Archivo de la etiqueta: Lista 1

No todos los alcoholes son iguales

Para empezar, recordemos que en su artículo II, punto 3, la Convención para la prohibición de las Armas Químicas (CAQ) entiende por «precursor»1:

«Cualquier reactivo químico que intervenga en cualquier fase de la producción por cualquier método de una sustancia química tóxica. Queda incluido cualquier componente clave de un sistema químico binario o de multicomponentes.»

(A los efectos de la aplicación de la CAQ, los precursores respecto de los que se ha previsto la aplicación de medidas de verificación están enumerados en Listas incluidas en el Anexo sobre sustancias químicas.)

Y según el punto 4 de ese mismo artículo, se entiende por «componente clave de sistemas químicos binarios o de multicomponentes»1:

«El precursor que desempeña la función más importante en la determinación de las propiedades tóxicas del producto final y que reacciona rápidamente con otras sustancias químicas en el sistema binario o de multicomponentes.»

Los alcoholes son precursores de multitud de agentes químicos de guerra, y además son, en algunos casos, componentes de sistemas químicos binarios o de multicomponentes.

 

 

Los alcoholes y la CAQ1,2

A efectos de verificación la CAQ recoge en su anexo sobre sustancias químicas miles de sustancias químicas del tipo ésteres fosfóricos o ésteres fosfónicos, donde el resto alquílico del éster puede ser una cadena carbonada lineal, o más o menos ramificada, o incluso con ciclos, que no tenga más de 10 átomos de carbono:

1A.1

1A.2

1A.3

 

 

2B.4

Pese a la existencia de miles de ésteres en las Listas de la CAQ, tan solo unos pocos alcoholes están recogidos en ellas, lo que indica claramente que no todos los alcoholes son iguales:

2B.9 Quinuclidinol-3

CAS 1619-34-7

2B.11 N,N-dialquilaminoetan-2-oles

2B.13 Tiodiglicol

CAS 111-48-8

2B.14 Alcohol pinacolilico (3,3-dimetilbutan-2-ol)

CAS 464-07-3

 

3B.15 Etildietanolamina

CAS 139-87-7

3B.16 Metildietanolamina

CAS 105-59-9

3B.17 Trietanolamina

CAS 102-71-6

Todos los alcoholes listados tienen, además de sus fines no prohibidos por la CAQ, una aplicación más o menos directa para la síntesis de algunos agentes químicos de guerra, por ejemplo:

  • El quinuclidin-3-ol es junto con el ácido 2,2-difenil-2-hidroxiacético, precursor necesario del agente incapacitante benzilato de 3-quinuclidinilo, más conocido como agente BZ (CAS 6581-06-2), incluido en la Lista 2A.3.

  • El N,N-diisopropilaminoetanol es un precursor para la síntesis del O-2-diisopropilaminoetil metilfosfonito de O-etilo, agente QL (CAS 57856-11-8), precursor para la síntesis del agente neurotóxico VX (CAS 50782-69-9).

  • El tiodiglicol (CAS 111-48-8) reacciona con el cloruro de hidrógeno para formar sulfuro de bis (2-cloroetilo), el famoso agente vesicante conocido como iperita o “gas mostaza” (CAS 505-60-2).

  • El 3,3-dimetilbutan-2-ol, conocido como alcohol pinacolílico (CAS 464-07-3), es precursor del agente neurotóxico somán (CAS 96-64-0).

Se da la circunstancia de que muchos alcoholes, que son sustancias muy utilizadas para fines no prohibidos por la CAQ, no están incluidos, ni en las Listas de la CAQ, ni en las listas del Grupo Australia, y sin embargo son precursores para la síntesis de los ésteres organofosforados incluídos en las Listas.

Por ejemplo, ni el isopropanol, ni el ciclohexanol, ni el etanol están incluidos en las Listas de la CAQ, y tampoco están incluidos en el Grupo Australia, pero son precursores para la síntesis del sarín, ciclosarín y etilsarín, respectivamente:

 

 

Destrucción de las armas químicas1

En el anexo sobre la aplicación y la verificación, en su Parte IV(A) relativa a la destrucción de armas químicas y su verificación, en el artículo 2 se indica:

            …

    1. los casos de mezclas de dos o más sustancias químicas, se identificará cada una de ellas, indicándose los porcentajes respectivos, y la mezcla se declarará con arreglo a la categoría de la sustancia química más tóxica. Si un componente de un arma química binaria está constituido por una mezcla de dos o más sustancias químicas, se identificará cada una de ellas y se indicará el porcentaje respectivo;
    2. Las armas químicas binarias se declararán con arreglo al producto final pertinente dentro del marco de las categorías de armas químicas mencionadas en el párrafo 16. Se facilitará la siguiente información complementaria respecto de cada tipo de munición química binaria/dispositivo químico binario:

i) El nombre químico del producto tóxico final;

ii) La composición química y la cantidad de cada componente;

iii) La relación efectiva de peso entre los componentes;

iv) Qué componente se considera el componente clave;

v) La cantidad proyectada del producto tóxico final calculada sobre una base estequiométrica a partir del componente clave, suponiendo que el rendimiento sea del 100%. Se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto tóxico final específico equivale a la cantidad (en toneladas) de ese producto tóxico final calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;

Y en el artículo 18 de esta Parte IV(A) relativa a la destrucción de armas químicas y su verificación, se indica:

Para la destrucción de las armas químicas binarias se aplicará lo siguiente:

  1. A los efectos del orden de destrucción, se considerará que la cantidad declarada (en toneladas) del componente clave destinada a un producto final tóxico específico equivale a la cantidad (en toneladas) de ese producto final tóxico calculada sobre una base estequiométrica, suponiendo que el rendimiento sea del 100%;
  2. La exigencia de destruir una cantidad determinada del componente clave implicará la exigencia de destruir una cantidad correspondiente del otro componente, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario;
  3. Si se declara una cantidad mayor de la necesaria del otro componente, sobre la base de la relación efectiva de peso entre componentes, el exceso consiguiente se destruirá a lo largo de los dos primeros años siguientes al comienzo de las operaciones de destrucción;
  4. Al final de cada año operacional siguiente, cada Estado Parte podrá conservar una cantidad del otro componente declarado determinada sobre la base de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.

Esto supone que si se declarase la posesión de un componente clave de un sistema de munición química binaria, por ejemplo, si se declarasen 100 kg de DF (que con un peso molecular de 100,00 suponen 1000 moles), habría que destruir 1000 moles de un alcohol, por ejemplo, de 3,3-dimetil-2-butanol (CAS 464-07-3, Lista 2B.14), de 2-propanol (CAS 67-63-0, no listado), de 2-butanol (CAS 78-83-1, no listado), de 2,2-dimetil-1-propanol (CAS 75-84-3, no listado), o de cualquier otro de los muchos alcoholes no listados.

 

 

Guerra química

En guerra química la elección del alcohol viene condicionada por la toxicidad del agente y la disponibilidad o facilidad de síntesis del alcohol.

La siguiente tabla muestra la toxicidad en conejos, por vía intravenosa, para diferentes metilfosfonofluoridatos de O-alquilo, sarín, somán y ciclosarín, entre otros, y como puede observarse son bastante similares. En caso de requerirse un agente químico de guerra del tipo «metilfosfonofluoridato de O-alquilo» es probable que la obtención del mismo venga condicionada en gran medida por la disponibilidad del alcohol correspondiente3.

 

 

Grupo alquilo R1

Nombre del agente químico de guerra

LD50 iv en conejos (mg/kg)

CH3

Metilfosfonofluoridato de O-metilo

0,04

CH3CH2

Metilfosfonofluoridato de O-etilo

0,05

CH3CH2CH2

Metilfosfonofluoridato de O-propilo

0,03

(CH3)2CH-

Metilfosfonofluoridato de O-isopropilo, sarín, GB

0,02

CH3CH2CH2CH2

Metilfosfonofluoridato de O-butilo

0,05

CH3CH2CH(CH3)-

Metilfosfonofluoridato de O-(1-metilpropilo)

0,01

(CH3)2CH2CH-

Metilfosfonofluoridato de O-isobutilo

0,19

CH3CH2CH2CH(CH3)-

Metilfosfonofluoridato de O-(1-metilbutilo)

0,02

(CH3)2CH2CH(CH3)-

Metilfosfonofluoridato de O-(1,2-dimetilpropilo)

0,01

(CH3)3CCH2

Metilfosfonofluoridato de O-neopentilo, Metilfosfonofluoridato de O-(2,2-dimetilpropilo)

0,01

CH3CH2CH2CH2CH2CH2

Metilfosfonofluoridato de O-hexilo

0,15

(CH3)2CHCH2CH(CH3)-

Metilfosfonofluoridato de O-(1,3-dimetilbutilo)

0,02

(CH3)3CCH(CH3)-

Metilfosfonofluoridato de O-pinacolilo, Metilfosfonofluoridato de O-(1,2,2-trimetilpropilo), somán, GD

0,01

C6H11

Metilfosfonofluoridato de O-ciclohexilo, ciclosarín, GF

0,02

 

 

De los alcoholes, los ésteres

La cadena carbonada lineal, o más o menos ramificada, o incluso con ciclos, que no tenga más de 10 átomos de carbono, enlazada al átomo de fósforo a través de un átomo de oxígeno, se correspondería con el alcohol esterificado. Conforme aumenta el número de átomos de carbono del alcohol aumenta de manera importante el número de isómeros posibles. La siguiente tabla muestra los posibles alcoholes de C1 a C8, con su número CAS (no se incluyen los ciclos, ni los isómeros ópticos):

 C1

 

Metanol, CAS 67-56-1

C2

Etanol, CAS 64-17-5

C3

Propanol, CAS 71-23-8

Isopropanol, CAS 67-63-0

C4

1-butanol, CAS 71-36-3

2-butanol, CAS 78-83-1

1-metil-1-propanol, CAS 78-92-2

1,1-dimetil-1-propanol, CAS 75-65-0

C5

1-pentanol, CAS 71-41-0

2-pentanol, CAS 6032-29-7

3-pentanol, CAS 584-02-1

2-metil-1-butanol, CAS 137-32-6

3-metil-1-butanol, CAS 123-51-3

2-metil-2-butanol, CAS 75-85-4

3-metil-2-butanol, CAS 598-75-4

2,2-dimetil-1-propanol, CAS 75-84-3

C6

1-hexanol, CAS 111-27-3

2-hexanol, CAS 626-93-7

3-hexanol, CAS 623-37-0

2-metil-1-pentanol, CAS 105-30-6

3-metil-1-pentanol, CAS 589-35-5

4-metil-1-pentanol, CAS 626-89-1

2-metil-2-pentanol, CAS 590-36-1

3-metil-2-pentanol, CAS 565-60-6

4-metil-2-pentanol, CAS 108-11-2

3-metil-3-pentanol, CAS 77-74-7

4-metil-3-pentanol, CAS 565-67-3

2,2-dimetil-1-butanol, CAS 1185-33-7

2-etil-1-butanol, CAS 97-95-0

2,3-dimetil-1-butanol, CAS 49550-30-2

3,3-dimetil-1-butanol, CAS 624-95-3

2,3-dimetil-2-butanol, CAS 594-60-5

3,3-dimetil-2-butanol, CAS 464-07-3 (en Lista 2B.14 de la CAQ)

C7

1-heptanol, CAS 111-70-6

2-heptanol, CAS 543-49-7

3-heptanol, CAS 589-82-2

4-heptanol, CAS 589-55-9

2-metil-1-hexanol, CAS 624-22-6

3-metil-1-hexanol, CAS 13231-81-7

4-metil-1-hexanol, CAS 818-49-5

5-metil-1-hexanol, CAS 627-98-5

2-metil-2-hexanol, CAS 625-23-0

3-metil-2-hexanol, CAS 2313-65-7

4-metil-2-hexanol, CAS 2313-61-3

5-metil-2-hexanol, CAS 627-59-8

2-metil-3-hexanol, CAS 617-29-8

3-metil-3-hexanol, CAS 597-96-6

4-metil-3-hexanol, CAS 615-29-2

5-metil-3-hexanol, CAS 623-55-2

2,2-dimetil-1-pentanol, CAS 2370-12-9

3,3-dimetil-1-pentanol, CAS 19264-94-9

4,4-dimetil-1-pentanol, CAS 3121-79-7

2-etil-1-pentanol, CAS 27522-11-8

3-etil-1-pentanol, CAS 66225-51-2

2,3-dimetil-2-pentanol, CAS 4911-70-0

2,4-dimetil-2-pentanol, CAS 625-06-9

3,3-dimetil-2-pentanol, CAS 19781-24-9

4,4-dimetil-2-pentanol, CAS 6144-93-0

3,4-dimetil-1-pentanol, CAS 6570-87-2

2,3-dimetil-1-pentanol, CAS 10143-23-4

2,4-dimetil-1-pentanol, CAS 6305-71-1

3-etil-2-pentanol, CAS 609-27-8

3,4-dimetil-2-pentanol, CAS 64502-86-9

2,2-dimetil-3-pentanol, CAS 3970-62-5

2,4-dimetil-3-pentanol, CAS 600-36-2

3-etil-3-pentanol, CAS 597-49-9

2,3-dimetil-3-pentanol, CAS 595-41-5

2,2,3-trimetil-1-butanol, CAS 55505-23-2

2,3,3-trimetil-1-butanol, CAS 36794-64-6

2-etil-3-metil-1-butanol, CAS 32444-34-1

2-etil-2-metil-1-butanol, CAS 18371-13-6

2,3,3-trimetil-2-butanol, CAS 594-83-2

C8

1-octanol, CAS 111-87-5

2-octanol, CAS 123-96-6

3-octanol, CAS 589-98-0

4-octanol, CAS 589-62-8

2-metil-1-heptanol, CAS 60435-70-3

2-metil-2-heptanol, CAS 625-25-2

2-metil-3-heptanol, CAS 18720-62-2

2-metil-4-heptanol, CAS 21570-35-4

3-metil-1-heptanol, CAS 1070-32-2

3-metil-2-heptanol, CAS 31367-46-1

3-metil-3-heptanol, CAS 5582-82-1

3-metil-4-heptanol, CAS 1838-73-9

4-metil-1-heptanol, CAS 817-91-4

4-metil-2-heptanol, CAS 56298-90-9

4-metil-3-heptanol, CAS 14979-39-6

4-metil-4-heptanol, CAS 598-01-6

5-metil-1-heptanol, CAS 7212-53-5

5-metil-2-heptanol, CAS 54630-50-1

5-metil-3-heptanol, CAS 18720-65-5

6-metil-1-heptanol, CAS 1653-40-3

6-metil-2-heptanol, CAS 4730-22-7

6-metil-3-heptanol, CAS 18720-66-6

2,2-dimetil-1-hexanol, CAS 2370-13-0

2,2-dimetil-3-hexanol, CAS 4209-90-9

2,3-dimetil-1-hexanol, CAS 19550-02-8

2,3-dimetil-2-hexanol, CAS 19550-03-9

2,3-dimetil-3-hexanol, CAS 4166-46-5

2,4-dimetil-1-hexanol, CAS 3965-59-1

2,4-dimetil-2-hexanol, CAS 42328-76-7

2,4-dimetil-3-hexanol, CAS 13432-25-2

2,5-dimetil-1-hexanol, CAS 6886-16-4

2,5-dimetil-2-hexanol, CAS 3730-60-7

2,5-dimetil-3-hexanol, CAS 19550-07-3

3,3-dimetil-1-hexanol, CAS 10524-70-6

3,3-dimetil-2-hexanol, CAS 22025-20-3

3,4-dimetil-1-hexanol, CAS 66576-57-6

3,4-dimetil-2-hexanol, CAS 19550-05-1

3,4-dimetil-3-hexanol, CAS 19550-08-4

3,5-dimetil-1-hexanol, CAS 13501-73-0

3,5-dimetil-2-hexanol, CAS 66576-27-0

3,5-dimetil-3-hexanol, CAS 4209-91-0

4,4-dimetil-1-hexanol, CAS 6481-95-4

4,4-dimetil-2-hexanol, CAS 66576-28-1

4,4-dimetil-3-hexanol, CAS 19550-09-5

4,5-dimetil-1-hexanol, CAS 60564-76-3

4,5-dimetil-2-hexanol, CAS 66576-29-2

4,5-dimetil-3-hexanol, CAS 66576-30-5

5,5-dimetil-1-hexanol, CAS 2768-18-5

5,5-dimetil-2-hexanol, CAS 31841-77-7

5,5-dimetil-3-hexanol, CAS 66576-31-6

2-etil-1-hexanol, CAS 104-76-7

3-etil-1-hexanol, CAS 41065-95-6

3-etil-2-hexanol, CAS 24448-19-9

3-etil-3-hexanol, CAS 597-76-2

4-etil-1-hexanol, CAS 66576-32-7

4-etil-2-hexanol, CAS 66576-33-8

4-etil-3-hexanol, CAS 19780-44-0

2,2,3-trimetil-1-pentanol, CAS 57409-53-7

2,2,3-trimetil-3-pentanol, CAS 7294-05-5

2,2,4-trimetil-1-pentanol, CAS 123-44-4

2,2,4-trimetil-3-pentanol, CAS 5162-48-1

2,3,3-trimetil-1-pentanol, CAS 66576-25-8

2,3,3-trimetil-2-pentanol, CAS 23171-85-9

2,3,4-trimetil-1-pentanol, CAS 6570-88-3

2,3,4-trimetil-2-pentanol, CAS 66576-26-9

2,3,4-trimetil-3-pentanol, CAS 3054-92-0

2,4,4-trimetil-1-pentanol, CAS 16325-63-6

2,4,4-trimetil-2-pentanol, CAS 690-37-9

3,3,4-trimetil-1-pentanol, CAS 65502-58-1

3,3,4-trimetil-2-pentanol, CAS 19411-41-7

3,4,4-trimetil-1-pentanol, CAS 16325-64-7

3,4,4-trimetil-2-pentanol, CAS 10575-56-1

2-etil-2-metil-1-pentanol, CAS 5970-63-8

2-etil-3-metil-1-pentanol, CAS 66576-35-0

2-etil-4-metil-1-pentanol, CAS 106-67-2

3-etil-2-metil-1-pentanol, CAS 66576-34-9

3-etil-2-metil-2-pentanol, CAS 19780-63-3

3-etil-2-metil-3-pentanol, CAS 597-05-7

3-etil-3-metil-1-pentanol, CAS 10524-71-7

3-etil-3-metil-2-pentanol, CAS 66576-22-5

3-etil-4-metil-1-pentanol, CAS 38514-13-5

3-etil-4-metil-2-pentanol, CAS 66576-23-6

2-propil-1-pentanol, CAS 58175-57-8

2-(1-metiletil)-1-pentanol, CAS 18593-91-4

2-etil-3,3-dimetil-1-butanol, CAS 66576-56-5

2-etil-2,3-dimetil-1-butanol, CAS 66576-55-4

2,2-dietil-1-butanol, CAS 13023-60-4

3-metil-2-(1-metiletil)-1-butanol, CAS 18593-92-5

2,2,3,3-tetrametil-1-butanol, CAS 66576-24-7

 

De los 161 alcoholes de esta lista solo el 3,3-dimetil-2-butanol (alcohol pinacolílico), CAS 464-07-3 está en las Listas de la CAQ, concretamente en la Lista 2B.14.

Los alcoholes se usan como disolventes y diluyentes para pinturas (principalmente alcoholes C1-C6), como intermedios en la fabricación de ésteres y de toda una gama de compuestos orgánicos, como agentes de flotación, como lubricantes, y como combustibles o aditivos de combustible. Para fines industriales, a menudo se prefieren las mezclas isoméricas porque los alcoholes puros son demasiado caros. Además, las mezclas de alcoholes con diferentes números de átomos de carbono pueden ser ventajosas para ciertos fines. Por lo tanto, las cantidades de mezclas de alcohol disponibles en el mercado son similares a las cantidades de los alcoholes puros individuales.

Desde el punto de vista industrial los alcoholes más importantes son metanol, etanol, 1-propanol, 2-propanol (alcohol isopropílico), 1-butanol, 2-metil-1-propanol (alcohol isobutílico), los alcoholes plastificantes (C6 – C11) y los alcoholes grasos (C12 – C18), utilizados para detergentes.

 

 

Métodos de preparación de alcoholes4,5,6,7,8

Existen muchos y muy diversos métodos de laboratorio para la preparación de alcoholes, que aparecen descritos en los múltiples libros sobre química orgánica. A modo de resumen podemos citar los siguientes:

  1. Hidratación de alquenos. La reacción de hidratación sigue la regla de Markovnikov, es decir, el protón se adiciona al carbono menos sustituido del alqueno y el grupo hidroxilo se adiciona al carbono más sustituido del alqueno.

  1. Hidroboración seguida de oxidación. La hidroboración es una reacción en la cual un alqueno reacciona con un hidruro de boro para formar un organoborano que posteriormente es oxidado con peróxido de hidrógeno en medio básico para obtener un alcohol. La reacción de hidroboración sigue la regla anti-Markovnikov, es decir, el protón se adiciona al carbono más sustituido del alqueno y el grupo hidroxilo se adiciona al carbono menos sustituido del alqueno.

  1. Hidrólisis de los halogenuros de alquilo. La hidrólisis de los halogenuros de alquilo es una reacción de sustitución nucleófila que permite la obtención del correspondiente alcohol. La utilidad de esta reacción de sustitución viene limitada por la competencia de la reacción de eliminación de halogenuro de hidrógeno que produce el correspondiente alqueno.

  1. Hidrólisis de los halogenuros de alquilo. La hidrólisis de los halogenuros de alquilo es una reacción de sustitución nucleófila que permite la obtención del correspondiente alcohol. La utilidad de esta reacción de sustitución viene limitada por la competencia de la reacción de eliminación de halogenuro de hidrógeno que produce el correspondiente alqueno.
  2. Reacción de adición nucleófila de reactivos de Grignard al grupo carbonilo (aldehídos, cetonas, ésteres y acil derivados) y a epóxidos. Mediante este procedimiento se pueden obtener ácoholes primarios, secundarios y terciarios:
    • Alcoholes primarios. Cuando la adición se lleva a cabo sobre el metanal.

    • Alcoholes secundarios. Cuando la adición se lleva a cabo sobre cualquier otro aldehído:

    • Alcoholes terciarios. Cuando la adición se lleva a cabo sobre una cetona:

    • Reacciones con ésteres y halogenuros (haluros) de ácido. Los reactivos de Grignard reaccionan con estos derivados de ácido dando alcoholes terciarios, pero se requieren dos equivalentes del reactivo de Grignard por cada equivalente del derivado de ácido:

    • Reacciones con epóxidos. Normalmente con óxido de metileno, para así obtener alcoholes primarios:

 

  1. Reducción de compuestos carbonílicos. Para la reducción de los compuestos carbonílicos se suelen emplear hidruros, como el NaBH4 que es muy selectivo y no reduce ni los ácidos ni los ésteres, o el LiAlH4 que es un reactivo más enérgico que reduce también los ácidos, los ésteres y otros derivados de ácidos. Normalmente los aldehídos se reducen a alcoholes primarios y las cetonas a alcoholes secundarios. Los ácidos y ésteres se reducen a alcoholes primarios.

 

A escala industrial podemos citar los siguientes procesos:

  1. Síntesis a partir de monóxido de carbono e hidrógeno (para el metanol)
  2. Oxosíntesis (la mayor parte de las veces combinada con hidrogenación de los aldehídos formados inicialmente; alcoholes de C3 a C20)
  3. Hidrogenación de aldehídos, ácidos carboxílicos o ésteres.
  4. Condensación aldólica de aldehídos inferiores e hidrogenación de los alquenilos (C3→C6, C4→C8, C8→C16)
  5. Oxidación de compuestos de trialquilaluminio (proceso Ziegler)
  6. Oxidación de hidrocarburos saturados.
  7. Hidratación de olefinas (alcoholes de C2 a C4)
  8. Homologación de alcoholes
  9. Hidrocarbonilación mediante el proceso Reppe
  10. Hidrocarboximetilación
  11. Procesos de fermentación (alcoholes de C2 a C5)
  12. Proceso Guerbet

Probablemente los procesos industriales más importantes son la síntesis de metanol y la oxosíntesis, aunque la hidratación de etileno y de propeno a etanol y a 2-propanol, y la oxidación de los compuestos de trialquilaluminio (proceso Alfol o proceso Ziegler) también ha logrado una considerable importancia comercial. La fermentación, especialmente para la producción de etanol, ha vuelto a ser importante en ciertas regiones debido al aumento de precio del petróleo.

 

Síntesis a partir de monóxido de carbono e hidrógeno (para el metanol)4

Sólo el metanol se prepara a partir de gas de síntesis (El gas de síntesis, que contiene cantidades variables de monóxido de carbono (CO) e hidrógeno (H2), es un combustible gaseoso obtenido sometiendo ciertas sustancias ricas en carbono (hulla, carbón, coque, nafta, biomasa, etc.) a un proceso químico a alta temperatura):

CO + H2 ⇔ CH3OH

CO2 + H2 ⇔ CH3OH + H2O

CO2 + H2 ⇔ CO + H2O

 

Oxosíntesis4,9

Los alcoholes en el rango C3-C20 pueden prepararse mediante oxosíntesis, haciendo reaccionar olefinas con gas de síntesis (CO + H2) para formar aldehídos usando la reacción de hidroformilación, y luego hidrogenando el aldehído para obtener el alcohol:

R-CH=CH2 + CO + 2 H2 → R-CH2CH2CH2OH

Algunas veces se aplica una etapa intermedia para agregar dos aldehídos y obtener un aldehído con mayor número de átomos de carbono (reacción de condensación aldólica), antes de proceder a la hidrogenación. Una versión particular de la oxosíntesis es el proceso Shell, en el cual la fuerte actividad hidrogenante del catalizador, HCo(CO)3PR3, conduce a la hidrogenación directa en el reactor oxo del aldehído inicialmente formado.

Los principales alcoholes obtenidos mediante este proceso (oxo-alcoholes) son: 1-butanol (CAS 71-36-3), 2-metil-2-butanol (CAS ), 2-etil-1-hexanol (CAS 75-85-4), 2-propil-1-heptanol (CAS 10042-59-8), 7-metil-1-octanol (CAS 27458-94-2) y 8-metil-1-nonanol (25339-17-7)

 

Hidrogenación de aldehídos, ácidos carboxílicos o ésteres4

Los aldehídos se pueden hidrogenar en presencia de catalizadores homogéneos o heterogéneos. Generalmente se prefieren catalizadores heterogéneos que son efectivos tanto en fase gaseosa a temperaturas de 90-180 °C y presiones de 25 bar, como en fase líquida a temperaturas de 80-220 °C y presiones de hasta 300 bar. La temperatura de hidrogenación empleada en los distintos procesos industriales es un compromiso entre el menor consumo energético posible y la más larga vida útil del catalizador.

 

Condensación aldólica de aldehídos inferiores e hidrogenación de los alquenales4 (C3→C6, C4→C8, C8→C16)

En la industria, la única fuente de aldehídos para la condensación aldólica es la oxosíntesis. Después de eliminados los isoaldehídos y otros subproductos, se realiza la condensación catalizada por ácidos o bases. Dado que la reactividad de cada aldehído depende de la longitud de la cadena y del grado de ramificación, las condiciones de reacción deben adaptarse para cada aldehído en particular. Los aldehídos insaturados (alquenales), formados por eliminación de agua en los aldoles, se hidrogenan sobre catalizadores heterogéneos.

Mediante este método, se preparan 2-etilhexanol, 2-metilpentanol y cantidades limitadas de alcoholes isómeros C16 y C18 altamente ramificados.

 

Oxidación de compuestos de trialquilaluminio (proceso Ziegler)4

El etileno puede agregarse al trietilaluminio para formar una mezcla de compuestos de trialquilaluminio de mayor masa molecular. Estos productos pueden oxidarse con aire a loscorrespondientes alcóxidos de aluminio, que luego se hidrolizan a una mezcla de alcoholes primarios lineales con el mismo número de átomos de carbono que los grupos alquilo que constituyen el trialquilaluminio:

Al(CH2CH3)3 + 3x CH2=CH2 → Al((CH2CH2)xCH2CH3)3

Al((CH2CH2)xCH2CH3)3 + 3/2 O2 → Al(O(CH2CH2)xCH2CH3)3

Al(O(CH2CH2)xCH2CH3)3  + 3 H2O → Al(OH)3 + 3 HO(CH2CH2)xCH2CH3

Esta reacción conocida como proceso Ziegler (también como síntesis Ziegler-Alfol) es el fundamento de dos procesos comerciales, uno conocido como proceso Conoco (Conoco y Deutsche Texaco) que produce alcoholes entre C2-C28, prácticamente lineales en un 100%, empleando una temperatura lo más baja posible, y otro conocido como proceso Ethyl Corporation que produce predominantemente alcoholes entre C12-C14, lineales en un 95%.

Comparación de la composición de las mezclas de alcoholes del proceso Ziegler.

Nº átomos de carbono

Proceso Conoco

Proceso Ethyl Corporation

6

9,6%

1,4%

8

16,9%

3,2%

10

20,7%

7,7%

12

19,4%

34,5%

14

15,1%

26,3%

16

9,8%

16,7%

18

5,3%

8,9%

20

3,2%

1,3%

 

Oxidación de hidrocarburos saturados4

La oxidación de los hidrocarburos alifáticos con aire en presencia de ácido metabórico, HBO2, (oxidación de Bashkirov) produce ésteres de ácido bórico con un alto rendimiento. Estos se hidrolizan en un segundo paso a alcoholes secundarios en los que los grupos hidroxilo se distribuyen estadísticamente a lo largo de la cadena molecular.

Normalmente, se utiliza como producto de partida una mezcla de n-hidrocarburos con longitudes de cadena entre 10 y 16 átomos de carbono. La oxidación se lleva a cabo en la fase líquida a 150-170 °C en presencia de 4-5% en peso de ácido metabórico empleando una mezcla de nitrógeno y oxígeno (con aproximadamente un 3,5% de O2), a presión normal o ligeramente elevada.

El producto de partida y los subproductos de oxidación se eliminan mediante evaporación instantánea y se limpian mediante lavadores de gases alcalinos y de agua. Los ésteres de ácido metabórico en el fondo de la columna de evaporación instantánea  se hidrolizan mediante la adición de pequeñas cantidades de agua a 80- 00 °C. Después de la destilación fraccionada, se obtienen alcoholes con una pureza superior al 98%. El procesado finaliza con una hidrogenación sobre catalizadores heterogéneos de níquel para eliminar las sustancias coloreadas y olorosas.

Por ejemplo, la oxidación por este método del ciclohexano permite obtener una mezcla de ciclohexanol y ciclohexanona conocida como aceite KA. El ciclohexano que se obtiene en su mayor parte por  hidrogenación del benceno es oxidado en fase líquida con aire en presencia de catalizadores solubles de cobalto o ácido bórico para producir una mezcla de ciclohexanol y de ciclohexanona (aceite KA). El ciclohexanol puede ser oxidado a ciclohexanona, que se usa para producir caprolactama, un monómero para la producción de nylon-6 (policaprolactama). El aceite de KA puede convertirse en ácido adípico y hexametilendiamina, los monómeros para la producción de nylon 66 (poli-hexametilenadipamida).

 

Hidratación de olefinas (alcoholes de C2 a C4)4

Un método común para la producción de alcoholes inferiores es la hidratación de alquenos. La hidratación de alquenos es Markovnikov, es decir, el protón se adiciona al carbono menos sustituido del alqueno (carbono con más hidrógenos) de modo que se obtienen alcoholes secundarios y terciarios (excepto en el caso del etileno):

El mecanismo transcurre con formación de un carbocatión intermedio, y la velocidad de la reacción viene determinada por la estabilidad de dicho carbocatión (terciario> secundario> primario). Por ello, la hidratación del isobuteno se produce a temperatura ambiente en presencia de bajas concentraciones de protones debido a la relativa estabilidad del carbocatión terciario intermedio, mientras que la hidratación del etileno requiere temperaturas y presiones elevadas.

La hidratación se emplea para la preparación de etanol a partir de etileno y de alcohol isopropílico a partir de propeno. También se emplea en la producción de 2-butanol a partir de una mezcla de 1-buteno y 2-buteno (raffinato II) y de alcohol terc-butílico (2-metil-2-propanol) a partir de isobuteno (isobutileno ó 2-metilpropeno).

 

Homologación de alcoholes4

Una reacción de homologación, también conocida como «homologización», es cualquier reacción química que convierte el reactivo en el siguiente miembro de la serie homóloga. Una serie homóloga es un grupo de sustancias químicas similares que difieren entre sí en un átomo de carbono, generalmente un grupo -CH2-.

La homologación de alcoholes es la reacción de alcoholes con gas de síntesis en presencia de complejos sistemas catalíticos multicomponentes. Dependiendo de las condiciones de reacción, los productos resultantes son aldehídos o alcoholes que contienen un grupo -CH2– más que los materiales de partida:

Aunque la reacción se concibió originalmente para la síntesis de etanol a partir de metanol, el alcance se ha ampliado para incluir la producción de aldehídos homólogos (acetaldehído a partir de metanol), ácidos carboxílicos (ácido propiónico a partir de ácido acético), ésteres de ácidos carboxílicos (acetato de etilo a partir de acetato de metilo), así como la síntesis de estireno (mediante la homologación de alcohol bencílico a 2-feniletanol con posterior deshidratación).

El proceso no goza de gran utilización industrial porque la conversión y la selectividad, a pesar de los considerables avances, todavía son insuficientes y porque existen problemas con el reciclaje de los complejos catalizadores de homologación.

 

Hidrocarbonilación mediante el proceso Reppe4

La hidrocarbonilación de olefinas mediante el proceso Reppe (en honor al químico alemán  Walter Reppe) con monóxido de carbono y agua, y el uso de sales amónicas del dihidruro tetracarbonilo de hierro (H2Fe(CO)4) como catalizador, conduce a alcoholes con un átomo de carbono adicional. Al igual que en la oxosíntesis, también se forman productos de cadena ramificada (la relación molar de alcoholes de cadena lineal a ramificada es de aproximadamente 9:1).

El propeno reacciona a 90-110 °C y 5-20 bar para formar butanoles con rendimientos del 90%. Aproximadamente el 4% del propeno se hidrogena a propano.

La conversión de olefinas superiores requiere condiciones más extremas. El proceso no puede competir con la hidroformilación.

 

Hidrocarboximetilación4

La hidrocarboximetilación es una variante del proceso Reppe en el que las olefinas superiores reaccionan con monóxido de carbono y metanol en presencia de un catalizador de cobalto-piridina. Los productos son ésteres de ácidos carboxílicos que contienen un átomo de carbono más en la cadena madre que la materia prima olefínica. Los ésteres se pueden hidrogenar a los alcoholes. Puesto que estos productos pueden prepararse de manera más económica a partir de materias primas naturales, el proceso apenas tiene ahora importancia industrial.

 

Procesos de fermentación (alcoholes de C2 a C5)4

La fermentación, que es probablemente el proceso más antiguo para la fabricación de etanol, todavía se practica a gran escala. La fermentación de butanolacetona de las materias primas de carbohidratos ya no tiene importancia. En pequeña escala, los pentanoles se recuperan de los aceites de fusel (mezcla de alcoholes alifáticos de longitud de cadena C3, C4 y C5, en proporciones que varían según la procedencia. Normalmente contiene 2-metil-1-butanol, 3-metil-1-butanol (alcohol isoamílico), 2-metil-1-propanol (alcohol isobutílico) y n-propanol, en un medio etanólico).

 

Proceso Guerbet4

En el proceso Guerbet, los alcoholes primarios saturados se dimerizan en alcoholes primarios ramificados en posición a. Normalmente, la reacción se lleva a cabo con el alcohol a reflujo en presencia de un agente de condensación alcalino y un catalizador de hidrogenación-deshidrogenación, por ejemplo:

El agua y las pequeñas cantidades de hidrógeno producidas en la reacción se eliminan en continuo. Si el calentamiento se prolonga durante mucho tiempo también se forman alcoholes primarios a-ramificados triméricos.

El rendimiento de alcoholes diméricos es de aproximadamente el 80%. Se puede aumentar mediante el reciclaje de los residuos y la adición en porciones de catalizador nuevo. El sodio metálico, así como otras sustancias, se han propuesto como agentes de condensación. Para fines industriales, se prefieren los hidróxidos de metales alcalinos.

Debido a que los alcoholes con la típica ramificación en posición a se preparan más fácilmente por otros métodos, por ejemplo, el 2-etil-1-hexanol por hidroformilación de propeno para dar butanal y posterior condensación de aldol, la reacción de Guerbet no se ha establecido como un proceso industrial a gran escala.

 

 

Conclusión

  • No todos los alcoholes son iguales, pues algunos, muy pocos, están incluidos en las Listas incluidas en el Anexo sobre sustancias químicas de la CAQ o en la Lista del Rrupo Australia, mientras que la mayoría de los alcoholes no están incluídos en Lista alguna.
  • Sin embargo la CAQ incluye la exigencia de destruir la cantidad estequiométrica de un alcohol, calculada a partir de la relación efectiva de peso de los componentes en el tipo pertinente de munición química binaria/dispositivo químico binario.
  • A la hora de preparar un agente químico de guerra mediante un proceso de síntesis a partir de un alcohol es probable que además de la toxicidad del producto final se tenga muy en cuenta la disponibilidad y pureza del alcohol a emplear en la síntesis, sobre todo cuando lo que prima son los efectos psicológicos sobre los efectos letales de la dispersión de un agente neurotóxico.

 

 

Referencias

  1. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción», https://www.opcw.org/sites/default/files/documents/2019/02/CWC_es.pdf
  2. «Grupo Australia», https://australiagroup.net/es/listas.html
  3. «Fluorine chemistry at the millennium-fascinated by fluorine», R.E. Banks, Elsevier Science Ltd., 2000
  4. «Ullmann’s Encyclopedia of Industrial Chemistry», «Alcoholes alifáticos», 7th ed, Wiley-VCH (Editor), 2011
  5. «Química orgánica», I.L. Finar, Ed. Alhambra, 3ª ed., 1975
  6. «Química orgánica superior», L.F.Fieser & M. Fieser, Ed. Grigalbo, 1966
  7. «Química orgánica», N.L. Allinger y otros, Ed. Reverté, 1973
  8. «Reacciones de síntesis de alcoholes», https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwi71YHJtsjhAhUp8uAKHT98DVQQFjAAegQIARAC&url=https%3A%2F%2Fwww2.ulpgc.es%2Fhege%2Falmacen%2Fdownload%2F4%2F4545%2FReacciones_de_los_Alcoholes.doc&usg=AOvVaw2sYf0-92GWbgom2704PDWq
  9. «Oxo alcohols», Wikipedia, https://en.wikipedia.org/wiki/Oxo_alcohol

 

 

 

Eran pocos, y parió la abuela

La Lista 1

La Lista 1 del anexo de verificación de la Convención sobre las Armas Químicas (CAQ) incluía, a la entrada en vigor de la misma el 29 de abril de 1997, seis familias de agentes químicos de guerra, dos toxinas consideradas como agentes químicos (saxitoxina y ricina), dos familias de precursores y dos precursores individuales (cloro sarín y cloro somán)1, a saber:

1A.1 Alquilfosfonofluoridatos de O-alquilo (agentes neurotóxicos) (más de 20 000 sustancias)
1A.2 N,N-dialquilfosforamidatos de O-alquilo (agentes neurotóxicos) (más de 50 000 sustancias)
1A.3 Alquilfosfonotiolatos de O-alquilo y S-2-dialquilaminoetilo (agentes neurotóxicos) (más de 200 000 sustancias)
1A.4 Mostazas de azufre (agentes vesicantes) (9 sustancias)
1A.5 Lewisitas (agentes vesicantes) (3 sustancias)
1A.6 Mostazas de nitrógeno (agentes vesicantes) (3 sustancias)
1A.7 Saxitoxina (1 sustancia)
1A.8 Ricina (1 sustancia)
1B.9 Fosfonildifluoruros de alquilo (4 sustancias)
1B.10 Alquilfosfonitos de O-alquilo y O-2-dialquilaminoetilo (más de 200 000 sustancias)
1B.11 Cloro sarín (1 sustancia)
1B.12 Cloro somán (1 sustancia)

Es decir la Lista 1 contenía más de 470 023 sustancias de las cuales solo unos cientos tienen recogidos sus espectros en la Base de Datos Analítica de la Organización para la Prohibición de las Armas Químicas (OPAQ)2.

 

El embarazoso tema de la modificación del anexo

En Salisbury3,4, el 4 de marzo de 2018, el disidente soviético Sergei Skripal, su hija Yulia Skripal y el oficial de policía Nicholas Bailey resultaron intoxicados con una sustancia química tóxica, identificada por los laboratorios de Reino Unido, y por los laboratorios designados de la OPAQ, como una sustancia neurotóxica de la familia de los agentes «novichok». La estructura química de dicho agente «novichok» no se ha hecho pública hasta el momento, pero si se ha hecho público que era una sustancia de gran pureza (pese a lo cual, ninguno de los tres afectados llegó a fallecer). En abril de ese mismo año, Reino Unido acusó a Rusia ante la OPAQ del envenenamiento. Más tarde, el 30 de junio de 2018, en Amesbury3,5, el Sr. Charles Rowley y la Sra. Dawn Sturgess resultaron intoxicados con la misma sustancia neurotóxica que la identificada en el incidente de Salisbury, y la Sra. Sturgess falleció a causa de dicha intoxicación.

Tras estos hechos, el 16 de octubre de 2018, las Representaciones Permanentes ante la OPAQ del Canadá, los Estados Unidos de América y los Países Bajos presentaron la «Propuesta conjunta relativa a una modificación técnica de la Lista 1 del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas», de conformidad con los párrafos 1, 4 y 5 del artículo XV de la Convención (S/1682/2018, de fecha 25 de octubre de 2018)6. La propuesta conjunta propone la inclusión en la Lista 1 de dos nuevas familias de agentes neurotóxicos7:

  1. Fluoruros fosforamídicos de P-alquilo (H o ≤ C10, incluido el cicloalquilo) N-(1-(dialquil (≤ C10, incluido el cicloalquilo)amino))alquilideno (H o ≤ C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

  1. Fosforamidofluoridatos de O-alquilo (H o ≤ C10, incluido el cicloalquilo) N-(1-(dialquil (≤ C10, incluido el cicloalquilo)amino))alquilideno (H o ≤ C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

El 30 de noviembre de 2018, la Representación Permanente de la Federación de Rusia ante la OPAQ presentó las «Propuestas para introducir adiciones en las listas de sustancias químicas del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas», de conformidad con los párrafos 1, 4 y 5 del artículo XV de la Convención (S/1696/2018, de fecha 7 de diciembre de 2018)6. Aunque la OPAQ no ha hecho pública las Propuestas rusas, tal y como hizo con la Propuesta Conjunta, éstas han sido reveladas por la Oficina de Industria y Seguridad del Departamento de Comercio de Estados Unidos, como resultado de sus actividades para recopilar información que permita evaluar el impacto en la industria de Estados Unidos de las Propuestas Rusas de modificación del Anexo sobre productos químicos de la CAQ8.

Las propuestas rusas suponen la inclusión en la Lista 1 de cinco nuevas familias de agentes neurotóxicos8:

  1. Fluoruros de P-alquilo (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamídicos y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

  1. O-alquil (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamidofluoridatos y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

 

  1. P-alquil (H o ≤ C10, incluidos cicloalquilos)-(bis((alquil (H or ≤ C10, incluidos cicloalquilos)alquil (H or ≤ C10, incluidos cicloalquilos)amino))metilen) fosfonamidofluoridates y sales alquilatadas o protonadas correspondientes (varios millones de sustancias).

 

  1. Dimetil-carbamoiloxipiridinas cuaternarias (más de 1000 000 sustancias):
    • 1-[N,N-dialquil(С≤10)-N-(n-(hidroxil, ciano, acetoxi)alquil(С≤10))amonio]-n-[N-(3-metil-carbamoxi-α-picolinil)-N,N-dialquil(С≤10)amonio]decano dibromuro (n=1-8)
    • 1,n-bis[N-(3-dimetilcarbamoxi-α-picolil)-N,N-dialquil((С≤10)amonio]-alcano-(2,(n-1)-diona) dibromuro (n=2-12)

  1. O-(1-alquil (H, Me) 2-alquil (H,Me) -2-cloroetil)-(((dihalo(F, Cl)metilen)amino)-oxi)fosforofluoridatos (12 sustancias).

En la sexagésima segunda reunión del Consejo Ejecutivo, éste estudió y adoptó, por consenso, la decisión titulada «Recomendación relativa a una modificación de la Lista 1 del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas»7, (EC-M-62/DEC.1, de fecha 14 de enero de 2019, en la que recomendó a todos los Estados Partes la adopción de la Propuesta Conjunta (La Federación Rusa se desvinculó del consenso9) 6.

Unos días más tarde, en la sexagésima tercera reunión del Consejo Ejecutivo, el Consejo examinó las Propuestas de la Federación Rusa, y no adoptó el proyecto de decisión en el que se recomendaba su adopción (EC-M-63/DEC/CRP.1, de fecha 19 de febrero de 2019). Sobre esta base, se consideró que el Consejo recomendaba que se rechazaran las Propuestas de la Federación Rusa6.

Antes de que expirase el periodo de 90 días, el 14 de abril de 2019, para formular objeciones a la decisión del Consejo Ejecutivo de aprobar la Propuesta Conjunta, el 14 de abril de 2019, la Secretaría recibió una objeción de un Estado Parte (Federación Rusa) a la recomendación del Consejo de que se adoptara la Propuesta conjunta (EC-M-62/NAT.5, de fecha 9 de abril de 2019)6. Conforme a lo indicado al apartado e) del párrafo 5 del artículo XV de la Convención, al recibirse una objeción a la recomendación del Consejo, debía ser la vigésimo cuarta Conferencia de Estados Parte la que debía adoptar una decisión, como cuestión de fondo, sobre la Propuesta Conjunta de modificación de la Lista 1 del Anexo sobre sustancias químicas de la CAQ1.

Como era de esperar, días más tarde y antes de que expirase, el 27 de mayo de 2019, el periodo de 90 días para formular objeciones, la Secretaría recibió una objeción de un Estado Parte (República de Burundi) a la recomendación del Consejo de rechazar las Propuestas de la Federación de Rusia (EC-M-63/NAT.4, de fecha 9 de abril de 2019)6. Como ya se ha indicado, conforme a lo indicado al apartado e) del párrafo 5 del artículo XV de la Convención, al recibirse una objeción a la recomendación del Consejo, debía ser la vigésimo cuarta Conferencia de Estados Parte la que debía adoptar una decisión, como cuestión de fondo, sobre las Propuestas rusas de modificación de la Lista 1 del Anexo sobre sustancias químicas de la CAQ1.

Tras las consultas celebradas entre la Federación de Rusia, los Estados Unidos de América, el Canadá y los Países Bajos, con la participación de la Secretaría (S/1758/2019, de fecha 3 de junio de 2019; S/1785/2019, de fecha 16 de agosto de 2019; y S/1789/2019, de fecha 26 de agosto de 2019), la Federación de Rusia presentó al Director General una «Propuesta modificada para introducir modificaciones en la Lista 1 del Anexo sobre sustancias químicas de la Convención sobre las Armas Químicas» (S/1796/2019, de fecha 24 de septiembre de 2019)6,10.

Así llegamos a este punto donde todo parece indicar que la embarazosa situación de la modificación de la Lista 1 del Anexo sobre sustancias químicas de la CAQ se resolverá cuando la Conferencia de Estados Parte examine y apruebe tanto el proyecto de decisión sobre la Propuesta conjunta (C-24/DEC/CRP.1, de fecha 20 de septiembre de 2019), como la Propuesta modificada de la Federación de Rusia (C-24/DEC/CRP.5, de fecha 1 de noviembre de 2019).

 

 

Y parió la abuela

El 27 de noviembre de 2019, durante la vigésimo cuarta conferencia, la Conferencia de Estados Partes daba a luz a dos mellizos, la modificación del anexo conforme a la Propuesta Conjunta de los Estados Unidos de América, el Canadá y los Países Bajos, de fecha 16 de octubre de 2018, y la modificación del anexo conforme a las Propuestas Rusas, de fecha 24 de septiembre de 20197,11.

La Propuesta Conjunta consiste como ya se ha indicado en dos grandes familias de agentes neurotóxicos:

  1. Fluoruros de P-alquil (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamídicos y sales alquilatadas o protonadas correspondientes.

Ejemplo: fluoruro de N-(1-(di-n-decilamino)-n-deciliden)-P-decilfosfonamídico (sin número CAS).

  1. O-alquil (H o ≤ C10, incluidos cicloalquilos) N-(1-(dialquil (≤ C10, incluidos cicloalquilos)amino))alquiliden (H o ≤ C10, incluidos cicloalquilos) fosforamidofluoridatos y sales alquilatadas o protonadas correspondientes.

Ejemplo: O-n-decil N-(1-(di-n-decilamino)-n-deciliden) fosforamidofluoridato (sin número CAS).

 

 

La Propuesta Rusa no se corresponde exactamente con la hecha pública por la Oficina de Industria y Seguridad del Departamento de Comercio de Estados Unidos. De las cinco familias indicadas en un primer momento se ha eliminado la última, correspondiente a los O-(1-alquil (H, Me)2-alquil (H,Me)-2-cloroetil)-(((dihalo(F, Cl)metileno)amino)-oxi)fosforofluoridatos. Además con excepción de la familia de los carbamatos las otras tres familias han reducido sustancialmente su tamaño10:

  1. O-alquil (Ме, Еt)-(1-(alquil (Me, Et)alquil (Me, Et)amino)etiliden) fosforamidofluoridatos:

Ejemplos:

Metil-(1-(dietilamino)etiliden)fosforamidofluoridato (sin número CAS)

Etil-(1-(dietilamino)etiliden)fosforamidofluoridato (sin número CAS)

Esta familia está incluida en la Propuesta Conjunta

 

  1. Metil-(1-(dietilamino)etiliden)fosfonamidofluoridato (sin número CAS)

Esta sustancia está incluida en la Propuesta Conjunta

  1. Metil-(bis(dietilamino)metilen)fosfonamidofluoridato (sin número CAS)

Esta sustancia no está recogida en la Propuesta Conjunta, y se correspondería con el agente A-242 descrito por Mirzayanov.

  1. Carbamatos (cuaternarios y bicuaternarios de dimetilcarbamoiloxipiridinas)

4.1 Cuaternarios de dimetilcarbamoiloxipiridinas:

Dibromuro de 1-[N,N-dialquil (С≤10) -N-(n-(hidroxil, ciano, acetoxi)alquil (С≤10)) amonio]-n-[N-(3-dimetil-carbamoxi-α-picolinil)-N,N-dialquil (С≤10)amonio]decano (n=1-8)

Ejemplo: Dibromuro de 1-[N,N-dimetil-N-(2-hidroxi)etilamonio]-10-[N-(3-dimetil carbamoxi-α-picolinil)-N,N-dimetilamonio]decano (CAS 77104-62-2)12.

 4.2 Bicuaternarios de dimetilcarbamoiloxipiridinas:

Dibromuro de 1,n-bis[N-(3-dimetilcarbamoxi-α-picolil)-N,N-dialquil( (С≤10) amonio]- alcano-(2,(n-1)-diona) (n=2-12)

Ejemplo: Dibromuro de 1,10-bis[N-(3-dimetilcarbamoxi-α-picolil)-N-etil-N-metilamonio]- decano-2,9-diona (CAS 77104-00-8)12.

 

Conclusiones

  • Está claro, no solo por el contenido de la Propuesta Conjunta, sino también por los considerandos que incluyen muchos documentos, y por las declaraciones realizadas por los Estados Unidos y Canadá en la Cuarta Conferencia de Revisión de la CAQ en noviembre de 2018, que dicha Propuesta Conjunta fue presentada para asegurar que todos los agentes «novichok», incluido el que se utilizó en los incidentes de Salisbury y Amesbury, fueran incluidos como agentes químicos de guerra en las Listas de la CAQ13. Se incluyen dos familias con millones de sustancias químicas por no hacerse pública la naturaleza de la sustancia tóxica utilizada en los incidentes citados. La idea que subyace en el fondo de la Propuesta Conjunta es acusar a la Federación Rusa de incumplir la CAQ. Sin embargo recordemos que los espectros de masas hechos públicos correspondientes al A-230 y al A-234 son aportaciones del centro militar estadounidense CBDCOM/ERDEC (Chemical Biological Defense Command/ Edgewood Research, Development and Engineering Center)14 a la librería de espectros de masas del NIST98.
  • Parece también que la Propuesta Rusa busca acusar a Estados Unidos al incluir una numerosa familia de carbamatos de gran toxicidad patentados por el Ejército de Estados Unidos a finales de la década de 196013.
  • Probablemente muchas de las sustancias incluidas ahora en la Lista 1 carecen de interés como agentes químicos de guerra, debido a que por su estructura y elevado peso molecular, son sólidos a temperatura ambiente y difícilmente utilizables por vía inhalatoria13.
  • Ninguna de las propuestas incluye a los precursores necesarios que deberían ser incluidos en Lista 1 o en Lista 2, dependiendo de su posible uso no prohibido por la CAQ13,14.
  • Debido a la falta de transparencia acerca de la estructura del «novichok» empleado en Salisbury y Amesbury, el número de sustancias químicas en la Lista 1 del Anexo sobre sustancias químicas ha aumentado exageradamente.

 

 

Referencias

  1. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción (CAQ)», disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf y en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc
  2. «Sampling and analysis in the CWC and the OPCW mobile laboratory» en «Chemical Weapons Convention chemicals analysis-Sample Collection, Preparation and Analytical Methods», Markku Mesilaakso, Wiley 2005.
  3. «Technical Assistance provided by OPCW related to toxic chemical incidents in Salisbury and Amesbury», https://www.opcw.org/media-centre/featured-topics/incident-salisbury
  4. «Note by the Technical Secretariat: Summary of the Report on Activities Carried Out in Support of a Request for Technical Assistance by the United Kingdom of Great Britain and Northern Ireland (Technical Assistance Visit TAV/02/18), s-1612-2018, https://www.opcw.org/sites/default/files/documents/S_series/2018/en/s-1612-2018_e___1_.pdf)
  5. «Note by the Technical Secretariat: Summary of the Report on Activities Carried Out in Support of a Request for Technical Assistance by the UK (Technical Assistance Visit TAV/03/18 and TAV/03B/18, «Amesbury Incident»)», s-1671-2018, https://www.opcw.org/sites/default/files/documents/2018/09/s-1671-2018%28e%29.pdf).
  6. «Annotated provisional agenda for the Twenty-Fourth Session of the Conference of the States Parties, 25 – 29 November 2019», C-24/INF.1/Rev.1, https://www.opcw.org/sites/default/files/documents/2019/11/c24inf01r1%28e%29.pdf)
  7. «Decision-Recommendation for a change to Schedule 1of the annex on chemicals to the Chemical Weapons Convention», EC-M-62/DEC.1 https://www.opcw.org/sites/default/files/documents/2019/01/ecm62dec01%2B%28e%29.pdf
  8. «Impact of Proposed Additions to the ‘Annex on Chemicals’ to the Chemical Weapons Convention (CWC) on Legitimate Commercial Chemical, Biotechnology, and Pharmaceutical Activities Involving ‘Schedule 1’ Chemicals (Including Schedule 1 Chemicals Produced as Intermediates),» Federal Register, Vol. 84, No. 157 (2019), <www.govinfo.gov/content/ pkg/FR-2019-08-14/pdf/2019-17256.pdf>
  9. «Report of the sixty-second meeting of the Executive Council», EC-M-62/2, https://www.opcw.org/sites/default/files/documents/2019/01/ecm6202%28e%29.pdf
  10. «Decision-Changes to Schedule 1 of the Annex on chemicals to the Chemical Weapons Convention», C-24/DEC.5, https://www.opcw.org/sites/default/files/documents/2019/11/c24dec05%28e%29.pdf
  11. «Technical change to Schedule 1(A) of the Annex on chemicals to the Chemical Weapons Convention», C-24/DEC.4, https://www.opcw.org/sites/default/files/documents/2019/11/c24dec04%28e%29.pdf
  12. Handbook of Chemical and Biological Warfare Agents-D. Hank Ellison 2Ed CRC Press 2008
  13. «Controlling Novichoks after Salisbury: revising the Chemical Weapons Convention schedules», Stefano Costanzi & Gregory D. Koblentz, The Nonproliferation Review, September 2019
  14. «Se les ve el plumero», J.Domingo, https://cbrn.es/?p=1403

 

El anexo está de moda

Sí, parece increíble, pero el anexo sobre sustancias químicas, está de moda. A las recientes propuestas para su modificación llevadas a cabo por Canadá, Estados Unidos de América y Países Bajos, por un lado1, y por la Federación Rusa por otro2, podemos añadir el documento de la OPAQ, «The Science for Diplomats Annex on Chemicals», de fecha 12 de febrero de 20193. A la vista del contenido de este último, decidí escribir este artículo, cuyo contenido pongo a disposición de los lectores, en un documento libre, en formato pdf. Descargar El anexo sobre sustancias químicas de la CAQ está de moda

Recordemos que la Convención para la Prohibición de las Armas Químicas (CAQ) enumera, en tres Listas, las sustancias químicas tóxicas y sus precursores respecto de los que se prevé la aplicación de medidas de verificación con arreglo a lo previsto en las disposiciones del Anexo sobre verificación4.

En estas Listas se hace referencia a sustancias químicas individuales (con su propio número CAS), y a familias de sustancias químicas que contienen diversos grupos alquilo (que se indican entre paréntesis). Dentro de estas familias se entienden incluidas todas las sustancias químicas posibles que puedan obtenerse mediante todas las combinaciones posibles de los grupos alquílicos indicados entre paréntesis, en tanto no estén expresamente excluidas4.

Tenemos por un lado grupos alquilo que pueden tener hasta 10 átomos de carbono, incluidos ciclos (R1 < C10, incluido el cicloalquilo), y tenemos por otro lado grupos alquilo con no más de tres átomos de carbono (R2, R3, R4 = metilo, etilo, propilo e isopropilo) 4.

Familias de los alquilfluorofosfonatos de alquilo, alquilfosforamidocianidatos de alquilo, y alquilfosfonotiolatos de alquilo (R1 puede tener hasta 10 átomos de carbono, incluidos ciclos, y R2, R3 y R4 pueden ser grupos metilo, etilo, propilo o isopropilo)

Recordemos además que, a nivel atómico, muchos elementos químicos presentan isótopos naturales, y a nivel molecular, muchas moléculas presentan isómeros.

 

 

Isómeros5

Comencemos por los isómeros, que son de gran importancia para entender las familias de las Listas de la CAQ. Son isómeros aquellas sustancias químicas que teniendo la misma fórmula empírica o molecular, tienen distinta ordenación espacial de sus átomos (enlaces), y presentan por ello propiedades físicas y/o químicas diferentes5.

Generalmente la palabra isómero se emplea para designar aquellas sustancias químicas que están relacionadas entre sí:

  • por ser isómeros estructurales o de constitución, esto es, por tener distinta ordenación o naturaleza en sus enlaces, o
  • por ser isómeros de configuración o estereoisómeros, los cuales presentan distinta disposición tridimensional de los átomos.

Distintos tipos de isomería

 

Isomería plana5

Los grupos alquilo a los que se refieren las Listas de la CAQ son sustituyentes, formados por la separación de un átomo de hidrógeno de un hidrocarburo saturado (alcano o cicloalcano) de modo que éste pueda unirse a otro átomo o grupo de átomos.

Los alcanos son compuestos formados por carbono e hidrógeno que sólo contienen enlaces simples carbono – carbono. Cumplen la fórmula general CnH2n+2, donde n es el número de carbonos de la molécula.

Los alcanos son hidrocarburos, es decir, compuestos que solo contienen átomos de carbono e hidrógeno. La fórmula general para alcanos alifáticos (de cadena lineal o de cadena ramificada) es CnH2n+2​ y para cicloalcanos es CnH2n​ .También reciben el nombre de hidrocarburos saturados, ya que carecen de enlaces dobles o triples y, por tanto, todos sus átomos de carbono presentan hibridación sp3 (cuatro enlaces con distribución espacial tetraédrica) y carecen de grupos funcionales.

Los alcanos alifáticos, de fórmula empírica CnH2n+2, pueden ser de cadena lineal o de cadena ramificada, y los alcanos cíclicos o cicloalcanos, de fórmula empírica CnH2n pueden tener o no, una o más cadenas alquílicas de diferentes longitudes, en distintas posiciones.

Los alcanos se nombran atendiendo a la estructura del compuesto. Si la cadena es lineal, sin ramificaciones, para nombrarlos se utiliza un prefijo indicativo del número de átomos de carbono seguido de la terminación «ano». Si se trata de alcanos ramificados, es necesario determinar cuál es la cadena principal y nombrar cada ramificación, de manera similar a como se hace con los alcanos lineales, sustituyendo la terminación ano por la terminación «ilo» («il»).

Nº átomos de carbono Prefijo Nombre del alcano Nombre del grupo alquilo
1 Met Metano Metilo (metil)
2 Et Etano Etilo (etil)
3 Prop Propano Propilo (propil)
4 But Butano Butilo (butil)
5 Pent Pentano Pentilo (pentil)
6 Hex Hexano Hexilo (hexil)
7 Hep Heptano Heptilo (heptil)

Recordemos que en las Listas de la CAQ los grupos R2, R3,y R4 pueden ser grupos metilo, etilo, propilo e isopropilo, esto es:

metilo etilo propilo isopropilo (1-metiletilo)

 

Y que por otro lado tenemos que R1 es un grupo alquilo o cicloalquilo, que puede poseer hasta 10 átomos de carbono, por ejemplo:

isopropilo (1-metiletilo) isobutilo (2-metilpropilo) pinacolilo (1,2,2-trimetilpropilo)
ciclohexilo 4,4-dimetilhexilo 4-etilhexilo

 

Estereoisomería5,6,7

Los estereoisómeros se definen como isómeros que tienen la misma secuencia de átomos enlazados, pero con distinta orientación espacial. Se dividen en dos grandes grupos:

  • Los que se originan por la distinta orientación espacial de átomos o grupo de átomos alrededor de un enlace doble y que se denominan isómeros geométricos.
  • Los que se originan por la distinta orientación espacial de átomos o grupos de átomos alrededor de un centro asimétrico (generalmente un átomo de carbono tetraédrico con hibridación sp3, pero también un átomo de fósforo pentavalente). Estos estereoisómeros pueden ser a su vez:
    • Enantiómeros que se relacionan entre sí por ser imágenes especulares no superponibles.
    • Diastereoisómeros o diasterómeros, isómeros configuracionales que no son imagen especular uno del otro.

Los enantiómeros tienen entre sí las mismas propiedades físicas, excepto que desvían el plano de luz polarizada en sentidos opuestos. Los enantiómeros de una sustancia química interaccionan con los enantiómeros de otras sustancias químicas de diferente manera, consecuencia de su diferente quiralidad, y en consecuencia suelen mostrar diferentes comportamientos y efectos biológicos.

Los diestereoisómeros son estereoisómeros pero no son enantiómeros, es decir no son entre sí imágenes especulares. Los diestereoisómeros muestran diferencias en sus propiedades físicas y algunas diferencias en el comportamiento químico, aunque sus propiedades químicas y biológicas pueden ser similares.

Algunas sustancias químicas recogidas por las Listas muestran enantiómeros (por ejemplo el sarín) y otras también presentan diestereoisómeros (por ejemplo, el somán). La toxicidad de los enantiómeros y diastereoisómeros suele ser diferente, y por lo general los que desvían el plano de la luz polarizada hacia la izquierda, prefijo (-) o levógiros, presentan una mayor toxicidad. La mezcla racémica, una proporción molar 1:1 de cada enantiómero, se denota con el prefijo (±), y tiene una actividad biológica que es la contribución de la suma de los dos enantiómeros.

Las rutas normales de síntesis de los agentes químicos no suelen ser estereoselectivas y producen una mezcla racémica de estereoisómeros.

El sarín está recogido como ya hemos indicado en la Lista 1A.1, con el número CAS 107-44-8 y se entiende corresponde a una mezcla racémica. Sin embargo los dos enantiómeros del sarín no aparecen recogidos en la Lista 1A.1, y sin embargo cada uno de ellos tiene su propio número CAS:

sarín CAS 107-44-8

R-(-)-sarín CAS 6171-94-4

S-(+)-sarín CAS 6171-93-3

El BZ, recogido en la Lista 2A.3 con el número CAS 6581-06-2 es otro ejemplo de quiralidad. El BZ (bencilato de 3-quinuclidinilo) tiene un centro quiral y por ello tiene un enantiómero (R)-(-)-bencilato de 3-quinuclidinilo, número CAS 62869-69-6, y un enantiómero (S)-(+)- bencilato de 3-quinuclidinilo, número CAS 62869-68-5.

Aunque los efectos incapacitantes del enantiómero (R)-(-) son del orden de 20 veces mayores que los del enantiómero (S)-(+), ambos producen efectos incapacitantes, y dado que los procedimientos normales de síntesis producen una mezcla de ambos enantiómeros, tanto los enantiómeros individuales, como la mezcla están recogidos de manera implícita en la Lista 2A.3:

bencilato de 3-quinuclidinilo

CAS 6581-06-2

(R)-(-)-bencilato de 3-quinuclidinilo

CAS 62869-69-6

(S)-(+)-bencilato de 3-quinuclidinilo

CAS 62869-68-5

Es decir, tanto las sustancias químicas listadas, como cualquiera de sus estereoisómeros están incluidos de manera implícita en las Listas, y son por ello idénticos a efectos de declaración.

 

 

Isótopos6,7

La identidad de un átomo y sus propiedades vienen dadas por el número de partículas que contiene. Lo que distingue a unos elementos químicos de otros es el número de protones en el núcleo que tienen sus átomos. Este número se llama «número atómico» y se representa con la letra Z. Se coloca como subíndice a la izquierda del símbolo del elemento correspondiente. Por ejemplo, todos los átomos del elemento hidrógeno tienen 1 protón y su Z = 1, los de helio tienen 2 protones y Z =2, los de litio, 3 protones y Z = 3,…etc.

Si el átomo es neutro, su número de electrones coincide con su número de protones.

El «número másico» nos indica el número total de partículas que hay en el núcleo, es decir, la suma de protones y neutrones. Se representa con la letra A y se sitúa como superíndice a la izquierda del símbolo del elemento. Representa la masa del átomo medida en uma, ya que la de los electrones es tan pequeña que puede despreciarse.

Los isótopos son átomos del mismo elemento químico, con el mismo número de protones en el núcleo (mismo número atómico) pero diferente número de neutrones en el núcleo (diferentes masas atómicas). Isótopos del mismo elemento difieren en algunas de sus propiedades físicas, por ejemplo, en su masa, pero químicamente son prácticamente idénticos. Por tanto pueden utilizarse como trazadores en las investigaciones químicas y biológicas de una determinada sustancia química. En relación con la Convención, el etiquetado isotópico se utiliza para el desarrollo de métodos analíticos y para investigar los mecanismos de acción de sustancias químicos listadas en los procesos naturales.

La sustitución isotópica supone un cambio insignificante en la estructura de una molécula y dado que prácticamente no existen diferencias en el comportamiento químico entre una sustancia química listada y las sustancias químicas listadas marcadas isotópicamente todas ellas presentan los mismos peligros y por tanto todas ellas deben están incluidas en las Listas.

Las sustancias químicas incluidas en las Listas corresponden a estructuras químicas que contienen isótopos naturales y los números CAS asignados a estos agentes químicos asumen que contienen los isótopos naturales. La siguiente tabla muestra algunos de los elementos químicos de mayor interés en lo referente a las armas químicas, con sus pesos atómicos, y la masa y abundancia de sus isótopos naturales.

Elemento Peso atómico Isótopo masa Abundancia natural (%)
Hidrógeno 1,008 1H 1,007825 99,9885
2H 2,014102 0,0115
Carbono 12,011 12C 12,000000 98,93
13C 13,003355 1,07
Nitrógeno 14,007 14N 14,003074 99,636
15N 15,000109 0,364
Flúor 18,998 19F 18,998403 100,00
Oxígeno 15,999 16O 15,994915 99,757
17O 16,999132 0,038
18O 17,999161 0,205
Fósforo 30,974 31P 30,973762 100,00
Azufre 32,065 32S 31,972071 94,99
33S 32,971459 0,75
34S 33,967867 4,25
36S 35,967081 0,01
Cloro 35,453 35Cl 34,968853 75,76
37Cl 36,965903 24,24
Arsénico 74,922 75As 74,921597 100,00
Bromo 79,904 79Br 78,918337 50,69
81Br 80,916291 49,31

Los pesos atómicos se han calculado con las abundancias y masas de los isótopos recogidas en CRC Handbook of Chemistry and Physics, 90th edition.

Cada sustancia química listada, con su correspondiente número CAS, consiste en una mezcla de moléculas con diferentes isótopos en diferentes proporciones, fruto de esa abundancia isotópica natural.

Por ejemplo, la iperita, sulfuro de bis (2-cloroetilo), C4H8Cl2S, está recogida en la Lista 1A.4 con el número CAS 505-60-2 y tiene un peso molecular de 159,077.

Espectro de masas de la iperita CAS 505-60-2

Los picos que aparecen a m/e=158, m/e=160 y m/e=162 con esa relación de intensidad se deben fundamentalmente a los isótopos del cloro. En este grupo el pico más intenso con m/e=158 se debe al 12C41H835Cl232S.

Si sólo considerásemos los isótopos de azufre, sin tener en cuenta los isótopos de los demás elementos, teniendo en cuenta las abundancias anteriormente indicadas para él, habría aproximadamente un 94,99 % de moléculas con 32S, un 0,75 % de moléculas con 33S, un 4,25 % de moléculas con 34S y un 0,01 % de moléculas con 36S.

Algunas estructuras de la iperita marcadas isotópicamente ya tienen asignado número CAS individualizado:

  • Por ejemplo, la iperita marcada con 35S, un isótopo radiactivo del azufre, con un período de semidesintegración de 87,37 días, que se utiliza para el marcado isotópico, entre otros, de proteínas y ácido nucleicos, tiene el número CAS 6755-76-6.
  • La iperita marcada con deuterio, 2H, cuyo símbolo químico es D, también tiene diferentes números CAS, en función del número y lugar que ocupan los isótopos de deuterio en su molécula:

CAS 81142-27-0

CAS 81142-25-8

CAS 1558012-49-9

CAS 176327-97-2

Si sólo estuviesen recogidas en las Listas las sustancias químicas que tuviesen números CAS, se daría la paradoja de que la iperita con número CAS 505-60-2, mezcla de moléculas con diferentes isótopos naturales estaría recogida en la Lista 1A.4, mientras que otras moléculas de iperita marcadas isotópicamente no lo estarían, máxime cuando las propiedades químicas y toxicológicas de los isótopos son prácticamente idénticas.

Así pues el número CAS no puede ser el único indicador a utilizar para ver si una sustancia química está o no incluida en las Listas.

Sucede además que algunas mezclas de agentes químicos de guerra con ciertas propiedades especiales tienen asignado su propio número CAS, que como pueden suponer no está incluido en las Listas. Este es otro punto a tener en cuenta a la hora de ver si un número CAS o un producto químico está o no incluido en las Listas.

Iperita, HD, Lista 1A.4, CAS 505-60-2

HT

(mezcla de un 60% HD y un 40% T)

CAS 172672-28-5

T, Lista 1A.4, CAS 63918-89-8

 

Iperita, HD, Lista 1A.4, CAS 505-60-2

HL

(mezcla de un 37% HD y un 63% L)

CAS 378791-32-3

Lewisita1, L1, Lista 1A.5, CAS 541-25-3

El tema de los isótopos afecta no sólo a los agentes químicos incluidos en las Listas, sino también a los precursores incluidos en éstas. Sirva de ejemplo el sarín, agente químico de guerra recogido en la Lista 1A.1, con el número CAS 107-44-8. Sus principales precursores son el difluoruro de metilfosfonilo, DF, con número CAS 676-99-3 y el dicloruro de metilfosfonilo, DC, con número CAS 756-79-6, ambos casualmente reflejados como tales con sus números CAS en sus correspondientes Listas. Sin embargo ni el sarín deuterado, ni el DF deuterado, ni el DC deuterado aparecen reflejados explícitamente en las Listas, y sus propiedades químicas y toxicológicas son como ya hemos indicado prácticamente idénticas a las de las sustancias no deuteradas:

Lista 2B.4, CAS 676-97-1

Lista 1B.9, CAS 676-99-3

Lista 1A.1, CAS 107-44-8

CAS 104801-17-4

CAS 104801-20-9

CAS 104801-08-3

Tanto las sustancias químicas listadas, como cualquiera de sus variantes marcadas isotópicamente están incluidas de manera explícita o implícita en las Listas, y son por ello idénticas a efectos de declaración de las mismas7.

 

 

Referencias

  1. «Se les ve el plumero», Domingo, https://cbrn.es/?p=1403
  2. » Feliz Novichok y Próspero Año Nuevo 2019″, J. Domingo, https://cbrn.es/?p=1450
  3. «The Science for Diplomats Annex on Chemicals», OPAQ, 12 de febrero de 2019, https://www.opcw.org/sites/default/files/documents/2019/02/Science_For_Diplomats_Annex_on_Chemicals%20Feb2019_0.pdf
  4. «Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción (CAQ)», disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf y en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc
  5. «Imágenes especulares no superponibles», J. Domingo, https://cbrn.es/?p=322
  6. «Isótopos e isómeros, guerra química», J. Domingo, https://cbrn.es/?p=557
  7. «Response to the Director-General’s Request to the Scientific Advisory Board to Provide Further Advice on Scheduled Chemicals», OPCW, https://www.opcw.org/fileadmin/OPCW/SAB/en/sab-23-wp01_e_.pdf

 

 

 

A. Directrices para las listas de sustancias químicas

Directrices para la Lista 1

  1. Al examinar si se debe incluir en la Lista 1 una sustancia química tóxica o un precursor, se tendrán en cuenta los siguientes criterios:
    1. Se ha desarrollado, producido, almacenado o empleado como arma química según la definición del artículo II;
    2. Plantea de otro modo un peligro grave para el objeto y propósito de la presente Convención debido a su elevado potencial de empleo en actividades prohibidas por ella al cumplirse una o más de las condiciones siguientes:

      i) Posee una estructura química estrechamente relacionada con la de otras sustancias químicas tóxicas enumeradas en la Lista 1 y tiene propiedades comparables, o cabe prever que las tenga;

      ii) Posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;

      iii) Puede emplearse como precursor en la fase tecnológica final única de producción de una sustancia química tóxica enumerada en la Lista 1, con independencia de que esa fase ocurra en instalaciones, en municiones o en otra parte;

    3. Tiene escasa o nula utilidad para fines no prohibidos por la presente Convención.

 

Directrices para la Lista 2

  1. Al examinar si se debe incluir en la Lista 2 una sustancia química tóxica no enumerada en la Lista 1 o un precursor de una sustancia química de la Lista 1 o de una sustancia química de la parte A de la Lista 2, se tendrán en cuenta los siguientes criterios:
    1. Plantea un peligro considerable para el objeto y propósito de la presente Convención porque posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;
    2. Puede emplearse como precursor en una de las reacciones químicas de la fase final de formación de una sustancia química enumerada en la Lista 1 o en la parte A de la Lista 2;
    3. Plantea un peligro considerable para el objeto y propósito de la presente Convención debido a su importancia en la producción de una sustancia química enumerada en la Lista 1 o en la parte A de la Lista 2;
    4. No se produce en grandes cantidades comerciales para fines no prohibidos por la presente Convención.

 

Directrices para la Lista 3

  1. Al examinar si se debe incluir en la Lista 3 una sustancia química tóxica o un precursor que no esté enumerado en otras Listas, se tendrán en cuenta los siguientes criterios:
    1. Se ha producido, almacenado o empleado como arma química;
    2. Plantea de otro modo un peligro para el objeto y propósito de la presente Convención porque posee tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química;
    3. Plantea un peligro para el objeto y propósito de la presente Convención debido a su importancia en la producción de una o más sustancias químicas enumeradas en la Lista 1 o en la parte B de la Lista 2;
    4. Puede producirse en grandes cantidades comerciales para fines no prohibidos por la presente Convención.

 

B. Listas de sustancias químicas

En las Listas siguientes se enumeran las sustancias químicas tóxicas y sus precursores. A los fines de aplicación de la presente Convención, se identifican en esas Listas las sustancias químicas respecto de las que se prevé la aplicación de medidas de verificación con arreglo a lo previsto en las disposiciones del Anexo sobre verificación. De conformidad con el apartado a) del párrafo 1 del artículo II, estas Listas no constituyen una definición de armas químicas.

(Siempre que se hace referencia a grupos de sustancias químicas dialquilatadas, seguidos de una lista de grupos alquílicos entre paréntesis, se entienden incluidas en la respectiva Lista todas las sustancias químicas posibles por todas las combinaciones posibles de los grupos alquílicos indicados entre paréntesis, en tanto no estén expresamente excluidas. Las sustancias químicas marcadas con un «*» en la parte A de la Lista 2, están sometidas a umbrales especiales para la declaración y la verificación, tal como se dispone en la Parte VII del Anexo sobre verificación.)

Cada Lista incluye dos sub-apartados A (Agentes químicos) y B (Precursores), y cada elemento de las Listas viene definido mediante una fórmula general para una familia química, o mediante la fórmula de un compuesto químico específico. Se incluye algún ejemplo para cada una de las familias definidas mediante una fórmula general, y las excepciones cuando las hay, así como los números CAS.

 

Lista 1

A. Sustancias químicas tóxicas:

1A.1    Alquil (metil, etil, propil o isopropil) fosfonofluoridatos de O-alquilo (< C10, incluido el cicloalquilo)

R1 < C10, incluido el cicloalquilo

R2 = metilo, etilo, propilo o isopropilo

Más de 20 000 sustancias químicas

Ejemplos:
GB, sarín: Metilfosfonofluoridato de O-isopropilo (107‑44‑8)

GD, somán: Metilfosfonofluoridato de O-pinacolilo (96‑64‑0)

GF, ciclosarín: Metilfosfonofluoridato de O-ciclohexilo (329-99-7)

GE, etilsarín: Etilfosfonofluoridato de O-isopropilo (1189-87-3)

1A.2    N,N‑dialquil (metil, etil, propil o isopropil) fosforamidocianidatos de O-alquilo (< C10, incluido el cicloalquilo)

R1 < C10, incluido el cicloalquilo

R2, R3 = metilo, etilo, propilo o isopropilo

Más de 50 000 sustancias químicas

Ejemplos:
GA, tabún: N,N‑dimetilfosforamidocianidato de O-etilo (77‑81‑6)

1A.3    S‑2‑dialquil (metil, etil, propil o isopropil) aminoetil alquil (metil, etil, propil o isopropil) fosfonotiolatos de O-alquilo (H ó < C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes.                                                                                       

R1 < C10, incluido el cicloalquilo

R2, R3, R4 = metilo, etilo, propilo o isopropilo

Más de 200 000 sustancias químicas

Ejemplos:
VX: S‑2‑diisopropilaminoetil metilfosfonotiolato de O‑etilo (50782‑69‑9)                 

 

VR: S‑2‑dietilaminoetil metilfosfonotiolato de O‑(2-metilpropilo) (159939-87-4)      

C-VX: S‑2‑dietilaminoetil metilfosfonotiolato de O‑butilo (468712-10-9) 

               

 1A.4    Mostazas de azufre:                                                                                   

1A.4.1   Clorometilsulfuro de 2‑cloroetilo (2625‑76‑5)

1A.4.2   H, HD, Gas mostaza: sulfuro de bis(2‑cloroetilo) (505‑60-2)

1A.4.3   Bis(2‑cloroetiltio)metano (63869‑13‑6)

1A.4.4   Sesquimostaza: 1,2‑bis(2‑cloroetiltio)etano (3563‑36‑8)

1A.4.5   1,3‑bis(2‑cloroetiltio)propano (63905‑10-2)

1A.4.6   1,4‑bis(2‑cloroetiltio)butano (142868‑93‑7)

1A.4.7   1,5‑bis(2‑cloroetiltio)pentano (142868‑94‑8)

1A.4.8   T, bis(2‑cloroetiltiometil)éter (63918‑90-1)

1A.4.9   Mostaza O: bis(2‑cloroetiltioetil)éter (63918‑89‑8)

1A.5    Lewisitas:

1A.5.1   L1, Lewisita 1: 2‑clorovinildicloroarsina (541‑25‑3)

1A.5.2   L2, Lewisita 2: bis(2‑clorovinil) cloroarsina (40334‑69‑8)

1A.5.3   L3, Lewisita 3: tris(2‑clorovinil) arsina (40334‑70-1)

1A.6    Mostazas de nitrógeno:

1A.6.1   HN1: bis(2‑cloroetil) etilamina (538‑07‑8)

1A.6.2   HN2: bis(2‑cloroetil) metilamina (51‑75‑2)

1A.6.3   HN3: tris(2‑cloroetil) amina (555‑77‑1)

1A.7    Saxitoxina (35523‑89‑8)

1A.8    Ricina (9009‑86‑3): Dos cadenas protéicas diferentes, A (una N-glicósido hidrolasa constituida por 267 aminoácidos) y B (una lectina constituida por 262 aminoácidos), de unos 32 kD y 34 kD, respectivamente, unidas por un puente disulfuro.

  

B. Precursores:

1B.9    Fosfonildifluoruros de alquilo (metilo, etilo, propilo o isopropilo)      

R1 < C10, incluido el cicloalquilo

R2, R3, R4 = metilo, etilo, propilo o isopropilo

4 sustancias químicas

Ejemplos:
DF: metilfosfonildifluoruro (676‑99‑3)

Etilfosfonildifluoruro (753-98-0)

Propilfosfonildifluoruro (690-14-2)

Isopropilfosfonildifluoruro (677-42-9)

1B.10   O-2‑dialquil (metil, etil, propil o isopropil) aminoetil alquil (metil, etil, propil o isopropil) fosfonitos de O-alquilo (H o <C10, incluido el cicloalquilo) y sales alquilatadas o protonadas correspondientes

R1 < C10, incluido el cicloalquilo

R2, R3, R4 = metilo, etilo, propilo o isopropilo

Más de 200 000 sustancias químicas

Ejemplos:
QL: O-2‑diisopropilaminoetilmetilfosfonito de O-etilo (57856‑11‑8)

O-2‑diisopropilaminoetilmetilfosfonito de O-etilo (169662-66-2)

1B.11   Cloro sarín: metilfosfonocloridato de O-isopropilo (1445‑76‑7)

1B.12   Cloro somán: metilfosfonocloridato de O‑pinacolilo (704O-57‑5)

 

 

Lista 2

A. Sustancias químicas tóxicas:

2A.1    VG, amitón: Fosforotiolato de O,O-dietil S‑2‑(dietilamino) etil y sales alquilatadas o protonadas correspondientes (78‑53‑5)

2A.2    PFIB: 1,1,3,3,3‑pentafluoro‑2‑(trifluorometil) de 1‑propeno (382‑21‑8)

2A.3    BZ: Bencilato de 3‑quinuclidinilo (*) (6581‑06‑2)

B. Precursores:

2B.4    Sustancias químicas, excepto las sustancias enumeradas en la Lista 1, que contengan un átomo de fósforo al que esté enlazado un grupo metilo, etilo, propilo o isopropilo, pero no otros átomos de carbono.                                                                                                  

        R2 = metilo, etilo, propilo o isopropilo

Más de 1000 000 sustancias químicas

Ejemplos:
DC, dicloruro de metilfosfonilo (676‑97‑1)

Dicloruro de etilfosfonilo (1066-50-8)

Metildiclorofosfina (676-83-5)

Etildiclorofosfina (1498-40-4)

Metilfosfonato de dimetilo (756‑79‑6)

Etilfosfonato de dimetilo (6163-75-3)

Excepción:
Fonofos: etilfosfonotiolotionato de O‑etilo S‑fenilo (944‑22‑9)

2B.5    Dihaluros N,N‑dialquil (metil, etil, propil o isopropil) fosforamídicos

X = flúor, cloro, bromo, iodo

R2, R3 = metilo, etilo, propilo o isopropilo

Más de 20 sustancias químicas

Ejemplo:
Dicloruro de N,N-dimetilfosforamidico (677-43-0)

2B.6    N,N‑dialquil (metil, etil, propil o isopropil) fosforamidatos O,O´-dialquílicos (metílicos, etílicos, propílicos o isopropílicos)

R2, R3 = metilo, etilo, propilo o isopropilo

R4, R5 = metilo, etilo, propilo o isopropilo

100 sustancias químicas

Ejemplo:
N,N-dimetilfosforamidato de O-etilo y O-metilo (135505-94-1)

 2B.7    Tricloruro de arsénico (7784‑34‑1)

2B.8    Acido 2,2‑difenil‑2‑hidroxiacético (76‑93‑7)

2B.9    Quinuclidinol‑3 (1619‑34‑7)

2B.10   Cloruros de N,N‑dialquil (metil, etil, propil o isopropil) aminoetilo‑2 y sales protonadas correspondientes

R2, R3 = metilo, etilo, propilo o isopropilo

10 sustancias químicas

Ejemplo:
Cloruro de N,N‑dietil aminoetilo‑2 y sales protonadas correspondientes (100-35-6)

2B.11   N,N‑dialquil (metil, etil, propil o isopropil) aminoetanoles‑2 y sales protonadas correspondientes

R2, R3 = metilo, etilo, propilo o isopropilo

8 sustancias químicas

Ejemplo:
2-(N,N‑diisopropilamina)etanol y sales protonadas correspondientes (96-80-0)

Excepciones:
2-(N,N‑dimetilamina)etanol y sales protonadas correspondientes (108‑01‑0)

2-(N,N‑dietilamina)etanol y sales protonadas correspondientes (100-37‑8)

2B.12   N,N‑dialquil (metil, etil, propil o isopropil) aminoetanotioles‑2 y sales protonadas correspondientes

R2, R3 = metilo, etilo, propilo o isopropilo

10 sustancias químicas

Ejemplo:
2-(N,N‑diisopropilamina)etanotiol y sales protonadas correspondientes (5842-07-9)

2B.13   Tiodiglicol: sulfuro de bis (2‑hidroxietilo) (111‑48‑8)

2B.14   Alcohol pinacolílico: 3,3‑dimetilbutanol‑2 (464‑07‑3)

 

 

Lista 3

A. Sustancias químicas tóxicas:

3A.1    CG, fosgeno: dicloruro de carbonilo (75‑44‑5)

3A.2    CK, cloruro de cianógeno (506‑77‑4)

3A.3    AC, cianuro de hidrógeno (74‑9O-8)

3A.4    PS, cloropicrina: tricloronitrometano (76‑06‑2)

 

 

B. Precursores:

3B.5    Oxicloruro de fósforo (10025‑87‑3)

3B.6    Tricloruro de fósforo (7719‑12‑2)

3B.7    Pentacloruro de fósforo (10026‑13‑8)

3B.8    Fosfito trimetílico (121‑45‑9)

3B.9    Fosfito trietílico (122‑52‑1)

 

3B.10   Fosfito dimetílico (868‑85‑9)

3B.11   Fosfito dietílico (762‑04‑9)

 

3B.12   Monocloruro de azufre (10025‑67‑9)

3B.13   Dicloruro de azufre (10545‑99‑0)

 

3B.14   Cloruro de tionilo (7719‑09‑7)

3B.15   Etildietanolamina (139-87-7)

 

3B.16   Metildietanolamina (105-59-9)

3B.17   Trietanolamina (102‑71‑6)

El DC, un desconocido

Hace ya varios meses en un artículo titulado «El DF, un precursor clave»1 mencionaba la importancia del metilfosfonil difluoruro (CAS 676-99-3) como componente clave en la síntesis binaria del sarín. Los fosfonildifluoruros de alquilo (metilo, etilo, n-propilo e isopropilo) constituyen la familia 1B.9 de la CAQ, y son sustancias que ya no están comercialmente disponibles2.

metilfosfonil difluoruro

CAS 676-99-3

etilfosfonil difluoruro

CAS 753-98-0

propilfosfonil difluoruro

CAS 690-14-2

isopropilfosfonil difluoruro

CAS677-42-9

Los fosfonildicloruros de alquilo, son casi unos desconocidos, pero a diferencia de los fosfonildifluoruros son sustancias comercialmente disponibles (Sigma-Aldrich, Alfa-Chemistry). Son miembros de la familia más numerosa de las Listas de la CAQ, la familia 2B.4, que incluye aquellas sustancias químicas, excepto las enumeradas en la Lista 1, que contienen un átomo de fósforo al que está enlazado un grupo metilo, etilo, n-propilo o isopropilo, pero no otros átomos de carbono2.

El DC (DC es el acrónimo del metilfosforil dicloruro (CAS 676-97-1), es un importantísimo reactivo de síntesis utilizado por ejemplo para la síntesis del sarín. Los fosfonildicloruros de alquilo (metilo, etilo, n-propilo e isopropilo) están todos ellos incluidos en la Lista 2B.42:

metilfosfonil dicloruro

CAS 676-97-1

228052

Sigma-Aldrich

etilfosfonil dicloruro

CAS 1066-50-8

275964

Sigma-Aldrich

propilfosfonil dicloruro

CAS 4708-04-7

455873

Sigma-Aldrich

isopropilfosfonil dicloruro

CAS 1498-46-0

ACM1498460

Alfa-Chemistry

 No deben confundirse los «alkylphosphonous dichlorides», esto es, las dicloroalquilfosfinas, con los «alkylphosphonyl dichlorides» o «alkylphosphonic dichlorides», esto es, los fosfonildicloruros de alquilo:

«alkylphosphonous dichlorides»

dicloroalquilfosfinas

«alkylphosphonyl dichloride

«alkylphosphonic dichlorides»

fosfonildicloruros de alquilo

 

 

Síntesis de los agentes neurotóxicos3,4

La producción de los agentes neurotóxicos requiere materiales y equipos bastante sofisticados. La mayoría de las sustancias químicas que se requieren o se forman durante el proceso de producción son corrosivas, y requieren equipos especiales de producción, resistentes a la corrosión. Con la excepción del tabún (GA), fabricado por los alemanes durante la Segunda Guerra Mundial y por los iraquíes durante la guerra entre Irán y Iraq, la producción de los agentes neurotóxicos de la familia G implica tanto pasos de cloración como de fluoración. Ambos pasos requieren equipos de producción especiales y costosos. Los reactores, desgasificadores, columnas de destilación y equipos auxiliares tienen que estar hechos de aleaciones de níquel, cromo, titanio, circonio, etc, o/y recubiertos de vidrio o de fluoropolímeros. Además dada la toxicidad de las sustancias químicas que se manejan o producen se debe prestar especial atención a los sistemas de confinamiento y ventilación3.

Existen varios métodos para la producción de algunos de los agentes neurotóxicos de la familia G, y la mayoría de estos métodos emplean en alguna etapa el metilfosfonil dicloruro (DC). EEUU en su momento, llegó a diseñar y construir plantas para la producción de DC mediante cuatro procesos diferentes, dos de los procesos para la producción y almacenamiento del sarín (GB), un tercer proceso, mejorado para minimizar los residuos, también para la producción y almacenamiento del sarín y un cuarto proceso para la producción de los componentes de los sistemas binarios. La Unión Soviética por su  parte utilizó un proceso diferente para de producción de DC, e Iraq utilizó un proceso similar al empleado por EEUU para la producción de los componentes de los sistemas binarios3.

Síntesis del sarín (Procedimiento con fluoruro sódico)4

 

El DC y el DF son los precursores más importantes de los metilfosfonofluoridatos de alquilo (sarín, soman, ciclosarin, etc. La mezcla Di-Di reacciona con alcohol isopropílico para producir sarin, mediante un procedimiento bien documentado5.

Síntesis del sarín (Procedimiento preferido) 4

Síntesis del sarín (Procedimiento modificado con fluoruro sódico) 4

Síntesis del ciclosarín (Procedimiento con fluoruro sódico) 4

Síntesis del somán (Procedimiento con fluoruro sódico) 4

El DC es un material relativamente fácil de almacenar y transportar, de modo que no es necesaria su producción en el mismo lugar en el que va a llevarse a cabo la síntesis del producto final, y como es bastante estable, es posible su almacenamiento, con muy poco deterioro, por periodos de tiempo del orden de 30 años3.

Las instalaciones para la producción de DC en cantidades significativas desde el punto de vista militar pueden tener tamaños muy diferentes, desde instalaciones muy grandes hasta instalaciones muy modestas que caben en una habitación de tamaño normal. Ya se ha indicado que los procesos para la producción de DC requieren equipos especiales resistentes a la corrosión, generalmente reactores y tanques de almacenamiento revestidos de vidrio, pero no requieren equipos tan costosos como los que se requieren para la producción de los agentes neurotóxicos en etapas posteriores3.

En el proceso actual de producción de algunos agentes neurotóxicos de la serie G, el DC parcialmente fluorado (una mezcla transitoria denominada coloquialmente Di-Di) se hace reaccionar con la parte alcohólica, y el producto final se desgasifica, y generalmente se destila. Esta es la etapa tóxica de la reacción, que requiere especial atención a los sistemas de confinamiento y ventilación, con filtración del aire, y que por las condiciones altamente corrosivas de las sustancias químicas involucradas, requiere equipos altamente resistentes y muy costosos (por ejemplo de Hastelloy C). La mayoría de los alcoholes involucrados en la producción de los agentes de la serie G tienen un empleo comercial a gran escala y no están en las Listas de la CAQ, excepto el alcohol pinacolílico, necesario para la producción del GD, que tiene un uso farmacéutico muy limitado, y se encuentra recogido en la Lista 2B.143.

Para la producción de los agentes V no se emplea el DC pero se requiere la obtención de la correspondiente dicloro alquilfosfina, familia de sustancias recogidas también por la CAQ en su Lista 2B.4.

 

 

El DC, un desconocido6,7,8,9

El DC o metilfosfonil dicloruro, también es conocido como óxido de diclorometilfosfina, dicloruro metilfosfónico o ácido metilfosfonodicloridico. Es un sólido de bajo punto de fusión y olor acre, de fórmula empírica CH3Cl2OP y estructura tetraédrica. Tiene un peso molecular de 132,93, con punto de fusión de 28-34 °C, punto de congelación de 32,74 °C8, punto de ebullición de 59-60 °C a 11mmHg de presión (165,3 °C a 760mmHg9), punto de inflamabilidad  >110 °C, densidad  1,456 g/cm3 a 25 °C8, índice de refracción n35D = 1,45698, temperatura de punto triple 32,99 °C9, y calor de fusión 18,08 J/mol9.

Cuando se calienta hasta su descomposición, emite humos tóxicos de cloruro de hidrógeno y óxido de fósforo. Sensible a la humedad, reacciona con el agua, de manera exotérmica, para producir ácido metilfosfónico (MPA, Methyl Phosphonic Acid) y ácido clorhídrico, por lo que se recomienda mantenerlo alejado de la húmedad, evitar su contacto con el agua, y almacenarlo en recipientes adecuados, herméticamente cerrados.

A efectos de comercio y transporte, su número EC es 211-634-4 y su número ONU es 9206. La guía GRE-2016 le asigna la guía de respuesta número 137 «sustancias – reactivas con el agua – corrosivas»10pero también aparece en la literatura con otros números ONU, por ejemplo UN 339011 UN 29287.

Con UN 3390 6.1/PG 111 se hace referencia a un líquido tóxico por inhalación, corrosivo, N.E.P. (materia no especificada en otra parte, del inglés, N.O.S., Not Otherwise Specified), con una concentración letal CL50 £ 1000 mL/m3 y una concentración de vapor saturado £ 10 CL50. El código 6.1 se refiere a la clase de peligro (sustancias tóxicas) y PG 1 se refiere al grupo de embalaje I (materias muy tóxicas)12.

Con UN 29287 se hace referencia a un sólido tóxico, corrosivo, orgánico, N.E.P., incluido en la clase de peligro 6.1.

Al ser una sustancia que reacciona con el agua produciendo gases tóxicos la GRE-2016 recoje las siguientes distancias de aislamiento inicial y de acción protectora10:

DERRAMES PEQUEÑOS

(De un envase pequeño o una fuga pequeña de un envase grande)

DERRAMES GRANDES

(De un envase grande o de muchos envases pequeños)

UN NOMBRE DEL MATERIAL Primero AISLAR en todas las direcciones Luego, PROTEJA a las personas en la dirección del viento, durante el Primero AISLAR en todas las direcciones Luego, PROTEJA a las personas en la dirección del viento, durante el
DÍA NOCHE DÍA NOCHE
9206 Dicloruro metilfosfónico 30 m 0,1 km 0,2 km 30 m 0,4 km 0,5 km

El DC (CH3POCl2) es un precursor del sarín y de otros metilfosfonofluoridatos de alquilo (agentes químicos de guerra, incluidos en la Lista 1A.1 de la CAQ), y está incluido en la Lista 2B.4 de la CAQ. Puede presentarse como tal o en ciertos casos puede presentarse en forma de «mezcla Di-Di» (mezcla con difluoruro de metilfosfonilo, DF)5.

 

 

Reacciones de los dicloruros alquilfosfónicos13

Los dicloruros alquilfosfónicos son precursores químicos de gran importancia ya que son materiales de partida esenciales para una amplia gama de compuestos organofosforados13.

El DC es, como ya hemos visto, precursor necesario para la síntesis del sarín, soman, ciclohexilsarin y otros metilfosfonofluoridatos de O-alquilo incluídos en la Lista 1.A1 de la CAQ, y los otros tres alquilfosfonil dicloruros (etilfosfonil, propilfosfonil e isopropilfosfonil) serían también precursores para la síntesis de los diversos etil-, propil- e isopropil-fosfonofluoridatos de O-alquilo incluídos en la Lista 1.A1 de la CAQ.

Los dicloruros alquilfosfónicos, reaccionan enérgicamente con agua para producir los correspondientes ácidos alquilfosfónicos14:

Los dicloruros alquilfosfónicos se pueden convertir en alquilfosfonocloridatos por tratamiento con un mol de alcohol y un mol de una base terciaria (por ejemplo, trietilamina). Con dos moles de alcohol y dos moles de amina terciaria se obtienen los alquilfosfonatos de dialquilo13:

Mediante esta reacción es posible preparar metilfosfonato de dietilo, libre de etilfosfonato de dietilo, a partir de etanol y dicloruro de metilfosfónico (en la reacción de Arbuzov con yoduro de metilo y fosfito de trietilo se forma también etilfosfonato de dietilo)13:

La reacción de Arbuzov, llamada así en honor a su descubridor, el químico ruso Aleksandr Erminingeldovich Arbuzov, proporciona un método muy útil para obtener compuestos organofosforados pentavalentes a partir de compuestos organofosforados trivalentes, y también para introducir el enlace fósforo-carbono. En su forma más simple, la reacción consiste en calentar un trialquil fosfito con el correspondiente yoduro de alquilo13:

En la reacción del fosfito trietílico con yoduro de metilo se forma sobre todo metilfosfonato de O,O-dietilo y algo de etilfosfonato de O,O-dietilo, consecuencia de la formación de yoduro de etilo13:

En la reacción del fosfito de O,O-dimetilo y O-etilo con yoduro de metilo el producto formado es casi exclusivamente metilfosfonato de O-etilo y O-metilo13:

 

 

Síntesis del DC

Los dicloruros alquilfosfónicos fueron preparados por primera vez en 1873 por los químicos alemanes August Wilhelm von Hofmann y August Michaelis10.

El DC puede obtenerse mediante la reacción de Michaelis-Becker a partir de dietilfosfito y posterior cloración con PCl515:

También mediante la reacción de Arbusov a partir de trimetil fosfito y posterior cloración con PCl515:

Otra posibilidad, empleada por Alemania durante la II Guerra Mundial, y también luego por Estados Unidos, es la pirólisis del dimetil fosfito y posterior cloración con PCl55,15:

La reacción de los ésteres alquilfosfónicos con el pentacloruro de fósforo no es una reacción tan simple como muestran las reacciones indicadas. Por ejemplo, al tratar el DMMP con PCl5, no solo se forma CH3POCl2 (DC), sino que también se forman otros productos como por ejemplo, (CH3O)POCl2, cuya separación resulta muy difícil16:

La cloración del ácido metilfosfónico (MPA) también produce CH3POCl2 (DC)16, de modo que otra posible ruta de síntesis podría ser la hidrólisis del DMMP para producir MPA, que por reacción con PCl5 conduciría al DC16:

Los dicloruros alquilfosfonotióicos, RPSCl2, tratados con SOCl2, a presión y a 150 °C durante varias horas, producen los correspondientes dicloruros alquilfosfónicos con un excelente rendimiento16:

Así, el dicloruro metilfosfonotióico (CAS 676-98-2) tras su calentamiento, durante 8 horas a 150 °C, y a presión, con  cloruro de tionilo, SOCl2 (CAS 7719-09-7), produce dicloruro metilfosfónico (DF) con un rendimiento prácticamente del 100%16:

También se puede obtener DC mediante oxidación de la metildiclorofosfina, por ejemplo con cloruro de sulfurilo, SO2Cl2 (CAS 7791-25-5), de acuerdo con la siguiente reacción5,17:

El DC también se puede sintetizar a partir de diversos metilfosfonatos, como el DMMP, mediante la cloración con cloruro de tionilo, SOCl2 (CAS 7719-09-7). Se pueden utilizar diversas aminas para catalizar este proceso, obteniéndose diferentes rendimientos (por ejemplo, un 94,4% con dimetilformamida y un 99,2% con N-formilpiperidina)5,18:

Los ingleses tras los interrogatorios a los científicos alemanes que habían participado en el descubrimiento de los agentes neurotóxicos, se mostraron muy interesados en la síntesis de los dicloruros alquilfosfónicos, como precursores de tales agentes. Una de las sugerencias más atractivas para su síntesis fue la posibilidad de condensar tricloruro de fósforo con un cloruro de alquilo y convertir el producto de adición resultante en el intermedio deseado, de acuerdo con la ecuación:

De este modo el DC puede obtenerse mediante la reacción del tricloruro de fósforo, con cloruro de metilo y el tricloruro de aluminio, en un proceso conocido como reacción de Kinnear-Perren (KP), en honor a los dos químicos que la descubrieron:

Este método de síntesis fue desarrollado en 1952 por A. M. Kinnear y  Edward Arthur Perren, trabajando en el Establecimiento Experimental de Defensa Química (CDEE) de Porton Down, en Salisbury, Reino Unido. Cinco documentos técnicos clasificados de Kinnear y Perren, depositados en Porton Down entre 1948 y 1950, se condensaron en un único documento que apareció en la literatura abierta un poco más tarde, en 195219. Este documento entró en impresión un año después de que una publicación similar de J. P. Clay, del Hunter College, en Nueva York, describiera el mismo proceso20. Parece que la prioridad del descubrimiento se debe a Kinnear y Perren, y que el trabajo de Clay contribuyó a desarrollar el proceso y confirmar su validez (por esta razón, algunos químicos prefieren referirse a este proceso como la reacción de Clay-Kinnear-Perren).

 

 

Referencias

  1. «El DF, un precursor clave», J.Domingo, https://cbrn.es/?p=944
  2. «Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction», https://www.opcw.org/sites/default/files/documents/cwc/cwc_en.pdf
  3. «Synthesis of Nerve Agents», http://fas.org/programs/bio/chemweapons/production.html
  4. «The Preparatory Manual of Chemical Warfare Agents-A laboratory manual», Jared Ledgard, The Paranoid Publications Group, 2003
  5. «Precursors of Nerve Chemical Warfare Agents with Industrial Relevance: Characteristics and Significance for Chemical Security», J. Quagliano, Z. Witkiewicz, E. Sliwka & S. Neffe, ChemistrySelect 2018, 3, 2703 – 2715
  6. «Handbook Of Chemical And Biological Warfare Agents», Hank Ellison
  7. «Methylphosphonic dichloride Safety Data Sheet», AlfaAesar, https://www.alfa.com/es/content/msds/british/A14790.pdf
  8. «Properties, Interaction and Esterification of Methylphosphonic Dihalides», B. M. Zeffert, P. B. Coulter, and Harvey Tannenbaum, J. Am. Chem. Soc., 1960, 82 (15), pp 3843–3847
  9. «Thermodynamic Properties of Some Methylphosphonyl Dihalides From 15 to 335°K», George T. Furukawa, Martin L. Reilly, Jeanette H. Piccirelli, and Milton Tenenbaum, Journal of research of the National Bureau of Standards-A. Physics and Chemistry, Vol. 68A, No.4, July-August 1964
  10. «Guía de respuesta en caso de emergencia», GRE2016, https://www.tc.gc.ca/media/documents/tmd-fra/SpanishERGPDF.pdfGRE2016
  11. «FDS Dicloruro metilfosfónico», Sigma Aldrich 228052 https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=ES&language=es&productNumber=228052&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F228052%3Flang%3Des
  12. «HAZMAT Class 6 Toxic and infectious substances», https://en.wikipedia.org/wiki/HAZMAT_Class_6_Toxic_and_infectious_substances
  13. «Best Synthetic Methods-Organophosphorus (V) Chemistry», «2.3 Alkylphosphonic dichlorides», C. M. Timperley, Academic Press, 2015.
  14. «The Thermochemistry of Organic Phosphorus Compounds-Part 1-Heats of Hydrolysis and Oxidation», E. Neale & L. T. D. Williams, J. Chem. Soc., 1955,0, 2485-2490
  15. «The Chemistry of Organophosphorus Pesticides-reactivity, synthesis, mode of action & toxicology», C. Fest & K.-J. Schmidt, Springer-Verlag, 1973
  16. «A New Method for the Synthesis of Phosphonic Dichlorides», L. Maier, Helvetica Chimica Acta, Vol. 56, Fasc. 1 (1973) – Nr. 42
  17. «Ullman’s Encyclopaedia of Industrial Chemicals»-«Phosphorus Compounds, Organic», J. Svara, N. Weferling, T. Hofmann, Wiley-VCH, 2008
  18. «Organic phosphorus compounds 90. A convenient, one-step synthesis of alkyl- and arylphosphonyl dichlorides», Ludwig Maier, Phosphorus, Sulfur, and Silicon and the Related Elements, 1990, 47, 3–4, pp. 465–470.
  19. «Formation of Organo-phosphorus Compounds by the Reaction of Alkyl Chlorides with Phosphorus Trichloride in the Presence of Aluminium Chloride», A. M. Kinnear & E. A. Perren, Chem. Soc. 1952, 3437-3445
  20. «A new method for the preparation of alkane phosphonyl dichlorides», John P. Clay, J. Org. Chem. 1951, 16, 892-894.

 

 

 

 

 

 

 

 

 

 

 

Feliz Novichok y Próspero Año Nuevo 2019

En un artículo reciente1 se argumentaba que la propuesta técnica conjunta de Canadá, Estados Unidos de América y Países Bajos para la actualización del Anexo sobre sustancias químicas de la Convención sobre Armas Químicas (CAQ), además de escasa y sesgada, parecía tener como único objetivo la inclusión en la Lista 1A de la CAQ, de las sustancias A-230 y A-234, también conocidas como «novichoks». Puesto que parece que en los incidentes de Salisbury (atentado contra Sergey Skripal e hija) y de Amesbury (contaminaión y fallecimiento de Dawn Sturgess) se utilizó la sustancia conocida como «novichok» A-234, con esta propuesta se trataría de inculpar solapadamente a la Federación Rusa de su autoría, y de violar la CAQ al mantener un programa de armas químicas no declarado.

En su discurso «Statement by H.E. Ambassador Kenneth D. Ward permanent representative of the United States of America to the OPCW at the fourth special session of the Conference of the States Parties to review the operation of the Chemical Weapons Convention» (RC-4/NAT.7, de fecha 27 de noviembre de 2018) el embajador destacaba, en varios puntos, las acciones que habían llevado a cabo para combatir el incumplimiento de la CAQ, y en el segundo de estos puntos destacaba la propuesta de actualización de los listas de la CAQ y el objetivo de la misma2:

«Segundo, actualización de los listas de la Convención sobre Armas Químicas: el mes pasado, los Estados Unidos, Canadá y los Países Bajos presentaron al Director General una propuesta técnica para actualizar el Anexo sobre sustancias químicas de conformidad con el Artículo XV, párrafo 5 de la Convención. Específicamente, buscamos agregar a las Listas dos familias de productos químicos que incluyen el agente químico novichok utilizado en Salisbury y que se cobró una vida en Amesbury. Los novichoks son agentes nerviosos de uso militar, sin «finalidad no prohibida» por la Convención. Hacemos un llamamiento a todos los Estados Partes para que apoyen la propuesta técnica de cambio para que estas atroces sustancias químicas puedan agregarse, sin demora, a la Lista 1 del Anexo sobre Sustancias Químicas y, por lo tanto, estén sujetas al estricto régimen de verificación de la Convención.»

 

La propuesta conjunta

Recordemos que la propuesta técnica conjunta de Canadá, Estados Unidos de América y Países Bajos para la actualización del Anexo sobre sustancias químicas de la Convención sobre Armas Químicas (CAQ), es incluir dos nuevas familias de agentes químicos a la Lista 1A:

N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos o P-alquil-N-fluorofosfonil amidinas N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo o О-alquil-N-fluorofosforil amidinas

A-230 (actualmente incluido en la Lista 2B.4)

A-234 (no incluido en Lista alguna)

Como la propuesta considera que R1, R2 y R3 son cadenas carbonadas que pueden tener hasta 10 átomos de carbonos, no solo como cadenas más o menos ramificadas, sino también como anillos, el número de sustancias que constituirían cada una de estas familias sería superior a 200 000. Además la propuesta no menciona la inclusión de los precursores de estas dos nuevas familias.

 

La propuesta rusa

En este absurdo e infructuoso diálogo de «y tú más», que se mantiene en la Organización para la Prohibición de las Armas Químicas (OPAQ), la Federación Rusa ha presentado otra propuesta técnica de actualización del Anexo sobre sustancias químicas de la CAQ. La propuesta rusa parece contemplar la inclusión de cinco nuevos agentes químicos o/y familias de agentes químicos en la Lista 1A:

N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos (P-alquil-N-fluorofosfonil amidinas)

N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo (О-alquil-N-fluorofosforil amidinas)
N-(bis-dialquilamino)alquiliden alquilfluorofosfonamidatos (Р-alquil-N-fluorofosfonil guanidinas)
O-(cloroalquil)-(((dihalometilen)amino)oxi) fosforofluoridatos
Derivados del dimetilcarbamato de piridin-3-ilo

 

Situación actual de las propuestas

Si ambas propuestas siguen el procedimiento establecido en el párrafo 5 del Artículo XV de la CAQ relativo a «Enmiendas»3, el Director General ya habrá comunicado las mismas a todos los Estados Partes, al Consejo Ejecutivo y a los Depositarios. No más tarde de 60 días después de haber recibido las propuestas, y evaluadas éstas para determinar todas sus posibles consecuencias respecto de las disposiciones de la CAQ, comunicará esta información a todos los Estados Partes y al Consejo Ejecutivo. La propuesta conjunta fue presentada a mediados del mes de octubre y la propuesta rusa a finales del mes de noviembre, así que pronto deberían conocerse las informaciones sobre dichas propuestas.

Después el Consejo Ejecutivo examinará las propuestas a la vista de toda la información disponible, incluido el hecho de si las propuestas satisfacen los requisitos del párrafo 4 del Artículo XV, y 90 días después, a más tardar, de haber recibido las propuestas, notificará su recomendación a todos los Estados Partes para su examen, junto con las explicaciones correspondientes.

Tanto si el Consejo Ejecutivo recomienda a todos los Estados Partes la adopción o el rechazo de alguna de las propuestas, éstas se considerarán aprobadas o rechazadas si, transcurridos 90 días desde la recepción de la comunicación, ningún Estado Parte objeta a ellas. En la situación actual de la OPAQ no parece probable una situación de consenso, de modo que probablemente algún Estado Parte objetará a las mismas.

Si así sucediese, esto es, si las recomendaciones del Consejo Ejecutivo recibiesen la objeción de algún Estado Parte, tendría que ser la Conferencia la que adoptara una decisión sobre las propuestas como cuestión de fondo en su próximo período de sesiones, incluido el hecho de si las propuestas satisfacen los requisitos del párrafo 4 del Artículo XV.

Según el párrafo 18 del artículo VIII de la CAQ relativo a la Organización4, la Conferencia adoptará sus decisiones sobre cuestiones de procedimiento por mayoría simple de los miembros presentes y votantes. Las decisiones sobre cuestiones de fondo deberán adoptarse, en lo posible, por consenso. Si no se llega a un consenso cuando se someta una cuestión a decisión, el Presidente aplazará toda votación por 24 horas y, durante ese período de aplazamiento, hará todo lo posible para facilitar el logro de un consenso e informará a la Conferencia al respecto antes de que concluya ese período. Si no puede llegarse a un consenso al término de 24 horas, la Conferencia adoptará la decisión por mayoría de dos tercios de los miembros presentes y votantes, salvo que se especifique otra cosa en la presente Convención. Cuando esté en discusión si la cuestión es o no de fondo, se considerará que se trata de una cuestión de fondo, salvo que la Conferencia decida otra cosa por la mayoría exigida para la adopción de decisiones sobre cuestiones de fondo.

Como puede apreciarse, habida cuenta de las diferentes posiciones que se vislumbran entre los Estados Parte, la solución probablemente tardará mucho tiempo en llegar.

  

La propuesta de la Federación Rusa, escasa y sesgada

En la tabla siguiente se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov y los compuestos descritos por Hosseini, así como su situación actual y futura dentro de las Listas de la CAQ con la propuesta de la Federación Rusa. El lector puede compararla con la propuesta conjunta que aparece en el artículo «Se les ve el plumero»1.

En la tabla siguiente se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov6 y los compuestos descritos por Hosseini, así como su situación actual y futura dentro de las Listas de la CAQ.

  Listas actuales Listas futuras
Mirzayanov

Lista 2B.4 A-230

Lista 1A.* A-230

Mirzayanov

Lista 2B.4 A-242

Lista 1A.*** A-242

Hosseini

Lista 2B.4 CAS 2074608-43-6

Lista 1A.*** CAS 2074608-43-6

Mirzayanov

No listado A-232

Lista 1A.** A-232

Mirzayanov

No listado A-234

Lista 1A.** A-234

Mirzayanov

No listado A-262

No listado A-262

Hosseini

Lista 2B.4 CAS 2096401-97-5

Lista 2B.4 CAS 2096401-97-5

Hosseini

Lista 2B.4 CAS 2096401-99-7

Lista 2B.4 CAS 2096401-99-7

Hosseini

Lista 2B.4 CAS 2096402-01-4

Lista 2B.4 CAS 2096402-01-4

Hosseini

Lista 2B.4 CAS 2096402-03-6

Lista 2B.4 CAS 2096402-03-6

Hosseini

Lista 2B.4 CAS 2096402-05-8

Lista 2B.4 CAS 2096402-05-8

Como puede verse, todos los agentes «novichok» descritos por Mirzayanov (excepto el A-262) y algunos de los compuestos descritos por Hosseini  que ahora pertenecen todos ellos a la Lista 2, pasarían a pertenecer con la propuesta a la Lista 1.

Aunque no están recogidos en la tabla, los agentes «novichok» descritos por Hoening (O-(cloroalquil)-(((dihalometilen)amino)oxi) fosforofluoridatos) pasarían ahora a pertenecer también a la Lista 1.

El A-262 no pertenecería a lista alguna, y algunos compuestos descritos por Hosseini ahora pertenecientes a la Lista 2 no quedarían afectados por la inclusión de estas nuevas listas, y seguirían perteneciendo a la Lista 2.

Está propuesta también está sesgada pues no recoge otras familias de sustancias químicas organofosforadas, inhibidoras de la acetilcolinesterasa y extremadamente tóxicas, como por ejemplo, los agentes de volatilidad intermedia (IVAs, Intermediate Volatility Agents).

También es una propuesta escasa pues aunque propone la inclusión de cinco nuevos agentes químicos o/y familias de agentes químicos en la Lista 1A,  no contempla la inclusión de sus precursores.

 

Conclusión

A la propuesta rusa también se le ve el plumero, ya que tampoco recoge ciertas sustancias tóxicas que no tienen un «uso no prohibido por la CAQ» (como los agentes IVA), y tampoco recoge los posibles precursores de las nuevas familias que se desean incluir en la Lista 1.

La ampliación del Anexo sobre sustancias químicas de la CAQ debe realizarse pensando en cómo conseguir un mundo libre de armas químicas, y no pensando en otras cosas.

Hoy es 24 de diciembre de 2018, así que: «Feliz Navidad y Próspero Año Nuevo 2019»

 

Referencias

  1. «Se les ve el plumero», J.Domingo, https://cbrn.es/?p=1403
  2. «Statement by H.E. Ambassador Kenneth D. Ward permanent representative of the United States of America to the OPCW at the fourth special session of the Conference of the States Parties to review the operation of the Chemical Weapons Convention»,RC-4/NAT.7, de fecha 27 de noviembre de 2018, https://www.opcw.org/sites/default/files/documents/2018/11/rc4nat07%28e%29.pdf
  3. «Enmiendas», Artículo XV de la CAQ, https://www.opcw.org/es/convencion-sobre-las-armas-quimicas/articulos/articulo-xv-enmiendas
  4. «La Organización», Artículo VIII de la CAQ, https://www.opcw.org/es/convencion-sobre-las-armas-quimicas/articulos/articulo-viii-la-organizacion

VR, el VX ruso

Tras el descubrimiento de los agentes neurotóxicos tabún, sarín y soman, conocidos como agentes neurotóxicos de la «serie G» (GA, GB y GD, respectivamente), la Segunda Guerra Mundial finalizó con la rendición de Japón el 15 de agosto de 1945, tras el lanzamiento el 6 y 9 de agosto de 1945 de las bombas nucleares sobre las localidades japonesas de Hiroshima y Nagasaki. A partir de ese momento la guerra química perdió interés en favor de la guerra nuclear1.

Sin embargo la industria química continuó la búsqueda de nuevos pesticidas pues se requería un sustituto del DDT para el cual estaban apareciendo resistencias. En 1952, Ranajit Ghosh y J. F. Newman, dos químicos ingleses de la empresa ICI (Imperial Chemistry Industries), que trabajaban con ésteres organofosforados de 2-aminoetanotioles, sintetizaron el amitón o tetram (fosforotioato de O,O-dietilo S-[2-(dietilamino)etilo], CAS 78-53-5), un potente insecticida sistémico, persistente, soluble en agua1. El amitón, patentado en noviembre de 1952, fue comercializado en 1954 pero pronto tuvo que ser retirado del mercado por su toxicidad en mamíferos (LD50 oral en ratas ~3 mg/kg)2.

En 1947 científicos estadounidenses, británicos y canadienses firmaron el Acuerdo tripartito ABC (Tripartite Agreement ABC) que permitió a los tres países compartir sus recursos e información. Anualmente, en sus conferencias ABC (América-Gran Bretaña-Canadá) combinaban la experiencia británica, con los recursos estadounidenses y los campos de ensayo canadienses3.

En la Conferencia ABC de 1953 Gran Bretaña presentaba el amitón (código VG) y una serie de derivados, denominados «serie C11», que podrían ser utilizados como armas químicas. Estados Unidos renombró la «serie C11» como «serie V» y sus científicos del Edgewood Army Chemical Center sintetizaron hasta cincuenta moléculas distintas. En febrero de 1957, el Mando de Investigación y Desarrollo del Ejército normalizó el VX (metilfosfonotiolato de O-etilo y de S-2-diisopropilaminoetilo) como arma, al considerarlo el más apropiado para su empleo en combate, por sus propiedades físico-químicas y toxicológicas, y para ser producido a gran escala1.

En 1957, los servicios de inteligencia de la Unión Soviética obtuvieron información acerca de los agentes neurotóxicos de la serie V, y en los años sesenta desarrollaron un agente similar, conocido como VX-R, VX ruso, R-33 o agente 3311. En diciembre de 1972 dio comienzo la producción a gran escala del VX ruso, en Novocheboksarsk (Chuvashia), que finalizaría en 19871.

El VR

El VR (VX ruso, V-gas soviético, Sustancia 33, R-33, Agente «Noviembre») es un agente neurotóxico persistente, de la serie V, incluido en la Lista 1A.3 de la Convención para la prohibición de las Armas Químicas (CAQ). La lista 1A.3 es una familia muy numerosa, que incluye más de 200 000 agentes similares (S-2-dialquil (metil, etil, propil (normal o isopropil)) aminoetilalquil (metil, etil, propil (normal o isopropil)) fosfonotiolatos de O-alquilo (H ó <C10, incluidos cicloalquilos) y sus sales alquilatadas o protonadas correspondientes4,5,6,7,8.

VX CAS 50782-69-9 VR CAS 159939-87-4 C-VX CAS 468712-10-9

El VR es el metilfosfonotiolato de O-(2-metilpropilo) y de S-(2-dietilamino)etilo, de fórmula molecular C11H26NO2PS, peso molecular 267,368 g/mol y número CAS 159939-87-4.

El VR está además estrechamente relacionado (es un isómero estructural) con los agentes neurotóxicos persistentes VX (desarrollado por británicos y americanos) y C-VR (VX chino). Los tres agentes son metilfosfonotiolatos, tienen la misma fórmula molecular y el mismo peso molecular, pero tienen distinta fórmula estructural, y difieren ligeramente en sus propiedades físico-químicas y toxicológicas.

Se han propuesto muchas hipótesis para explicar por qué el VX ruso (VR) es un isómero estructural del VX occidental. Hay quien mantiene que esta diferencia se debe a la falta de los medios técnicos necesarios para la compleja síntesis del VX, mientras que otros achacan esta diferencia al hecho de que los servicios de espionaje rusos no fueron capaces de conseguir la estructura tridimensional exacta del VX y solo fueron capaces de obtener la fórmula empírica. Otras fuentes lo atribuyen a la importante investigación llevada a cabo sobre los agentes químicos similares al Amitón y al VX, que condujo al hallazgo de una molécula más toxica que el propio VX11.

El VR también tiene otros isómeros estructurales muy parecidos, por ejemplo, el metilfosfonotioato de O-(2-metilpropilo) y de O-(2-dietilamino)etilo, CAS 172825-49-9, y el metilfosfonotiolato de O-(2-dietilamino)etilo y de S-(2-metilpropilo), recogidos ambos en la Lista 2B.4 de la CAQ, por tener un grupo metilo unido directamente al átomo de fósforo:

VR, metilfosfonotiolato de O-(2-metilpropilo) y de S-(2-dietilamino)etilo, CAS 159939-87-4 metilfosfonotioato de O-(2-metilpropilo) y de O-(2-dietilamino)etilo, CAS 172825-49-9 metilfosfonotioato de O-(2-dietilamino)etilo y de S-(2-metilpropilo)

Al igual que el VX, el VR y el C-VX presentan estereoisómeros como consecuencia de la diferente distribución espacial de los enlaces en el átomo de fósforo:

 P(R) CAS 1644559-28-3 P(S) CAS 1644559-27-2

El desarrollo del VR comenzó a finales de la década de 1950 por parte de un equipo del Instituto de Investigación Científica nº 42 (NII-42) de la Unión Soviética. Sergei Zotovich Ivin, Leonid Soborovsky e Iya Danilovna Shilakova desarrollaron el VR y tras finalizar el trabajo en 1963 recibirían el Premio Lenin por su logro. Más tarde, un equipo liderado por Nikolai Kuznetsov desarrolló un sistema binario para el VR que constaba de dos precursores menos tóxicos, que se mezclaban durante el vuelo de la munición para formar el agente VR, y por este trabajo fueron galardonados con el Premio Lenin de 19904,10.

En 1972, los soviéticos levantaron una planta de fabricación de VR en Novocheboksarsk, una ciudad de la república de Chuvasia. La URSS llegó a producir en sus instalaciones 15 557 toneladas de VR según su declaración ante la Organización para la Prohibición de las Armas Químicas (OPAQ)4.

El 27 de septiembre de 2017, la Federación de Rusia completó, bajo verificación de la OPAQ, la destrucción de sus 39 967 toneladas métricas de armas químicas12

RVX es un líquido transparente, incoloro, de textura parecida a la glicerina, de punto de fusión 35,0 °C y punto de ebullición 294,7 °C. El VR es poco soluble en agua (menos del 5% a 20 °C) y fácilmente soluble en disolventes orgánicos. El producto técnico puede ser de color amarillo a marrón oscuro y el olor es semillas de girasol fritas.

La tabla siguiente muestra los valores, para el VX, el VR y el C-VX, de algunas de sus propiedades físicas13:

Propiedad VX VR (RVX) C-VX (EA 6043)
Presión de vapor a 25 °C (en Pa) 1,17 × 10–1 8,40 × 10–2 3,291 × 10–2
Presión de vapor a 25 °C (en torr) 8,78 × 10–4 6,30 × 10–4 2,469 × 10–4
Volatilidad a 25 °C (en mg/m3) 12,6 9,06 3,550
Punto de ebullición (en °C) 291,6 294,7 306,1
Densidad a 25 °C (en g/mL) 1,0083 1,0064 1,0125
Viscosidad a 25 °C (en cSt) 10,09 8,58 9,29
Tensión superficial a 25 °C (en dina/cm) 30,20 26,89 22,68
Entropía de vaporización (en J/mol*K) 113,5 116,2 111,9

En lo referente a la volatilidad (los valores están expresados en mg/m3) el VR parece ser algo menos volátil que el VX, pero ambos son más volátiles que el C-VX14,15:

Temperatura °C VX VR C-VX
-5 0,337 0,237
0 0,662 0,467 0,125
5 1,26 0,892
10 2,34 1,66 0,528
15 4,20 2,99
20 7,38 5,27 1,94
25 12,6 9,06 3,55
30 21,2 15,2 6,32
40 55,7 40,6 18,6

Los métodos de detección e identificación empleados para el VX podrían ser empleados también para el VR y para el C-VX. Los papeles indicadores, los tubos colorimétricos para ésteres organofosforados, los detectores de fotoionización con lámparas de 10,6 eV o de 11,7 eV, y los detectores de fotometría de llama (AP2C y AP4C) se comportan de igual manera para cualquiera de los tres agentes (recuerde que VX, VR y C-VX son metilfosfonotiolatos isómeros estructurales con el mismo peso molecular).

En el caso de los detectores de espectroscopía de movilidad iónica (IMS), puesto que los tres agentes tienen el mismo peso molecular, si los agregados iónicos se comportasen de igual manera, los tres agentes se detectarían conjuntamente. Puesto que sus estructuras químicas son ligeramente diferentes podría ocurrir que los agregados iónicos pudieran ser diferentes, y que pudieran diferenciarse. Es necesario que el fabricante confirme lo que su equipo es capaz de detectar (probablemente detecte los tres agentes como si se tratase de un único agente).

Los espectros de masas si son claramente diferentes debido a los diferentes grupos alquilo unidos al átomo de nitrógeno, isopropilo en el caso del VX y etilo en el caso del VR y del C-VX:

Espectro de masas del VX, por impacto electrónico

Espectro de masas del VR, por impacto electrónico

 

Espectro de masas del C-VX, por impacto electrónico

 

En lo referente a la toxicidad, no parece sin embargo que el VR sea más tóxico que el VX, como se muestra en la siguiente tabla comparativa:

Toxicidad VX VR
DL50 (subcutánea, en cobayas)16,17,18 8,9 µg/kg 11,3 µg/kg
DL50 (percutánea, en ratas, 4 horas)19 >0,15 mg/kg >0,50 mg/kg
DL50 en cerdos (percutánea, en cerdos, 6 horas)20 62 µg/kg 100 µg/kg

La toxicidad aguda del VR se debe principalmente a la inhibición de la acetilcolinesterasa (AChE) periférica porque tanto el VX como el VR (isómero estructural del VX) penetran muy mal a través de la barrera hematoencefálica debido a su estructura química. Por lo tanto, los signos clínicos agudos después de la administración de VX o de VR están causados principalmente por la inhibición de AChE periférica y la acumulación posterior de acetilcolina (ACh) en los receptores nicotínicos y muscarínicos periféricos (músculos esqueléticos, diafragma, corazón, eritrocitos). Una vez en la sangre el VR inhibe muy rápidamente la AChE eritrocitaria, incluso más eficientemente que el VX. La butilcolinesterasa (BChE), que resulta mucho menos inhibida por el VR, no es el mejor biomarcador en este caso, pero su inhibición permite confirmar fácilmente la presencia persistente del agente tóxico en el torrente sanguíneo. El fenómeno conocido como «envejecimiento» («aging») tarda más en producirse para el VR que para el VX, y la reactivación espontánea de la colinesterasa es más rápida para el agente ruso. Las oximas tienen una acción muy variable sobre el VR y ligeramente diferente de la del VX, lo cual es particularmente evidente para 2-PAM, que resulta ineficiente en el caso del VR. De la oximas comerciales, la HI-6 parece ser la más apropiada para el VR, prefiriéndose además el midazolam o la escopolamina, en vez del diazepam, como anticonvulsivantes11,21.

Recuerde que por tratarse de un agente muy persistente, a estas medidas terapéuticas debe añadirse una cuidadosa y efectiva descontaminación.

 

Referencias

  1. «Armas químicas, la ciencia en manos del mal», Rene Pita, Plaza Valdes, 2008
  2. «Pesticides, preparation and mode of action», R. Cremlyn, J.Wiley, 1978
  3. «America’s Struggle with Chemical-biological Warfare», Albert J. Mauroni, Greenwood Publishing Group, 2000
  4. «VR (nerve agent)», https://en.wikipedia.org/wiki/VR_(nerve_agent)
  5. «Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction», https://www.opcw.org/sites/default/files/documents/cwc/cwc_en.pdf
  6. «Handbook of Toxicology of Chemical Warfare Agents», Ramesh C. Gupta, «CHAPTER 10 Russian VX», Vladimir Rembovskiy, Andrey Radilov y otros, 2nd Ed., 2015
  7. «Compendium of Chemical Warfare Agents», Steven L. Hoenig, Springer, 2007
  8. «Handbook of Chemical and Biological Warfare Agents», D. Hank Ellison, 2nd Ed, CRC Press, 2008
  9. «Historical Dictionary of Nuclear, Biological, and Chemical Warfare», B. C. Garrett & J. Hart
  10. «War of Nerves, Chemical Warfare from WWI to Al-qaeda», Jonathan B. Tucker, Anchor Books, 2006
  11. «Le VR, version russe du neurotoxiqueorganophosphoré VX», A.-C. Cuquel, F. Dorandeu, F. Ceppa, C. Renard & P. Burnat, Ann Pharm Fr, Volume 73, Issue 3, May 2015, Pages 180-189.
  12. «Rusia marca la diferencia», J.Domingo, 2 de octubre de 2017, https://cbrn.es/?tag=armas-quimicas
  13. «Thermophysical Properties and Spectral Characterization of EA 6043», P. L. Abercrombie-Thomas, A. Brozena, J. H. Buchanan y otros, ECBC-TR-1269, April 2014, https://apps.dtic.mil/dtic/tr/fulltext/u2/a610760.pdf
  14. «Vapor pressure of VX», J. H. Buchanan, L. C. Buettner, A. B. Butrow & D. E. Tevault, ECBC-TR-068, November 1999, https://apps.dtic.mil/dtic/tr/fulltext/u2/a371297.pdf
  15. «Vapor pressure of russian VX», J. H. Buchanan, A. B. Butrow, P. L. Abercrombie, L. C. Buettner & D. E. Tevault, ECBC-TR-480, June 2005, http://www.dtic.mil/dtic/tr/fulltext/u2/a447993.pdf
  16. «Characterization and treatment of the toxicity of O-isobutyl S-[2-(diethylamino)ethyl] methylphosphonothioate, a structural isomer of VX, in guinea pigs», D. Maxwell, K. M. Brecht & I. Koplovitz. J. Am. Coll. Toxicol.15 (Suppl. 2):78–88,1997.
  17. «Pharmacological antagonism of lethal effects induced by O-isobutyl S-[2-(diethylamino)ethyl] methylphosphonothioate», F.-C. T. Chang, B. E. Hoffman & S. DeBus, Drug and chemical toxicology, 25(3), 321–337 (2002)
  18. «Toxicity and treatment of russian V-agent (VR) intoxication in guinea pigs», I. Koplovitz, M. Shutz, S. Schulz & R. Railer, https://pdfs.semanticscholar.org/582e/fc88bf27bfc20bbd0f2fac67de6a2b32dc1d.pdf
  19. «Acute toxicity of some nerve agents an pesticides in rats», J. Misik, R. Pavlikova, J. Cabal & K. Kuca, Drug Chem Toxicol. 2015 Jan;38(1):32-6
  20. «The therapeutic use of localized cooling in the treatment of VX poisoning», T.W. Sawyer, J. Mikler, F. Worek, G. Reiter, H. Thiermann, C. Tenn, K. Weatherby, S. Bohnert, Toxicol Lett 2011;204:52-6.
  21. «The Reactivating and Therapeutic Efficacy of Oximes to Counteract Russian VX Poisonings», J. Kassa, D. Jun, & K. Kuca, International Journal of Toxicology, 25:397–401, 2006

Se les ve el plumero

En el informe del octogésimo noveno periodo de sesiones del Consejo Ejecutivo, EC-89/3 de 22 de octubre de 2018, en el apartado l) del punto 6 relativo al «Informe del Consejo Consultivo Científico sobre los nuevos tipos de agentes neurotóxicos» se indica lo siguiente1:

  • que el Consejo ha considerado el informe del Consejo Consultivo Científico (CCC) sobre los nuevos tipos de agentes neurotóxicos («Response to the Director-General’s request to the Scientific Advisory Board to provide advice on new types of nerve agents», SAB-28/WP.1, de fecha 3 de julio de 2018), elaborado en respuesta a la petición formulada por el Director General al CCC de que preste asesoramiento sobre las sustancias químicas tóxicas que, según se ha determinado, son nuevos tipos de agentes neurotóxicos o se sospecha que lo son2.
  • que con fecha 30 de mayo la Federación de Rusia ha remitido al Director General, un documento de 329 páginas, titulado «New Types of Nerve Agents», en relación con la solicitud de información S/1621/2018.
  • que Canadá, los Estados Unidos de América y los Países Bajos han informado al Consejo de su intención de presentar al Director General una propuesta técnica conjunta de actualización del Anexo sobre sustancias químicas de la CAQ, de conformidad con el párrafo 5 de su artículo XV.

 

Actualización del Anexo sobre sustancias químicas de la Convención

El Artículo XV de la CAQ relativo a «Enmiendas», indica que cualquier Estado Parte podrá proponer enmiendas a la Convención, y también modificaciones de los Anexos. En el párrafo 4 se especifica que todas las modificaciones del Anexo sobre sustancias químicas se harán de conformidad con el párrafo 5, el cual indica que tales propuestas de modificación seguirán el siguiente procedimiento3:

  1. El texto de la propuesta de modificación será transmitido junto con la información necesaria al Director General. Cualquier Estado Parte y el Director General podrán aportar información adicional para la evaluación de la propuesta. El Director General comunicará sin demora cualquier propuesta e información de esa índole a todos los Estados Partes, al Consejo Ejecutivo y al Depositario;
  2. El Director General, 60 días después, a más tardar, de haber recibido la propuesta, la evaluará para determinar todas sus posibles consecuencias respecto de las disposiciones de la presente Convención y de su aplicación y comunicará tal información a todos los Estados Partes y al Consejo Ejecutivo;
  3. El Consejo Ejecutivo examinará la propuesta a la vista de toda la información de que disponga, incluido el hecho de si la propuesta satisface los requisitos del párrafo 4. El Consejo Ejecutivo, 90 días después, a más tardar, de haber recibido la propuesta, notificará su recomendación a todos los Estados Partes para su examen, junto con las explicaciones correspondientes. Los Estados Partes acusarán recibo de esa recomendación dentro de un plazo de diez días;
  4. Si el Consejo Ejecutivo recomienda a todos los Estados Partes que se adopte la propuesta, ésta se considerará aprobada si ningún Estado Parte objeta a ella dentro de los 90 días siguientes a haber recibido la recomendación. Si el Consejo Ejecutivo recomienda que se rechace la propuesta, ésta se considerará rechazada si ningún Estado Parte objeta al rechazo dentro de los 90 días siguientes a haber recibido la recomendación;
  5. Si una recomendación del Consejo Ejecutivo no recibe la aceptación exigida en virtud del apartado d), la Conferencia adoptará una decisión sobre la propuesta como cuestión de fondo en su próximo período de sesiones, incluido el hecho de si la propuesta satisface los requisitos del párrafo 4;
  6. El Director General notificará a todos los Estados Partes y al Depositario cualquier decisión adoptada con arreglo al presente párrafo;
  7. Las modificaciones aprobadas en virtud de este procedimiento entrarán en vigor para todos los Estados Partes 180 días después de la fecha de la notificación de su aprobación por el Director General, salvo que otra cosa recomiende el Consejo Ejecutivo o decida la Conferencia.

 

La propuesta de modificación

La mencionada propuesta técnica conjunta de actualización del Anexo sobre sustancias químicas de la Convención planteada por Canadá, los Estados Unidos de América y los Países Bajos parece que ya ha sido trasmitida al Director General, y en ella se contemplaría la inclusión en la Lista 1A de dos nuevas familias de agentes químicos, los N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos y los N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo:

N-(1-dialquilamino)alquiliden alquilfluorofosfonamidatos N-(1-dialquilamino)alquiliden fluorofosforamidatos de O-alquilo

Ya en 2011, en un artículo titulado «Potenciales sustancias químicas de combate» (Potenciální Bojové Chemické Látky), Emil Halámek y Zbynek Kobliha, describían, en el apartado titulado «13. El proyecto FOLIANT/NOVICHOK» (13. Sloučeniny projektu FOLIANT/NOVIČOK), las posibles estructuras de los agentes «novichok» y su posible método de síntesis4:

Además, hace un par de años, en su artículo «Fragmentation pathways and structural characterization of organophosphorus compounds related to CWC by electron ionization and electrospray ionization tandem mass spectrometry» químicos iraníes describían las rutas de fragmentación y la caracterización estructural de ciertos compuestos organofosforados relacionados con la Convención de Armas Químicas (CAQ) y también describían su método de síntesis5:

En la actualidad, los compuestos descritos en estos artículos y que quieren incluirse en estas dos nuevas familias de Lista 1A, o no están incluidos en lista alguna, o pertenecen a la Lista 2, y sus precursores pertenecen, bien a la Lista 1B.9, bien a la Lista 2B.14, o no están incluidos en Lista alguna.

En la tabla siguiente se muestra una comparativa entre los agentes «novichok» descritos por Mirzayanov6 y los compuestos descritos por Hosseini, así como su situación actual y futura dentro de las Listas de la CAQ.

  Listas actuales Listas futuras
Mirzayanov

A-230 Lista 2B.4

A-230 Lista 1A.*

Mirzayanov

A-242 Lista 2B.4

A-242 Lista 2B.4

Hosseini

Lista 2B.4 CAS 2074608-43-6

Lista 2B.4 CAS 2074608-43-6

Mirzayanov

A-232 No listado

A-232 Lista 1A.**

Mirzayanov

A-234 No listado

A-234 Lista 1A.**

Mirzayanov

A-262 No listado

A-262 No listado

Hosseini

Lista 2B.4 CAS 2096401-97-5

Lista 2B.4 CAS 2096401-97-5

Hosseini

Lista 2B.4 CAS 2096401-99-7

Lista 2B.4 CAS 2096401-99-7

Hosseini

Lista 2B.4 CAS 2096402-01-4

Lista 2B.4 CAS 2096402-01-4

Hosseini

Lista 2B.4 CAS 2096402-03-6

Lista 2B.4 CAS 2096402-03-6

Hosseini

Lista 2B.4 CAS 2096402-05-8

Lista 2B.4 CAS 2096402-05-8

Como puede verse, algunos agentes «novichok» descritos por Mirzayanov ahora pertenecientes a la Lista 2 o no incluidos en Lista alguna, de aprobarse la propuesta, pasarían a pertenecer a la Lista 1, por estar incluidos en alguna de las dos nuevas familias de la Lista 1. Sin embargo algunos agentes «novichok» descritos por Mirzayanov quedarían incluidos en la Lista 2, o no quedarían incluidos en Lista alguna.

En cambio todos los compuestos descritos por Hosseini que pertenecen ahora a la Lista 2 seguirían todos perteneciendo a la Lista 2.

Parece que el único interés es incluir tan solo los agentes A-230, A-232 y A234.

 

Propuesta de actualización sesgada y escasa

Teniendo presente que la CAQ indica claramente que está totalmente prohibido el empleo de cualquier sustancia química como método de guerra, y que las Listas recogidas en el Anexo no suponen una definición de agentes químicos de guerra, la propuesta busca recoger tan sólo algunos de los famosos agentes «novichock», sobre todo el agente A-234, por su utilización, presuntamente por parte de Rusia, en el incidente de Salisbury. Los agentes «novichock» A-230 y A-234 ya fueron recogidos en la base de datos de espectros de masas del NIST98, como aportación del CBDCOM/ERDEC, Edgewood, Maryland, USA:

A-230 A-234

Está propuesta está sesgada pues no recoge todos los agentes «novichock» citados por Mirzayanov, ni otras familias de sustancias químicas organofosforadas, inhibidoras de la acetilcolinesterasa y extremadamente tóxicas, como por ejemplo, los agentes de volatilidad intermedia (IVAs, Intermediate Volatility Agents).

También es una propuesta escasa pues sólo propone la inclusión en Lista 1 de las dos familias de sustancias químicas mencionadas, y no contempla la inclusión de sus precursores.

Empleando los procedimientos de microsíntesis mencionados por Halámek y por Hosseini se requeriría o bien el correspondiente ácido alquilfosfonocianidofluoridico (Lista 2B.4) y la correspondiente N,N-dialquilalcanimidamina, o bien el correspondiente alquilfosfonildifluoruro (Lista 1B.9) y la correspondiente N,N-dialquilalcanimidamina. Sin embargo las N,N-dialquilalcanimidamina no están incluidas en Lista alguna:

Por analogía con otras sustancias químicas o familias de sustancias químicas, precursoras de agentes químicos de la Lista 1, que vienen recogidas en las Listas 1B y 2B, las N,N-dialquilalcanimidaminas también deberían estar recogidas en la Lista 2B.

Situación actual (No listada) Situación lógica (Lista 2B)

 

Referencias

  1. «Report of the eighty-ninth session of the Executive Council», EC-89/3, de fecha 22 octubre de 2018, https://www.opcw.org/sites/default/files/documents/2018/10/ec8903%28e%29.pdf
  2. «Request for information from States Parties on new types of nerve agents», S/1621/2018, de fecha 2 de mayo de 2018, https://www.opcw.org/sites/default/files/documents/S_series/2018/en/s-1621-2018_e_.pdf).
  3. «Enmiendas», Artículo XV de la CAQ, https://www.opcw.org/es/convencion-sobre-las-armas-quimicas/articulos/articulo-xv-enmiendas
  4. «Potenciální Bojové Chemické Látky», Emil Halámek & Zbynek Kobliha, Chem. Listy 105, 323-333 (2011), http://www.chemicke-listy.cz/docs/full/2011_05_323-333.pdf
  5. «Fragmentation pathways and structural characterization of organophosphorus compounds related to CWC by electron ionization and electrospray ionization tandem mass spectrometry», S. E. Hosseini, H. Saeidian, A. Amozadeha, M. T. Naserib & M. Babrib, Rapid Commun Mass Spectrom. 2016 Dec 30;30(24):2585-2593.
  6. “State Secrets. An Insider’s Chronicle of the Russian Chemical Weapons Program”, Vil S. Mirzayanov, Outskirts Press, 2008