcanzar el valor de la dosis letal 50 en función del tiempo. En cambio, para el cloro, con una la LCt50 de 10 000 mg×min/m3, sería necesario un tiempo de inhalación de 10 minutos (600 segundos). Aplicando el mismo razonamiento, la inhalación durante un minuto en un entorno contaminado, requiere una concentración de sarín de tan solo 100 mg/m3, para alcanzar la dosis letal 50 en función del tiempo, mientras que se requiere una concentración de 10 000 mg/m3 de cloro para alcanzar la dosis letal 50 correspondiente.

En campo abierto, las condiciones meteorológicas influyen mucho en el movimiento y dispersión de la nube tóxica, de ahí que se requieran grandes cantidades del agente químico de guerra, y que el objetivo no esté disperso, para conseguir una concentración suficientemente alta en la zona del objetivo, que inhalada el tiempo conveniente permita se alcance la dosis letal.

 

Guerra química y agentes químicos de guerra

La guerra química se define como el empleo de agentes químicos para matar, herir, o incapacitar durante un periodo de tiempo significativo, hombres y animales, y prohibir o dificultar el uso de áreas, instalaciones o material, o defenderse contra este empleo2.

También se define agente químico como una sustancia química que se pretende usar en operaciones militares para matar, herir seriamente, o incapacitar, por medio de sus efectos fisiológicos. El término excluye los agentes antidisturbios cuando se emplean el mantenimiento del orden, los herbicidas, los fumígenos y los incendiarios2.

La Convención sobre las Armas Químicas (CAQ) en su artículo II, «Definiciones y criterios», entiende por «armas químicas», conjunta o separadamente3:

  • Las sustancias químicas tóxicas o sus precursores, salvo cuando se destinen a fines no prohibidos por la presente Convención, siempre que los tipos y cantidades de que se trate sean compatibles con esos fines;
  • Las municiones o dispositivos destinados de modo expreso a causar la muerte o lesiones mediante las propiedades tóxicas de las sustancias especificadas en el apartado a) que libere el empleo de esas municiones o dispositivos; o
  • Cualquier equipo destinado de modo expreso a ser utilizado directamente en relación con el empleo de las municiones o dispositivos especificados en el apartado anterior.

Y entiende por «sustancia química tóxica»: «Toda sustancia química que, por su acción química sobre los procesos vitales, pueda causar la muerte, la incapacidad temporal o lesiones permanentes a seres humanos o animales.  Quedan incluidas todas las sustancias químicas de esa clase, cualquiera que sea su origen o método de producción, y ya sea que se produzcan en instalaciones, como municiones o de otro modo»3. A los efectos de la aplicación de la CAQ, las sustancias químicas tóxicas respecto de las que se ha previsto la aplicación de medidas de verificación están enumeradas en Listas incluidas en un Anexo B sobre sustancias químicas.

En caso de una liberación intencionada las sustancias químicas tóxicas penetrarían en el organismo básicamente por dos vías:

  • Por vía inhalatoria, en forma de vapor, gas o aerosol, la sustancia química tóxica ejercería su acción a través del sistema respiratorio con efectos rápidos y peligrosos.
  • Por vía cutánea, en forma líquida, gaseosa o aerosol, la sustancia química tóxica ejercería su acción a través de la piel, heridas y ojos.

Aunque cada sustancia química, en función de sus propiedades, ejerce su acción tóxica preferentemente por una de estas dos vías, dependiendo fundamentalmente de las condiciones meteorológicas existentes, podrían hacerlo por ambas vías.

Las sustancias químicas de bajo peso molecular y/o bajo punto de ebullición tienen una volatilidad elevada, y una baja persistencia, y son consideradas «agentes no-persistentes», que actúan fundamentalmente por vía inhalatoria, durante un periodo de tiempo relativamente breve. Por el contrario, las sustancias químicas de alto peso molecular y/o alto punto de ebullición tienen una volatilidad reducida, y una alta persistencia, son consideradas «agentes persistentes», que actúan fundamentalmente por vía cutánea, durante un periodo de tiempo bastante prolongado, contaminando personal, medios y terreno.

Con el empleo de agentes químicos de guerra, se busca, además de matar, herir, o incapacitar al enemigo, obligar a éste a emplear medios de protección, disminuyendo con ello sus capacidades operativas. Para su empleo en operaciones militares los agentes químicos se clasifican en:

  • Agentes químicos no persistentes, que actúan fundamentalmente por inhalación durante un breve período de tiempo, que tienen como objetivo causar bajas y abrir una brecha en las posiciones enemigas, de modo que transcurrido un cierto tiempo, esa zona pueda ser utilizada por las tropas propias sin necesidad de utilizar equipo de protección, y
  • Agentes químicos persistentes, que actúan fundamentalmente por contacto, cuyo objetivo es impedir o limitar la utilización del material y/o el terreno al contaminar durante un largo período de tiempo los mismos.

Durante la Primera Guerra Mundial los alemanes contemplaban en su doctrina el empleo de proyectiles de iperita y de proyectiles «rompe-máscaras», seguidos de proyectiles de fosgeno, en una táctica desarrollada por el teniente coronel Georg Bruchmüller, conocida como «cruces multicolores» (Buntkreuz), o «disparos multicolores» (Buntshiessen). La doctrina de empleo de armas químicas de los británicos era algo distinta, pues consistía en realizar ataque químicos sobre unidades seleccionadas, con vistas a debilitarlas y desmoralizarlas, a través de un hostigamiento continuado, que producía un efecto devastador sobre la moral de las tropas1,4,5.

En los años treinta, el Servicio de Guerra Química de EE. UU. incluía en su doctrina el empleo de aeronaves que volasen a baja altura y a baja velocidad, para el rociado con iperita que permitiese contaminar rápidamente grandes extensiones velocidad. Se comprobó la necesidad de conseguir gotas de un cierto tamaño (no muy pequeño) para que el viento no las arrastrase y disminuir además su evaporación. La solución fue «espesar» la iperita (y otros agentes), con algún espesante, como por ejemplo, poliestireno y metacrilato de metilo, para aumentar el tamaño y viscosidad de las gotas1,6.

Los japoneses desarrollaron una doctrina de empleo de agentes persistentes, iperita y lewisita, que consistía en lanzarlos por detrás de las líneas de las tropas enemigas cuando éstas iniciaban su retirada, con el fin de ralentizarla1,7.

En 1984, durante la guerra Irán-Iraq, los iraquíes siguiendo su doctrina de empleo de armas químicas, contaminaron con iperita las rutas de suministro de las unidades a vanguardia, cortando así su apoyo logístico. Más tarde ante la ofensiva iraní recurrieron al empleo de tabún, un agente no-persistente, para abrir brechas y recuperar objetivos1,8,9.

Atendiendo a sus efectos fisiológicos los agentes químicos de guerra se pueden clasificar en:

  • Agentes sofocantes o neumotóxicos
  • Agentes tóxicos sanguíneos o cianogénicos
  • Agentes vesicantes o dermotóxicos
  • Agentes neurotóxicos o nerviosos, que se subdividen en agentes de la serie G (básicamente, no-persistentes) y agentes de la serie V (persistentes)
  • Agentes incapacitantes

Todos los agentes químicos de guerra, sean del tipo que sean, presentan además efectos psicológicos muy importantes. El miedo y el horror que inspiran alteran la moral y el estado anímico de las personas (personal militar y civil) provocando incluso pánico.

El empleo de armas químicas está considerado hoy como una flagrante violación de la legalidad internacional y un crimen contra la humanidad, de modo que a nadie en su sano juicio, ni siquiera en la situación más adversa, se le ocurriría emplear armas químicas, y menos contra personal civil, especialmente niños.

 

La CAQ

Después del empleo de armas químicas durante la Primera Guerra Mundial, y ante la opinión pública favorable a la prohibición de las armas químicas, el 17 de junio de 1925, treinta y ocho naciones firmaron el Protocolo de Ginebra de 1925, denominado «Protocolo relativo a la prohibición del empleo en la guerra de gases asfixiantes, tóxicos o similares y de medios bacteriológicos», que prohibía «el empleo en la guerra de gases asfixiantes, tóxicos o similares. Algunos países que ratificaron el Protocolo lo hicieron con la reserva de que la prohibición desaparecería en el momento en que el enemigo o sus aliados no respetasen el Protocolo. Además el Protocolo prohibía el uso de armas químicas y armas biológicas, pero no decía nada acerca de su producción, su almacenamiento o su transferencia1.

Tras varios años de negociaciones, en la Conferencia de Desarme, en Ginebra, finalizó la redacción del texto de la Convención sobre las Armas Químicas (su título completo es Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas y sobre su destrucción), que se abrió a la firma el 13 de enero de 1993, en París, y entró en vigor el 29 de abril de 1997, 180 días después de haber sido depositado el 65º instrumento de ratificación (Hungría).

Con el fin de asegurarse de que se toman las medidas necesarias para el cumplimiento de esos ambiciosos objetivos, la CAQ prevé un complejo régimen de verificación. Con sus actividades de inspección in situ y de seguimiento de los datos, el sistema permite verificar que las actividades realizadas en los Estados Partes son coherentes con los objetivos de la CAQ y con el contenido de las declaraciones presentadas a la Organización para la Prohibición de las Armas Químicas (OPAQ). Las inspecciones son cruciales para la aplicación de la CAQ, pudiéndose distinguir tres tipos de inspección: las inspecciones ordinarias de las instalaciones relacionadas con las armas químicas y de las instalaciones de industria química, que emplean ciertas sustancias químicas «de doble uso» (es decir, que pueden ser empleadas para fines tanto pacíficos como prohibidos); las inspecciones por denuncia, notificadas con muy poca antelación, que pueden ser efectuadas en cualquier lugar de cualquier Estado Parte que revista preocupación en relación con el no cumplimiento para otro Estado Parte; y las investigaciones sobre el presunto empleo de armas químicas. Todo lo referente a las inspecciones está detallado en el anexo sobre la aplicación y la verificación (anexo de verificación) que muchas veces parece ignorarse3,10.

 

Las armas químicas en Siria

Recordemos que el 14 de septiembre de 2013 el Secretario General de la ONU comunicaba haber recibido de Siria, conforme estipula el artículo XXIII de la CAQ, su solicitud de adhesión a la Convención de Armas Químicas (CAQ) y que también ese día, EE.UU. y Rusia hacían público un acuerdo para destruir el arsenal químico sirio y evitar así una acción de castigo solicitada insistentemente tras los incidentes de Ghouta, el 21 de agosto de 2013. En este acuerdo, EE.UU. y Rusia se comprometían a preparar y remitir al Consejo Ejecutivo de la OPAQ un borrador con “procedimientos especiales” para la destrucción rápida del programa sirio de armas químicas y su rigurosa verificación. Este acuerdo incluía la destrucción de toda la capacidad química siria antes de la primera mitad del año 2014, es decir, antes del 30 de junio de 201411.

El 14 de octubre de 2013 la Republica Árabe Siria pasó a ser el Estado Parte número 190 en la Convención para la prohibición de las Armas Químicas (CAQ). En consecuencia, no más tarde de transcurridos treinta días, el 24 de octubre de 2013, presentaba formalmente a la OPAQ su declaración inicial, de carácter confidencial, acerca de su programa de armas químicas, y también un plan para la destrucción de las mismas, en el que indicaba que la única forma de destruir su arsenal químico de manera rápida y segura conforme a las condiciones recogidas por la CAQ era realizando la misma fuera de su territorio11.

El 15 de noviembre de 2013 el Consejo Ejecutivo de la OPAQ aprobaba el plan detallado de destrucción para eliminar el arsenal sirio de armas químicas de la «manera más rápida y segura», que tenía como objetivo más importante completar la destrucción antes de la primera mitad de 2014, según lo que había establecido en la decisión del Consejo Ejecutivo de la OPAQ y en la resolución del Consejo de Seguridad de la ONU 2118 (2013), ambas de 27 de septiembre de 201311.

Las primeras noticias sobre el arsenal químico sirio hablaban de unas 1300 toneladas de iperita, sarín y VX, sin detallar más, con un texto ambiguo que daba a entender que las 1300 toneladas se referían a agentes químicos de guerra (sustancias de lista 1A de la CAQ).

Hoy sabemos que el arsenal declarado de sustancias químicas se reducía a 20,25 toneladas de iperita, 540 toneladas de metilfosfonildifluoruro (DF), precursor de Lista 1, 290 toneladas de sustancias de Lista 2, 110 toneladas de sustancias de Lista 3, 398 toneladas de sustancias no incluidas en las Listas de la OPAQ, algunas ni siquiera incluidas en el Grupo Australia, y una cantidad no detallada de alcohol isopropílico, que aunque está incluido en lista alguna forma parte del sistema binario del sarín. No declaró poseer ni sarín, ni VX11.

Después de algo más de dos años, el lunes 4 de enero de 2016, se anunciaba que había finalizado la destrucción de todas las sustancias químicas declaradas por la República Árabe Siria, retiradas de su territorio en 2014. A pesar de ello sus problemas con las armas químicas están aún lejos de concluir11.

Para el gobierno sirio, las armas químicas, lejos de ser una solución a sus problemas, han resultado ser uno de sus principales quebraderos de cabeza. Desde que se inició el conflicto sirio en 2011, se han realizado por diferentes entidades y países, de uno y otro bando, numerosas denuncias acerca del empleo de armas químicas, sarín y cloro fundamentalmente, y alguna vez iperita12,13.

Puesto que Siria no había ratificado aún la CAQ, las primeras investigaciones sobre algunas de las múltiples denuncias sobre el empleo de armas químicas se llevaron a cabo mediante el Mecanismo del Secretario General (MSG) para la investigación del supuesto empleo de armas químicas y biológicas, puesto en marcha por el Secretario General de la ONU, Ban Ki-moon, el 21 de marzo de 2013, tras la denuncia del Gobierno sirio acerca del empleo de armas químicas en la localidad de Khan Al Asal. A la investigación sobre el incidente de Kahn Al Asal ocurrido el 19 de marzo de 2013, se acabaron incorporando otros incidentes: el de Sheik Maqsood, ocurrido el 13 de abril, el de Saraqeb, ocurrido el 29 de abril, el de Ghouta, ocurrido el 21 de agosto 2013, el de Bahhariyeh, ocurrido el 22 de agosto, el de Jobar, ocurrido el 24 de agosto, y el de Ashrafiah Sahnaya, ocurrido el 25 de agosto14.

El 13 de diciembre se presentaba el informe A/68/663–S/2013/735 que confirmaba el empleo armas químicas (sarín), no solo en la zona de Ghouta (Damasco) el 21 de agosto de 2013 como se concluyó en el documento A/67/997-S/2013/553, sino también en menor escala en Jobar, el 24 de agosto de 2013, Saraqueb, el 29 de abril de 2013, Ashrafiah Sahnaya, el 25 de agosto de 2013 y Khan al-Asal, el 19 de marzo de 2013. El informe no aportaba información sobre quién era el responsable de los hechos15,16.

El 29 de abril de 2014, el Director General  de la Organización para la Prohibición de Armas Químicas (OPAQ) anunció la creación de una Misión para la Determinación de los Hechos en relación con el supuesto empleo de armas químicas en Siria (Fact-Finding Mission)17.

La OPAQ dio a conocer el primer informe sobre la misión para la determinación de los hechos en relación con el supuesto empleo de cloro en la República Árabe Siria, el 16 de junio de 2014 (S/1191/2014) y el 10 de septiembre de 2014, dio a conocer el segundo informe  (S/1212/2014), que concluía que los testimonios aportados por 37 testigos constituían una «confirmación convincente» (compelling confirmation), de que se había empleado, sistemática y repetidamente, una sustancia química tóxica como método de guerra, y que, con un «alto grado de confianza» (high degree of confidence), esa sustancia química tóxica era cloro. El informe NO indicaba quién había podido ser el autor de los hechos. El tercer informe, fechado el 18 de diciembre de 2014 (S/1230/2014) no decía nada nuevo que no dijeran los anteriores informes. Simplemente proporcionaba una descripción más detallada sobre la labor realizada y el proceso que condujo a los resultados presentados en su segundo informe. El documento concluía de nuevo que, con un «alto grado de confianza», se había empleado cloro como método de guerra, y recalcaba que su trabajo, consistente con su mandato, no incluía la cuestión de la atribución de responsabilidad por la presunta utilización18.

Dado que la Misión de Determinación de los Hechos de la OPAQ no tenía el mandato de llegar a una conclusión sobre la atribución de responsabilidad por el empleo de armas químicas, el consejo de seguridad de Naciones Unidas, aprobaba en su 7501ª sesión, celebrada el 7 de agosto de 2015, Resolución 2235 (2015), la creación del Mecanismo Conjunto de Investigación de la OPAQ y las Naciones Unidas (JIM, Joint Investigative Mechanism) para identificar en la mayor medida posible a las personas, entidades, grupos o gobiernos que hayan empleado sustancias químicas como arma, incluido el cloro o cualquier otra sustancia química tóxica, en la República Árabe Siria o que hayan organizado o patrocinado su empleo o participado en él de cualquier otro modo19. El 17 de noviembre de 2016  el Consejo de Seguridad en Resolución 2319 (2016)  renovaba el mandato del  JIM por otro año, pero el 24 de octubre de 2017, primero,  y luego el 17 de noviembre, rechazaba las propuestas para prorrogar su mandato por otro año más.

Durante su mandato el Mecanismo de Investigación Conjunto de la Organización para la Prohibición de Armas Químicas (OPAQ) y de la ONU (JIM) presentó siete informes, y concluyó que, en cuatro ocasiones, desde 2015 a 2107, el Gobierno sirio era responsable de tres ataques con cloro y uno con sarín.  Esto indicaría que o bien en 2013 el Gobierno sirio no habría declarado la totalidad de su programa químico o bien lo habría conservado una pequeña capacidad de producción de agentes neurotóxicos (sarín) y habría vuelto a utilizar cloro, una sustancia química industrial tóxica,  como arma química.

 

Terrorismo químico

La CAQ está muy cerca de conseguir la destrucción de la totalidad de las armas químicas declaradas, pues solo le queda la destrucción de dos instalaciones sirias, en vías de destrucción y la finalización de la destrucción de las armas química de Estados Unidos prevista para el año 2023.

Además tan sólo quedan cuatro estados por ratificar la CAQ y conseguir así la membresía total. Estos cuatro estados son Corea del Norte, Egipto, Israel (la ha firmado pero no la ha ratificado) y Sudán del Sur.

A la vista de los acontecimientos más recientes, una de las mayores amenazas para la CAQ es el empleo terrorista de las sustancias químicas tóxicas ya sea para cometer asesinatos más o menos selectivos, o para sembrar el pánico y el terror entre la población civil.

Los supuestos agentes «novichok» son según dicen del orden de 5-7 veces más tóxicos que el VX, es decir, utilizados de manera similar al VX, se requerirían cantidades del orden de 5-7 menores para producir la misma dosis letal. Para facilitar los cálculos supongamos que la dosis letal LD50 para el VX es de 10 µg/Kg (vía dérmica), y supongamos que nuestras personas tienen un peso de 100 Kg; entonces la LD50 sería de 1mg/persona. Supongamos, para facilitar los cálculos, que la densidad del VX fuese 1 mg/mL (la densidad real es 1,008 mg/mL a 20°C), entonces 1 mg de VX sería equivalente a 1 µL de VX, es decir, la LD50 sería de 1 µL/persona (El 50% de las personas de 100 Kg de peso que entrasen en contacto con 1 µL de VX fallecerían). Observe que desde el punto de vista clínico se considera que 20 gotas equivalen a 1 mL, es decir que 1 gota sería del orden de 50 µL, y que la LD50 calculada para el VX es de tan solo 1 µL, algo así como la cabeza de un alfiler.

Si en vez de VX empleásemos un supuesto agente «novichok», la cantidad requerida sería mucho menor de 1 µL, y de emplear esa cantidad la letalidad obtenida sería mucho mayor.

En cuanto a cómo hacer llegar la dosis a nuestros individuos de modo que los daños colaterales fueran mínimos, existen numerosas posibilidades, función sobre todo de su toxicidad y persistencia.

Los últimos casos de asesinatos selectivos con armas químicas, el asesinato, en el aeropuerto de Kuala Lumpur (Malasia), de Kim Jong-un, en 2017, empleando VX y el intento de asesinato del ex espía ruso Sergei Skripal y su hija Yulia, en Salisbury (Reino Unido), en 2018, empleando un agente «novichok», demuestran que, en este tipo de acciones, el empleo de agentes químicos no es más efectivo que el empleo de armas de fuego, pero eso sí, provocan el caos a nivel organizativo y político.

 

Doctrina Pá Ná

A la vista del empleo de armas químicas durante el conflicto sirio, antes y después de la adhesión de la República Árabe de Siria a la Convención, ya sea con agentes químicos de guerra, sarín e iperita, o con sustancias químicas industriales tóxicas, cloro, parece que la doctrina de guerra química siria, nada tiene que ver con la de los alemanes durante la Primera Guerra Mundial, pareciéndose algo a la doctrina inglesa durante ese mismo conflicto, que se enfocaba sobre todo en el aspecto psicológico sobre los combatientes. Esta doctrina podríamos denominarla «Doctrina Pá Ná», pues los agentes químicos lejos de afectar a los combatientes enemigos, afectan a civiles, y sobre todo a niños, con lo que en vez de conseguir algún tipo de ventaja o beneficio militar lo que consigue es la repulsa e indignación del resto del mundo.

Los hechos corroboran, desde el punto de vista táctico, el supuesto empleo «pá ná»  de armas químicas por parte del Gobierno sirio.

Después de múltiples denuncias sobre incidentes químicos, el Gobierno sirio ratifica la Convención a finales del año 2013, y evita una intervención militar internacional de castigo, que era inminente.

La guerra continua y los incidentes químicos siguen produciéndose, a pesar de que a principios de 2016 se diera por finalizada la destrucción de todas las sustancias químicas declaradas en su arsenal químico.

Cuando parece que el curso de la guerra es favorable al gobierno sirio, tiene lugar, el 4 de abril de 2017, el incidente de Khan Shaykhun, un ataque con armas químicas (con sarín o con una sustancia parecida al sarín, según el informe de la Misión de Determinación de los Hechos de la OPAQ), que causó al menos 86 muertos, todos ellos civiles, según el Observatorio Sirio de Derechos Humanos (OSDH)20.

Según Estados Unidos y los grupos armados opositores al gobierno sirio, dos aviones del gobierno bombardearon la ciudad en su totalidad, especialmente los centros de concentración de civiles como clínicas y hospitales. Las Autoridades sirias y Rusia alegaron que se había bombardeado un almacén donde los rebeldes, que controlaban Khan Shaykhun, guardaban armas químicas. Numerosos líderes internacionales, entre ellos el presidente estadounidense, Donald Trump, acusan al Gobierno sirio de los hechos, y antes de que se lleve a cabo investigación alguna, Donald Trump ordena el bombardeo, el 7 de abril de 2017, de la base de Sharyat mediante el lanzamiento desde buques estadounidenses de 59 misiles de crucero Tomahawk. Antes del bombardeo advierte a Rusia del ataque, y esto permite retirar algunos aviones de la zona, pero aún así, destruyen de nueve a veinte aviones, y fallecen casi una decena de soldados sirios.

No contentos con el éxito conseguido con el ataque químico en Khan Shaykhun, el 7 de abril de 2018 tiene lugar otro incidente químico, supuestamente con una mezcla de cloro y sarín, esta vez, en Douma. El ataque dejó como saldo 50 personas muertas y alrededor de 500 heridos. Según la Organización de Voluntarios de la Defensa Civil Siria (pro-oposición siria) el ataque lo realizó el gobierno del presidente Bashar al-Asad para eliminar a los remanentes rebeldes, y lograr la conquista definitiva de Ghouta oriental. Sin esperar a investigación alguna, el 14 de abril de 2018, Estados Unidos, Reino Unido, y Francia bombardean objetivos que se suponen instalaciones de armas químicas del gobierno sirio.

El 4 de mayo de 2018, la OPAQ informa que el despliegue inicial de la Misión de Investigación de los Hechos (FFM) en Douma, se ha completado y que las muestras tomadas han sido remitidas al Laboratorio de la OPAQ, donde una vez divididas serán enviadas a los Laboratorios acreditados para su análisis, que se estima tardarán por lo menos tres ó cuatro semanas. Hasta la fecha nada se sabe de estos análisis, ni del informe correspondiente de la Misión de Investigación de los Hechos21.

 

Referencias:

  1. «Armas químicas: la ciencia en manos del mal», René Pita, Plaza y Valdés Editores, 2008
  2. «NATO glossary of terms and definitions (english and french)», AAP-06, Edition 2015, https://www.unap.ro/ro/news/aap6.pdf
  3. «Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas, y sobre su destrucción», https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf
  4. «Chemical Warfare in World War I: The American Experience, 1917-1918», Charles E. Heller, Combat Studies Institute, Leavenworth Papers, 1984
  5. «Steel Wind: Colonel Georg Bruchmuller and the Birth of Modern Artillery», David T. Zabecki, Praeger, 1994
  6. «The Chemical Warfare Service: from laboratory to field», L. P. Brophy, W. D. Miles & R. C. Cochrane, Center of Military History, United States Army, 1959.
  7. «The problem of chemical and biological warfare, Volume 2: CB weapons today», Stockholm International PEACE Research Institute (SIPRI), Estocolmo,1973
  8. «Chemical Weapons and the Iran-Iraq War:A Case Study in Noncompliance», Javed Ali, The Nonproliferation Review, 2001, vol. 8, n.º 1
  9. «A poisonous affair: America, Iraq, and the gassing of Halabja», Joost R. Hiltermann, Cambridge University Press, 2007.
  10. «Tres tipos de inspecciones», Ficha descriptiva nº 5, OPAQ, https://www.opcw.org/fileadmin/OPCW/Fact_Sheets/Spanish/Fact_Sheet_5_-_Inspections.pdf
  11. «¿Completada la destrucción de las armas químicas sirias?», J. Domingo, https://cbrn.es/?p=433
  12. «Use of chemical weapons in the Syrian Civil War», Wikipedia, https://en.wikipedia.org/wiki/Use_of_chemical_weapons_in_the_Syrian_Civil_War
  13. «Timeline of Syrian Chemical Weapons Activity, 2012-2018», The Arms Control Association, https://www.armscontrol.org/factsheets/Timeline-of-Syrian-Chemical-Weapons-Activity
  14. «United Nations mission to investigate allegations of the use of chemical weapons in the Syrian Arab Republic» https://unoda-web.s3.amazonaws.com/wp-content/uploads/2015/01/UN-Mission-Syrian-Chemical-Weapons-Fact-Sheet-Jan2015.pdf
  15. «Informe de la Misión de las Naciones Unidas para Investigar las Denuncias de Empleo de Armas Químicas en la República Árabe Siria sobre el presunto empleo de armas químicas en la zona de Ghouta (Damasco) el 21 de agosto de 2013», Naciones Unidas, A/67/997–S/2013/553, http://www.un.org/es/comun/docs/?symbol=S/2013/553
  16. «Informe final de la Misión de las Naciones Unidas para Investigar las Denuncias de Empleo de Armas Químicas en la República Árabe Siria», Naciones Unidas, A/68/663–S/2013/735, http://www.iri.edu.ar/images/Documentos/Boletines_IRI/139/ONU_informe_final_sobre_siria.pdf
  17. «Decisión (PESC) 2017/2303 del Consejo, de 12 de diciembre de 2017, de apoyo a la aplicación continua de la Resolución 2118 (2013) del Consejo de Seguridad de las Naciones Unidas y la Decisión EC-M-33/DEC.1 del Consejo Ejecutivo de la Organización para la Prohibición de las Armas Químicas sobre la destrucción de las armas químicas sirias, en el marco de la aplicación de la Estrategia de la UE contra la proliferación de armas de destrucción masiva», https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32017D2303&from=EN
  18. «Sobre el cloro como método de guerra», J.Domingo, https://cbrn.es/?p=10
  19. «Resolución 2235 (2015) acerca de la creación de un mecanismo conjunto de investigación de la OPAQ y las Naciones Unidas», Unidas, S/RES/2235 (2015), http://undocs.org/es/S/RES/2235(2015)
  20. S/1510/2017 de fecha 29 de junio de 2017, «REPORT OF THE OPCW FACT-FINDING MISSION IN SYRIA REGARDING AN ALLEGED INCIDENT IN KHAN SHAYKHUN, SYRIAN ARAB REPUBLIC  APRIL 2017», https://www.opcw.org/fileadmin/OPCW/Fact_Finding_Mission/s-1510-2017_e_.pdf
  21. «OPCW Spokesperson’s Statement on Fact-Finding Mission Deployment to Douma», OPCW, https://www.opcw.org/news/article/opcw-spokespersons-statement-on-fact-finding-mission-deployment-to-douma/

 

Sulfuro de hidrógeno, para vivir y morir

El maloliente sulfuro de hidrógeno está de moda, esta vez por su posible uso terrorista mediante un dispositivo químico improvisado (IQD)1,2,3. La última vez que objeto de interés fue en el año 2008 cuando en Japón hubo una oleada de suicidios empleando sulfuro de hidrógeno de fabricación casera4. A pesar de su toxicidad y de sus posible usos con fines terroristas o suicidas, el sulfuro de hidrógeno y sus derivados forman un importante papel para la vida.

 

El sulfuro de hidrógeno5,6,7,8,9

El sulfuro de hidrógeno, también conocido como ácido sulfhídrico, con número CAS 7783-06-4, es una molécula pequeña, de fórmula empírica, H2S, y estructura angular:

Tiene un peso molecular de 34,08, con punto de fusión -85 °C y punto de ebullición -60 °C. Es un gas, de densidad relativa 1,19, es decir, es algo más denso que el aire, incoloro, y con un característico olor a huevos podridos.

Es un gas extremadamente inflamable y sus mezclas con aire son explosivas (límite inferior de inflamabilidad 4,3 % v/v, y límite superior de inflamabilidad del 46 % v/v).

El sulfuro de hidrógeno es bastante soluble en agua (a 20 °C se disuelve 1 g en 242 ml de agua) y la disolución acuosa tiene propiedades ligeramente ácidas debido a formación de ácido sulfhídrico, un ácido débil, dibásico con constantes de disociación pKa1= 7,0 y pKa2= 13,9.

El sulfuro de hidrógeno se comporta como reductor, tanto en forma gaseosa, como en disolución acuosa, oxidándose lentamente en presencia del oxígeno del aire. Los potenciales redox estándar del sulfuro de hidrógeno a 25 °C son8:

H2S ⇔ S + 2 H+ + 2 e     E0 = 0,142 – 0,0591 pH – 0,0295 log(H2S)

HS ⇔ S + H+ + 2 e         E0 = -0,065 – 0,0295 pH – 0,0295 log(HS)

S2- ⇔ S + 2 e                    E0 = -0,476 – 0,0295 log(S2-)

Sulfuro de hidrógeno se libera como gas en los volcanes, manantiales de azufre, pantanos, masas de agua estancada, petróleo crudo, gas natural y pozos de carbón o estiércol. También es liberado por las bacterias, hongos y actinomicetos durante la descomposición de las proteínas que contienen azufre y por reducción directa del sulfato. En la desulfuración de las fracciones de destilado de gasoil y coque en presencia de hidrógeno, también se produce sulfuro de hidrógeno

Por otro lado se puede producir el sulfuro de hidrógeno en la boca y en el tracto intestinal por el metabolismo bacteriano de los aminoácidos que contienen grupos SH y el sulfuro de hidrógeno endógeno juega un importante papel en algunos procesos neurológicos y fisiológicos.

Sulfuro de hidrógeno se utiliza en la producción de ácido sulfúrico y azufre elemental, en la preparación de sulfuros inorgánicos que se utilizan en la fabricación de numerosos productos, en la purificación de ciertos elementos y compuestos químicos, como desinfectante agrícola, y como fuente de hidrógeno. Se utiliza también en metalurgia, en la producción de agua pesada para la industria nuclear y como reactivo analítico.

 

Sulfuro de hidrógeno para vivir10,11,12

A pesar de ser un gas tóxico y maloliente, el sulfuro de hidrógeno desempeña en nuestro organismo funciones esenciales sobre diversos procesos fisiológicos, entre ellos, la reducción de la tensión arterial y la regulación del metabolismo10.

En 1987, se descubrió que el óxido nítrico (NO) actuaba como una molécula endógena capaz de actuar como gas neurotransmisor. Más tarde en la década de los 90 se descubrió un segundo gas neurotransmisor, el monóxido de carbono (CO), y tan sólo hace unos años se descubrió un tercer gas neurotransmisor, el sulfuro de hidrógeno (H2S)11.

Nuestro organismo produce sulfuro de hidrógeno (H2S), aunque en muy pequeñas cantidades, en los vasos sanguíneos a través de la L-cisteina y la enzima cistationina-gamma-liasa (CSE), y en el sistema nervioso por acción de la enzima cistationina-beta-sintetasa (CBS) 10.

También se ha descubierto que se produce sulfuro de hidrógeno en el cerebro y en el endotelio vascular, por acción sobre la cisteína de la 3-mercaptopiruvato sulfotransferasa (3MST) junto con la cisteína aminotransferasa (CAT)12.

El sulfuro de hidrógeno contribuye a nuestra salud actuando sobre las células, tejidos, órganos y sistemas fisiológicos, con diversos efectos10:

  • En el cerebro estimula la respuesta de los circuitos neuronales lo que podría facilitar el aprendizaje y potenciar la memoria, y promueve la producción de un antioxidante, el glutatión, que parece proteger a las neuronas de las agresiones.
  • En el sistema circulatorio dilata los vasos sanguíneos y reduce la tensión arterial, protegiendo el corazón, y podría servir para prevenir o tratar la hipertensión, el infarto de miocardio y el accidente cerebrovascular.
  • En los pulmones parece que ayuda a regular la contractilidad de células de la musculatura lisa, aumentando la luz de las vías aéreas
  • En los intestinos relaja células de la musculatura lisa del intestino delgado y regula así el movimiento de materiales por su interior
  • En el pene relaja el tejido peniano; facilita el aflujo de sangre y la erección

 

Efecto dilatador producido por el H2S en los vasos sanguíneos, tomado de «La función dual del sulfuro de hidrogeno», Rui Wang, Investigación y Ciencia, Mayo 2010

 

Sin embargo, no todos sus efectos son beneficiosos, por ejemplo, el exceso de H2S puede mermar la síntesis de insulina y, según ciertos datos, agravar las inflamaciones.

 

Sulfuro de hidrógeno para morir5,13,14,15,16,17,18

En muchos campos industriales, como por ejemplo, en la agricultura, en el tratamiento de las aguas residuales y en la industria del petróleo los trabajadores pueden estar expuestos al sulfuro de hidrógeno, del orden de un tercio de los trabajadores del petróleo experimentan algún síntoma de exposición al sulfuro de hidrógeno por vía inhalatoria y un 8% de ellos llega a sufrir pérdida del conocimiento13.

Además el sulfuro de hidrógeno puede generarse con cierta facilidad a partir de algunos productos químicos simples, por lo que ha utilizado bastante en los suicidios13,14,15.

El gobierno estadounidense considera que el H2S es una amenaza química de alta prioridad tanto por su uso industrial como por su posible uso terrorista; su olor característico a huevos podridos es un arma de doble filo pues en concentraciones moderadas produce la parálisis de los nervios olfativos, engañando a la gente sobre su presencia13.

Después de su absorción, la detoxificación en nuestro organismo del H2S se realiza por oxidación enzimática y no enzimática de los sulfuros y del azufre a tiosulfato y polisulfuros. Esta reacción es catalizada por la oxihemoglobina. Según estudios recientes, el sulfuro de hidrógeno se metaboliza por oxidación a sulfato, por metilación con formación de metanotiol y sulfuro de dimetilo, y por reacción con las metaloproteínas (responsable de los efectos tóxicos más graves16,17.

Al igual que el cianuro, el H2S es un veneno celular que inhibe la citocromo C oxidasa interrumpiendo el transporte de electrones. De hecho se dice que es un inhibidor de la citocromo C oxidasa más potente que el cianuro. El resultado de la inhibición de la fosforilación oxidativa produce hipoxia celular y metabolismo anaerobio. El metabolismo anaerobio provoca una acidosis láctica. El H2S es un fuerte irritante respiratorio y reacciona con la humedad en la superficie de las membranas mucosas, formando sulfuro sódico16,17.

El olor característico, a huevos podridos, del sulfuro de hidrógeno permite su detección en concentraciones muy bajas, del orden de 0,008-0,1 ppm. Incluso a concentraciones del orden de 0,1 ppm se empieza a producir una cierta anosmia (pérdida del sentido del olfato) y a concentraciones superiores a 100 ppm no se puede percibir su olor, pues afecta al nervio olfativo. El valor del umbral de olor varía mucho según las personas y la pérdida del sentido del olfato a concentraciones elevadas puede crear en los afectados una falsa sensación de seguridad, cuando en realidad están en grave peligro.

La tabla que se muestra a continuación resume algunos de los efectos producidos por diferentes concentraciones de sulfuro de hidrógeno14,15,18:

Concentración (ppm) Síntomas/Efectos
0,01-1,5 Umbral de olor (olor característico a huevos podridos).
2-5 La exposición prolongada puede provocar náuseas, lagrimeo de los ojos, dolores de cabeza o pérdida del sueño. En los pacientes con asma pueden aparecer problemas en las vías respiratorias (constricción bronquial).
20 Posible fatiga, pérdida de apetito, dolor de cabeza, irritabilidad, mala memoria o mareos.
50-100 Leve conjuntivitis e irritación de las vías respiratorias al cabo de 1 hora. Puede aparecer pérdida de apetito y malestar digestivo.
100 Tos, irritación de los ojos, pérdida del olfato (anosmia) al cabo de 2-15 minutos (fatiga olfativa). Alteración respiratoria, somnolencia al cabo de 15-30 minutos. Irritación de garganta al cabo de 1 hora. Agravamiento gradual de los síntomas al cabo de varias horas. La muerte puede ocurrir después de 48 horas.
100-150 Pérdida del olfato (fatiga olfativa o parálisis).
200-300 Después de 1 hora marcada conjuntivitis e irritación de las vías respiratorias. Puede aparecer edema pulmonar tras una exposición prolongada.
500-700 Tambaleo, colapso al cabo de 5 minutos. Daños graves en los ojos al cabo de 30 minutos. Muerte después de 30-60 minutos.
700-1000 Pérdida rápida del conocimiento, desmayo o colapso inmediato con tan solo 1 ó 2 inhalaciones, parada respiratoria, muerte al cabo de unos minutos.
1000-2000 Muerte casi instantánea.

 

La exposición al sulfuro de hidrógeno por vía inhalatoria produce generalmente dolor de cabeza, náuseas, vértigo, mareos, debilidad, desorientación, hipotensión e irritación respiratoria. La lesión pulmonar puede progresar a lo largo de algunas horas. La intoxicación grave con sulfuro de hidrógeno puede causar inconsciencia, fallo respiratorio y cardiovascular. Es característico en exposiciones elevadas la pérdida rápida de la consciencia o «desmayo». Los pacientes que vuelven a despertarse pueden experimentar un síndrome confusional agudo, con agitación y confusión5.

La exposición de los ojos a bajas concentraciones de sulfuro de hidrógeno gas causa molestias por quemadura, parpadeo espasmódico o cierre involuntario de los párpados, enrojecimiento y lagrimeo. A altas concentraciones o exposiciones repetidas pueden aparecer opacidades en la córnea5.

Si la piel está mojada o húmeda el contacto con la piel del sulfuro de hidrógeno gas puede causar irritación y el contacto de la piel con sulfuro de hidrógeno líquido (licuado por presión) puede dar lugar a congelaciones5.

Si el paciente sobrevive las primeras 48 horas después de la exposición, es probable la recuperación. Después de una exposición aguda, la función pulmonar vuelve a su estado normal en 7-14 días. Es habitual la recuperación completa; sin embargo, los síntomas y deficiencias pulmonares pueden mantenerse. La hiperreactividad de las vías respiratorias a irritantes no específicos pueden persistir, resultando en broncospasmos e inflamación crónica de los bronquios. El síndrome de disfunción de las vías respiratorias reactivas puede persistir durante años. Las secuelas de cicatrices y destrucción en el tejido pulmonar pueden conducir a una dilatación crónica de los bronquios y a una gran susceptibilidad de infección. Pueden producirse secuelas neurológicas como resultado de la insuficiencia respiratoria5.

 

Referencias

  1. «Australian police charge two men over plane bomb plot», http://www.aljazeera.com/news/2017/08/australian-police-charge-men-plane-bomb-plot-170804003917635.html
  2. «Australia terror plot: Brother likely ‘had no idea’ bomb was in luggage, police say», http://www.foxnews.com/world/2017/08/04/australia-terror-plot-brother-likely-had-no-idea-bomb-was-in-luggage-police-say.html
  3. «Foiled plot to blow up plane, unleash gas revealed in Australia», http://edition.cnn.com/2017/08/03/asia/australia-plane-terror-plot-isis/index.html
  4. «Japanese experience of hydrogen sulfide: the suicide craze in 2008», D. Morii, Y. Miyagatani, N. Nakamae, M. Murao & K. Taniyama, Journal of Occupational Medicine and Toxicology 2010, 5:28
  5. «FDS sulfuro de hidrógeno», Murcia Salud, 2007, http://www.murciasalud.es/recursos/ficheros/114700-sulfuro_de_hidrogeno.pdf
  6. «FDS sulfuro de hidrógeno», Praxair, 2014, http://www.praxair.com.mx/-/media/documents/safety-data-sheets/sulfuro-de-hidrogeno-hds-p4611g-2009.pdf
  7. «FDS sulfuro de hidrógeno», NJHealth, 2012, http://nj.gov/health/eoh/rtkweb/documents/fs/1017sp.pdf
  8. «Atlas d´équilibres électrochimiques à 25 °C», Marcel Pourbaix, GV, 1963
  9. «Hydrogen sulfide-human health aspects», WHO, 2003
  10. «La función dual del sulfuro de hidrogeno», Rui Wang, Investigación y Ciencia, Mayo 2010
  11. «Hydrogen Sulfide-The Third Gasotransmitter in Biology and Medicine», Rui Wang, Antioxidants & redox signaling, Volume 12, Number 9, 2010
  12. «H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects», Caleb Weihao Huang and Philip Keith Moore, en «Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide», Philip K. Moore & Matt Whiteman, Springer, 2015
  13. «Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote», J. Jiang & Others, Scientific Reports 6, Article number: 20831 (2016), https://www.nature.com/articles/srep20831.pdf
  14. «Japanese experience of hydrogen sulfide: the suicide craze in 2008», D. Morii, Y. Miyagatani, N. Nakamae, M. Murao & K. Taniyama, Journal of Occupational Medicine and Toxicology 2010, 5:28
  15. «Suicide by Hydrogen Sulfide Inhalation», Eleanor Bott & Malcolm Dodd, Am J Forensic Med Pathol, Volume 34, Number 1, March 2013
  16. «Modern Medical Toxicology»,V.V. Pillay, Jaypee Brothers Medical Publishers, 4th Ed., 2013
  17. «A critical review of the literature on hydrogen sulfide toxicity», O. Beauchamp, J. S. Bus, J. A. Popp, C. J. Boreiko & D. A. Andjelkovich, Crit Rev Toxicol. 1984; 13(1):25-97
  18. «Hydrogen Sulfide (H2S) Code of Practice», Cenovus, 2015, http://www.cenovus.com/contractor/docs/health-safety-practices/hydrogen-sulfide-code-of-practice.pdf

!Qué sucias las bombas sucias¡

En términos coloquiales, una bomba sucia (Dirty Bomb), es un dispositivo explosivo de dispersión radiológica, un artefacto explosivo que combina un explosivo con material radioactivo en forma de polvo o gránulos. El objetivo es diseminar material radioactivo en la zona alrededor de la explosión, para contaminar con material radiactivo el personal y las instalaciones, consiguiendo con ello su exposición a las «radiaciones». Aunque el número de víctimas mortales sea muy reducido, se consigue aterrorizar a la población, inutilizando durante un largo período de tiempo las instalaciones y el terreno, lo que supone un elevado coste económico al que habría que añadir además el elevado coste que conllevaría la descontaminación.

Además, no todos los dispositivos de dispersión radiológica son bombas sucias, y no todas las bombas sucias son dispositivos de dispersión radiológica.

Sólo se consideran bombas sucias los dispositivos de dispersión radiológica, que dispersan el material radiactivo mediante un explosivo, pero también hay bombas sucias que dispersan una sustancia química tóxica mediante un explosivo.

 

Empleo terrorista de material radiactivo

Los terroristas, en función del tipo de material radiactivo disponible y del objetivo buscado pueden emplear el material radiactivo para la preparación de diferentes dispositivos radiológicos con fines delictivos:

  • Dispositivos Explosivos de Dispersión Radiológica.
  • Dispositivos No Explosivos de Dispersión Radiológica.
  • Dispositivos de Exposición Radiológica

Los Dispositivos Explosivos de Dispersión Radiológica son los que se conocen como Bombas Sucias (Dirty Bombs), aunque es un error bastante común el pensar que todos los dispositivos de dispersión radiológica (RDDs, Radiological Dispersion Devices) son bom­bas sucias. Para una buena dispersión del material radiológico por efecto de la explosión, conviene que éste se encuentre en forma líquida o en forma de polvo, para conseguir tamaños de partícula suficientemente pequeños, del orden de 5-10 µm, de modo que el material radiactivo quede en suspensión y pueda ser inhalado, o/y cubra eficientemente una gran superficie. Además puede resultar interesante el empleo de materiales inflamables capaces de provocar un incendio tal, que los gases calientes alcancen alturas elevadas facilitando con ello el arrastre y dispersión más amplia del material radiactivo. El empleo de un material radiactivo sóli­do, de tipo metálico, con cierta dureza, supondría la dispersión de fragmentos de tamaño considerable lo que disminuiría notablemente los efectos buscados.

Los Dispositivos No Explosivos emplean medios mecánicos para dispersar el material radiactivo, aprovechando las condiciones atmosféricas locales generadas por las corrientes de aire e ins­talaciones de ventilación. Aquí, al no existir efecto explosivo, resulta de vital importancia que el material radiactivo se encuentre en forma líquida o de polvo muy fino para conseguir con ello una buena dispersión.

Los Dispositivos de Exposición Radiológica conocidos por sus siglas en inglés RED (Radiological Exposure Device) tienen una aplicación muy limitada. El procedimiento consiste en situar el material radiactivo encapsulado o no, en un punto tal que las radiaciones afecten a las personas. El material radiactivo debería ser preferiblemente un emisor de radiación gamma, de rayos X o de neutrones, ya que si fuera un emisor de partículas alfa o beta, el material radiactivo debería estar muy próximo al objetivo, a ser posible en contacto íntimo con el mismo para conseguir además un mayor tiempo de exposición.

 

Materiales radiactivos

Recordemos que los materiales radiactivos son aquellos que presentan radiactividad o radioactividad, fenómeno físico por el cual los núcleos de algunos elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas radiográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como por ejemplo, las partículas alfa (4He2+), las partículas beta (electrones, e, o positrones, e+), los protones o los neutrones. La radiactividad ioniza el medio que atraviesa. Los neutrones no producen una ionización directa, pero ionizan la materia en forma indirecta.

Un aspecto importante del material radiactivo, es decir de los radionucleidos, es su velocidad de desintegración o actividad radiactiva que se mide en Bq. Un becquerelio es 1 desintegración por segundo y un curio, Ci, equivale a 3,7·1010 desintegraciones por segundo (unidad basada en la actividad de 1 g de 226Ra que es cercana a esa cantidad).

La desintegración radiactiva se comporta conforme a la ley de decaimiento exponencial:

Nt = N0 × e -λt

Donde, Nt es el número de radionúclidos existentes en un instante de tiempo t, N0 es el número de radionúclidos existentes en el instante inicial, y λ es la constante de desintegración radiactiva, esto es, la probabilidad de desintegración por unidad de tiempo.

La actividad A, o sea la emisión de radiación por unidad de tiempo, es proporcional al número de radionúclidos N presente en cada instante, esto es, A = λ × N. Se llama tiempo de vida o tiempo de vida media de un radioisótopo, τ, al tiempo promedio de vida de un átomo radiactivo antes de desintegrarse, y es igual a la inversa de la constante de desintegración radiactiva, λ, de modo que τ = 1/λ. También τ es igual al tiempo necesario para que el número de átomos se reduzca en un factor de 2,718281828 (número e). Véase la tabla 1

t ½ = τ ⋅ ln ⁡ 2  = ln 2/λ

Al tiempo que transcurre hasta que la cantidad de núcleos radiactivos de un isótopo radiactivo se reduzca a la mitad de la cantidad inicial se le conoce como periodo de semidesintegración, período, semiperiodo, semivida o vida media (no confundir con el mencionado tiempo de vida). Al final de cada período, la radiactividad se reduce a la mitad de la radiactividad inicial. Cada radioisótopo tiene un período de semidesintegración característico, diferente del de otros radioisótopos. Véase la tabla 1.

 

Radionucleido Radiación principal Período de semidesintegración Peso de 1000 curios

1 Ci ≡ 3,7·1010 Bq

192Ir Beta / gamma 73,827 días 0,11 gramos
60Co Gamma 5,2714 años 0,91 gramos
252Cf Alfa 2,645 años 1,88 gramos
90Sr Beta 28,9 años 7,17 gramos
137Cs Beta / gamma 30,17 años 11,8 gramos
241Am Alfa 432,2 años 300 gramos
226Ra Alfa 1600 años 1040 gramos
240Pu Alfa 6500 años 4540 gramos
239Pu Alfa 24100 años 16800 gramos
235U (al 5%) Alfa 7,04 × 108 años 420000 gramos
238U (DU) Alfa 4,468 × 109 años 3060000 gramos

Tabla 1. Para diferentes radionucleidos se muestra su tipo principal de radiación, su periodo de semidesintegración y peso requerido del mismo para conseguir una actividad de 1000 curios

Además, cada radionucleido decae de manera específica. El estroncio-90 decae emitiendo partículas beta pero sin emitir radiación gamma, mientras que el cobalto-60 emite fundamentalmente radiación gamma y algo de radiación beta. El americio-241 decae emitiendo fundamentalmente partículas alfa y también emite algo de radiación gamma de baja energía.

 

Elección de los componentes de una bomba sucia

Los dos componentes más importantes de una bomba sucia son obviamente el material explosivo y el material radiactivo. No vamos a tratar aquí la elección del material explosivo, tan solo vamos considerar algunos aspectos relativos al material radiactivo.

Uno de los principales puntos a considerar para preparar una bomba sucia es el cómo conseguir el material radiactivo. El tipo de radiación emitida, la actividad y el periodo de semidesintegración de los radionucleidos, son muy diferentes, y eso unido a las características físico-químicas del material radiactivo hace que los peligros inherentes y las medidas de seguridad y control establecidas para cada uno de ellos sean también muy diferentes.

La Agencia Internacional de Energía Atómica (IAEA) en su guía de seguridad No. RS-G-1.9 «Clasificación de las fuentes radiactivas» ha establecido cinco categorías de peligro aplicables a las fuentes radiactivas utilizadas en algunas prácticas comunes.

Las fuentes de la categoría 1 son las más «peligrosas» porque pueden suponer un riesgo altísimo para la salud de los seres humanos si no se manejan en condiciones de seguridad tecnológica y física. La exposición durante sólo unos cuantos minutos a una fuente de categoría 1 no blindada puede ser fatal. En el extremo inferior del sistema de clasificación, las fuentes de la categoría 5 son las menos peligrosas; ahora bien, incluso éstas pueden dar lugar a dosis superiores a las dosis límite si no se controlan correctamente y, por consiguiente, hay que mantenerlas bajo el adecuado control regulador.

Las categorías 1-«Extremadamente peligrosa para las personas», 2-«Muy peligrosa para las personas», y 3-«Peligrosa para las personas», son las que están sujetas a mayores medidas de seguridad y control. Las fuentes gamma y beta están sujetas a controles más estrictos que las fuentes alfa, por lo cual cabe pensar que la sustracción de una fuente alfa sería más factible.

La radiactividad (actividad) de los diferentes radionucleidos es muy variable. La tabla 2 resume algunas características y aplicaciones de algunos de los radionucleidos más comunes. Aunque no existen datos suficientes para establecer con exactitud las dosis letales en seres humanos, si hay diferencia entre las dosis letales de los emisores alfa (de unos miles de curios) con las dosis letales de los emisores gamma (de unos cientos de curios).

 

Radionucleido Radiación principal Período de semi desintegración Uso habitual Actividad (Ci)
60Co Gamma 5,2714 años Irradiadores para alimentos y esterilización 5000-15000000
Teleterapia 1000-15000
90Sr Beta 28,9 años Generadores termoeléctricos de radioisótopos 9000-680000
137Cs Beta / gamma 30,17 años Irradiadores para sangre y tejidos 1000-12000
Teleterapia 500-1500
Indicadores de nivel 1-5
192Ir Beta / gamma 73,827 días Radiografía industrial 5–200
210Po Alfa 138,376 días Eliminadores de estática 0,03–0,11
241Am Alfa 432,2 años Testificación geofísica 0,5–23
Servicios de calibración 5–20
Eliminadores de estática 0,03–0,11
252Cf Alfa 2,645 años Testificación geofísica 0,03–0,11
Investigación científica hasta 27

Tabla 2. Para diferentes radionucleidos se muestra su tipo principal de radiación, su periodo de semidesintegración, su uso habitual y su rango de actividad.

 

Después habría que considerar el tiempo requerido de actividad para el material radiactivo y aquí habría que considerar el tiempo que transcurrirá desde la preparación de la bomba hasta su explosión, y el tiempo que se desea dure la contaminación radiactiva después de dispersado el material radiactivo. Para la preparación de una bomba sucia, los terroristas prefieren materiales radiactivos con un periodo de semidesintegración intermedio (varios años), pues si fuese muy corto, de horas o días, el material se desintegraría muy rápidamente y resultaría muy radiactivo, pero decaería muy rápidamente mientras se prepara la bomba sucia, y además si la bomba sucia dispersase el material radiactivo, bastaría casi tan solo con esperar varios días para que la radiación decayese y se produjese de este modo una «descontaminación» natural de las zonas contaminadas.

En el extremo opuesto, material radiactivo con un periodo de semidesintegración muy grande (miles o millones de años) decaen muy lentamente y producen poca radiación, requiriendo para una bomba sucia grandes cantidades. Algunos autores indican que estos materiales no son adecuados para una bomba sucia, pero recordemos que los terroristas pueden estar interesados en una bomba sucia cuyos efectos no sean producir bajas a corto o medio plazo, sino provocar miedo y aterrorizar a la población, contaminando la zona con material que puede ser inhalado o ingerido, que puede producir algunos efectos no solo por la radiación sino también por la toxicidad química. El uranio empobrecido, material de desecho de la industria nuclear, es básicamente uranio-238 (más del 99%), emisor alfa con un periodo de semidesintegración de 4,468 × 109 años, muy poco radiactivo, pero de fácil adquisición y además pirofórico (se inflama espontáneamente en contacto con el aire), hecho este último que favorecería su dispersión.

Las propiedades físico-químicas también es un factor importante, ya que las sustancias en forma de polvo se dispersarían más fácilmente. La solubilidad del material en agua facilitaría la descontaminación pero a su vez favorecería la contaminación de los cauces acuosos. Por ejemplo, el cesio-137 (uno de los radionucleidos más utilizados) se suministra como polvo cloruro de cesio-137, sustancia blanca, cristalina, muy soluble en agua, y de punto de ebullición 1297 °C. Por todo ello el cesio-137, emisor beta/gamma sería un buen material radiactivo para una bomba sucia. El americio-241 emisor alfa también se suministra, para algunas aplicaciones, en forma de polvo. El cobalto-60, un isótopo radiactivo sintético del cobalto, es fundamentalmente un emisor gamma (con una energía muy alta, del orden de 1,3 MeV), con un periodo de semidesintegración de 5,2714 años, que suele emplearse en forma metálica. El cobalto metálico, de una dureza similar a la del hierro, en forma de barras cilíndricas, se dispersaría mal por efecto de la explosión que produciría muy probablemente fragmentos de gran tamaño fáciles de localizar y retirar.

 

Efectos sobre la salud y actuación

Las radiaciones ionizantes afectan a la salud a nivel del genoma celular, actuando sobre las moléculas de ADN, produciendo una serie de efectos que se engloban en dos grandes grupos:

  • efectos estocásticos y
  • efectos deterministas.

Los efectos estocásticos son aquellos que no presentan una dosis umbral por debajo de la cual no aparecen consecuencias. Su gravedad no depende de la dosis recibida, pues son siempre graves si suceden. Hay dos tipos de efectos estocásticos conocidos. Si una célula cualquiera (células somáticas) del cuerpo sufre una mutación, puede llegar a transformarse en un tumor (cancerígeno o benigno). Si la célula mutada es un gameto (células germinales), éste puede tener como resultado un efecto hereditario. La probabilidad de que se produzca un efecto estocástico aumenta con la dosis. Los efectos estocásticos aparecen tras unos años de latencia. El periodo de latencia más corto que se conoce es el de la leucemia, que puede aparecer después de dos años.

Los efectos deterministas causan la muerte de la célula. Algunos ejemplos de dolencias por efectos deterministas son: vómitos, quemaduras por radiación, cataratas o efectos sobre el desarrollo por exposición del útero. En contraste con los efectos estocásticos, para cada efecto determinista existe una dosis umbral, por debajo de la cual los efectos no aparecen.  No se aprecian efectos deterministas si se reciben dosis inferiores a la dosis umbral. Sin embargo, una vez que el umbral se ha superado, el efecto es seguro (“determinista”) y se agrava más con el incremento de la dosis.

Como el ser humano no puede ver, oler, sentir o percibir el sabor de la radiación, el personal presente en el lugar de una explosión, no sabrá si había o no materiales radioactivos presentes. Si el personal no sufre heridas demasiado graves a causa de la explosión inicial, debería:

  • No entrar en pánico, salir de la zona de la explosión caminando y no tomar transportes públicos o privados porque si había material radioactivo presente, podrían contaminar los medios de transporte y extender la contaminación.
  • Entrar en el edificio más cercano para eliminar su posible exposición a la contaminación y por ello a la radiación.
  • Si se sospecha de una posible contaminación, debería quitarse lo antes posible la ropa, colocarla en una bolsa plástica y sellarla. Al quitarse la ropa, retirará la mayor parte de la contaminación radiactiva y al guardar la ropa contaminada evitará extender la contaminación y permitirá analizar la misma para saber la naturaleza del material radiactivo.
  • Si es posible debería ducharse o lavarse con agua y jabón, para reducir la contaminación radioactiva sobre el cuerpo y reducir de manera eficaz la exposición a la radiación.
  • Prestar atención a la información y consignas del personal de emergencias para un mejor desarrollo de las actividades.

 

 

Referencias

  1. «Bombas sucias, preguntas frecuentes», Ministerio de salud de Dakota del Norte, https://www.ndhan.gov/data/translation/Dirty%20Bombs-Spanish.pdf
  2. «Dirty Bomb-Fact Sheet», FEMA, 2007, https://www.fema.gov/media-library-data/20130726-1621-20490-3999/dirtybombfactsheet_final.pdf
  3. «Dirty Bomb-Fact Sheet», U.S.NRC, 2012, https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/fs-dirty-bombs.pdf
  4. «Bomba sucia como acontecimiento de terrorismo», South Central District Health, https://phd5.idaho.gov/factsheets/er/dirty_bomb_bt_spanish.pdf
  5. «Radiological Dispersion Device (Dirty Bomb)», WHO/RAD Information sheet, 2003, http://www.who.int/ionizing_radiation/en/WHORAD_InfoSheet_Dirty_Bombs21Feb.pdf?ua=1
  6. «Terrorist “Dirty Bombs”-A Brief Primer», https://fas.org/sgp/crs/nuke/RS21528.pdf
  7. «Radiological Terrorism», P. Andrew Karam, Human and Ecological Risk Assessment, 11: 501–523, 2005http://www.andrewkaram.com/pdf/terrorism.pdf
  8. «Radiological Terrorism Fact Sheet», http://cs.erplan.net/WMD/dirty.pdf
  9. «Proliferación de ADM y de Tecnología Avanzada. Capítulo 5. Armas radiológicas», Julio Ortega García, Cuaderno de Estrategia nº 153, IEEE, 2011 https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0ahUKEwidnejq8vLLAhXKPRoKHQAiDpoQFgg_MAU&url=https%3A%2F%2Fdialnet.unirioja.es%2Fdescarga%2Farticulo%2F3835369.pdf&usg=AFQjCNH5ULAN6AeDeTUBkoTTVkjR5wF-9g
  10. «Clasificación de las fuentes radiactivas», IAEA, Guía de seguridad RS-G-1.9, http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227s_web.pdf
  11. «Uranium and Dirty Bombs», Federation of American Scientists, 2008, https://fas.org/programs/ssp/nukes/non-proliferation%20and%20arms%20control/uraniumdirtybombs.html
  12. «Beyond the Dirty Bomb: Re-thinking Radiological Terror», James M. Acton, M. Brooke Rogers & Peter D. Zimmerman, Survival Vol. 49 , Iss. 3, 2007
  13. «Módulo 4: protección radiológica», Consejo de Seguridad Nuclear, Vicente Gamo Pascual , Curso General de Formación de Actuantes en Emergencias Nucleares, https://www.csn.es/documents/10182/950714/Curso+General+de+Formaci%C3%B3n+de+Actuantes+en+Emergencias+Nucleares.+TEMA+04.+Protecci%C3%B3n+radiol%C3%B3gica

 

La amenaza química del Daesh

La amenaza química del Daesh

René Pita y Juan Domingo

Este artículo de análisis se escribió el 21 de noviembre de 2015. Una versión resumida fue publicada en La Voz de Galicia el 21 de febrero de 2016. El texto completo se publica ahora en cbrn.es.

 

Tras los atentados yihadistas del 13 de noviembre de 2015 en París, ha crecido la preocupación por la posibilidad de que el Daesh pudiera llevar a cabo ataques terroristas con armas químicas. Una situación parecida se produjo después de los atentados de Al Qaeda el 11 de septiembre de 2001 (11-S) en EE.UU. Pocos días después del 11-S, se realizaron varios envíos de sobres postales que contenían esporas de Bacillus anthracis, el agente biológico responsable del carbunco, una enfermedad conocida coloquialmente como ántrax. Estos envíos causaron cinco víctimas mortales, cifra que podría haber sido mayor si las autoridades sanitarias norteamericanas no hubiesen establecido el tratamiento con antibióticos de todas las personas sospechosas de haber estado expuestas a las esporas del microorganismo.

Por la proximidad en el tiempo con los atentados del 11-S, la lógica del momento hizo pensar que también era Al Qaeda la responsable del ataque biológico. Se sospechaba que durante los años que llevaba operando impunemente en territorio afgano, la organización terrorista había adquirido una importante capacidad de empleo de armas de destrucción masiva. Pero una vez finalizadas las operaciones militares en Afganistán no se encontró rastro alguno de esa capacidad, y únicamente se descubrieron tentativas para la puesta en marcha de algunos programas que no pasaron de una fase de planeamiento. Finalmente, en 2008, la investigación oficial sobre los envíos postales concluía que el responsable no fue el terrorismo yihadista sino un miembro del programa de defensa biológica del propio ejército norteamericano.

Tras los atentados en París de 2015, el primer ministro francés, Manuel Valls, alertaba sobre el riesgo de que el Daesh pudiese emplear armas químicas o biológicas. Estas declaraciones fueron entendidas como una amenaza concreta identificada por los servicios de inteligencia franceses. Sin embargo, las declaraciones de Valls se debían a que, pocos días antes, la Organización para la Prohibición de Armas Químicas (OPAQ) había hecho público un informe según el cual su Misión de Determinación de los Hechos en Siria confirmaba el empleo de iperita –también conocida como gas mostaza– en un ataque atribuido al Daesh en agosto de 2015. Con los ataques de París todavía recientes, la información de la OPAQ hacía verosímil la hipótesis de que el Daesh podía exportar este tipo de tácticas fuera de Siria.

Actualmente el Daesh ocupa territorios en Irak y Siria, si bien existen diferencias con respecto a la situación que tenía Al Qaeda en Afganistán. En primer lugar, el Daesh explota todos los recursos y riquezas de los territorios bajo su dominio. La financiación a través de la venta de petróleo es un claro ejemplo. En segundo lugar, y a diferencia de Afganistán, Irak y Siria tuvieron importantes programas de armas químicas. Por todo ello, cabe la posibilidad de que el Daesh pueda aprovechar las capacidades químicas que caigan en sus manos.

El programa químico iraquí permitió el uso masivo de armas químicas, especialmente iperita y sarín, en la guerra contra Irán en los años ochenta. Las investigaciones de la ONU y del Irak Survey Group –misión de investigación creada en el año 2003 y liderada por EE.UU.– confirmaron que el programa químico iraquí había finalizado a principios de los años noventa. No obstante, a fecha de hoy aún se siguen descubriendo restos de arsenales químicos que fueron abandonados o quedaron sin control.

El programa sirio, al igual que el iraquí, se decantó por la iperita y por los agentes neurotóxicos, como el sarín y el VX. Precisamente fue el sarín el agente químico utilizado el 21 de agosto de 2013 en las afueras de Damasco, que causó cientos de víctimas civiles. La presión de la comunidad internacional hizo que, semanas después, Siria se adhiriese a la Convención para la Prohibición de Armas Químicas (CAQ) y declarase su arsenal químico, que incluía, entre otros, unas 20 toneladas de iperita y 581 toneladas de DF, un precursor inmediato del sarín. Ante una difícil situación de guerra y de manera excepcional, se autorizó su destrucción fuera de Siria y el stock de iperita y DF fue trasladado a un buque norteamericano donde fue neutralizado, en aguas del Mediterráneo, bajo supervisión de la OPAQ.

Aun así, existen dudas de que Siria haya declarado toda su capacidad química. Durante las primeras inspecciones realizadas por la OPAQ en territorio sirio se encontraron discrepancias con las cantidades declaradas de agentes químicos e instalaciones de producción. Asimismo, tal y como ocurrió en Irak, es probable que, debido a la situación de guerra, algunos stocks de armas químicas pudieran haber quedado abandonados y fuera del control del gobierno sirio.

Con este escenario, existen distintas posibilidades que permitirían al Daesh acceder al arma química. La primera y más obvia sería a través de un arsenal abandonado en territorio bajo su control. En el caso de las armas químicas iraquíes, su principal problema sería el grave deterioro de la munición con el paso de los años, que haría peligrosa su manipulación. Además, el agente químico estaría bastante degradado por la acción del tiempo y las condiciones de almacenamiento. Por ejemplo, es frecuente que la munición cargada con iperita encontrada en Irak esté polimerizada, lo que impediría su empleo.

Con respecto a la munición química siria, de más reciente producción, la limitación de uso estaría condicionada por la disponibilidad de vectores de lanzamiento. De nada le serviría al Daesh poseer granadas de mortero o proyectiles de artillería químicos si no dispusiese de los morteros o de los cañones necesarios para su lanzamiento. Por ello, su uso estaría restringido al territorio sirio o sus proximidades, donde la organización terrorista dispone de medios de lanzamiento que pueden adaptarse a esta munición. De hecho, todo apunta a que en los ataques con iperita que tuvieron lugar en Irak y Siria en agosto de 2015, se habría empleado munición de origen sirio. En ambos casos, las escasas consecuencias de los ataques se habrían debido a la poca munición química disponible.

Otra de las posibles opciones sería que el Daesh consiguiese sintetizar sus propios agentes químicos de guerra y cargar las municiones en sus talleres de producción. En este sentido, se conocen los intentos de captar a personal de la Universidad de Mosul con conocimientos de síntesis en química orgánica y de acceder a instalaciones industriales iraquíes con pequeñas cantidades de precursores de iperita. Sin embargo, la producción de armas químicas a gran escala es un proceso complejo que requiere un equipo multidisciplinar de personal con el conocimiento explícito y tácito, es decir, con el know-how adquirido a través de la investigación aplicada. Esto complica a cualquier organización terrorista la opción de la producción propia.

Debido a estas dificultades para acceder a un arma química «clásica», el Daesh ha optado por recurrir a otro tipo de alternativas. Es el caso de los productos químicos industriales tóxicos (TIC) que, aunque son menos tóxicos, resultan de más fácil obtención. Con frecuencia se producen en Irak y Siria atentados con artefactos explosivos improvisados (IED) combinados con bombonas de cloro y otros TIC. A pesar de que estos artefactos causan menos víctimas que los IED convencionales, documentos incautados al Daesh muestran su interés en continuar con su empleo por el importante impacto psicológico que producen. Al mismo tiempo, dejan clara su intención de seguir explorando el acceso a otros agentes químicos más peligrosos.

Por último, es necesario hacer mención a Libia, que también desarrolló un programa de armas químicas. Si bien aquí el Daesh no tiene una presencia tan amplia como en Irak o Siria, sí ha mostrado su interés en afianzarse y expandirse en este país por su posición estratégica en el litoral mediterráneo y a las puertas de Europa. Libia se adhirió a la CAQ en enero de 2004, declarando 25 toneladas de iperita y 1.390 toneladas de precursores. Esta cantidad se incrementó a finales de 2011, tras la caída de Muamar el Gadafi, cuando se descubrieron dos instalaciones no declaradas con cerca de 2 toneladas de iperita cargada en proyectiles de artillería y bombas de aviación. La destrucción de toda la iperita almacenada, verificada por la OPAQ, finalizó a principios de 2014.

Tal y como ocurre en Irak y Siria, también existe la posibilidad de que otros stocks no declarados en Libia, de forma intencionada o no, puedan caer en manos de organizaciones terroristas. Ahora bien, el programa libio tuvo problemas técnicos para estabilizar los agentes químicos que producía, especialmente los agentes neurotóxicos, de los que sólo se tiene constancia del almacenamiento de precursores. Según la doctrina libia de empleo de armas químicas, su producción y carga en municiones se hacía justo antes de su empleo. También la experiencia de la destrucción del armamento químico supervisada por la OPAQ muestra que la iperita de reciente producción se encontraba polimerizada, lo que indicaría problemas de estabilización. El empleo de munición del programa libio estaría, por tanto, limitado por el estado en el que se encontrase.

Al igual que el resto de organizaciones terroristas yihadistas, el Daesh ha mostrado interés por conseguir una capacidad química, consciente del poder que le conferiría. Tras los ataques con iperita en Irak y Siria en agosto de 2015, la organización terrorista ya debe conocer los considerables problemas técnicos y de seguridad que supone transportar y emplear este armamento de forma eficaz. Pero aun siendo conscientes de estas limitaciones y de la escasa probabilidad de éxito, el importante efecto psicológico y mediático que entrañaría incluso el simple intento de atentar con este armamento en Occidente, nos obliga a no despreciar ni minimizar la posibilidad de un escenario de este tipo.