El elemento 93

A principios de este mes de enero aparecía una noticia relativa a la tabla periódica de los elementos. En Japón, un equipo de científicos había iniciado la búsqueda del elemento 119, bautizado temporalmente como ununennio (uno uno nueve, en latín), que inauguraría una nueva fila o período en la tabla periódica propuesta en 1869 por el químico ruso Dmitri Ivánovich Mendeléyev. De conseguirse, la primera columna denominada de los metales alcalinos pasaría a tener un nuevo elemento y quedaría así: hidrógeno, litio, sodio, potasio, rubidio, cesio, francio y ununennio1.

Tan sólo hace algo más de un año, el 28 de noviembre de 2016, la IUPAC aprobaba los nombres y los símbolos de los cuatro elementos que completaban la última fila: nihonium (113Nh), moscovium (115Mc), tennessine (117Ts), y oganesson (118Og) 2.

Tabla periódica actual publicada por la IUPAC, https://iupac.org/what-we-do/periodic-table-of-elements/

 

El uranio, el último elemento

Recordemos que hace ahora un siglo, allá por el año 1918, el uranio era el elemento de mayor número atómico conocido, y la tabla periódica de aquel tiempo presentaba aún siete huecos. La propuesta inicial de Mendeléyev había sufrido con el paso del tiempo algunas importantes variaciones debido al descubrimiento de nuevos elementos gracias al espectroscopio (especialmente el eka-aluminio o galio, el eka-silicio o escandio, y el eka-boro o germanio, que corroboraban las hipótesis de Mendeléyev), al descubrimiento de los gases nobles (una nueva hilera), la inclusión en un solo hueco de las tierras raras del lantano, al descubrimiento de la radiactividad (y de las series radiactivas que acababan en el plomo),y al reconocimiento de los isótopos y del número atómico (que permitió a Henry Moseley enunciar su ley y ordenar los elementos en función de su número atómico).

Hace aproximadamente un siglo la tabla periódica de Mendeléyev tenía un aspecto parecido al que se muestra en la siguiente figura:

Tabla periódica con los elementos descubiertos hasta 1918 cuando se descubrió el protactinio

 

El último elemento añadido a esta tabla había sido el elemento 91, denominado protactinio (Pa), situado justo antes del elemento 92, el uranio (U), considerado el último elemento, descubierto muchos años antes, en 1789, por Martin Heinrich Klaproth.

En 1913 Kasimir Fajans y Oswald Helmuth Göhring durante sus estudios sobre la cadena de decaimiento del 92U-238 descubrieron un nuevo elemento radiactivo con un periodo de semi-desintegración muy corto, al que denominaron “brevium” precisamente por su “breve” periodo de semi-desintegración (este elemento resultaría ser 91Pa-234m). En 1918 Otto Hahn y Lise Meitner descubrieron un elemento radiactivo, el 91Pa-231, procedente también del decaimiento del uranio que fue finalmente identificado como el elemento de número atómico 91 y recibió el nombre de protactinio (también se atribuye el descubrimiento del protactinio, en 1918, a Frederich Soddy y John A. Cranston). El aislamiento del protactinio no sería posible hasta el año 1934, cuando el químico nuclear alemán Aristid von Grosse consiguió preparar óxido de protactinio, Pa2O5, que convirtió en ioduro de protactinio, PaI5 y posterior transformación de éste en protactinio metálico (2 PaI5 → 2 Pa + 5 I2, proceso Van Arkel-De Boer). El protactinio se comportaba tal y como había descrito Mendeléyev, quien le había dado el nombre provisional de eka-tantalio. Se conocen 30 isótopos de protactinio, todos ellos radiactivos, con periodos de semidesintegración que van desde 53 nanosegundos a 3,276 × 104 años.

La tabla presentaba aún seis huecos (43?, 61?, 72?, 75?, 85? y 87?) que serían rellenados con nuevos elementos antes del descubrimiento del elemento 93, que abriría la búsqueda de nuevos elementos sintéticos (y radiactivos), más allá del uranio.

 

Los seis huecos

  • El elemento 72, denominado hafnio (Hf), tiene una controvertida historia asociada a su descubrimiento.Varios investigadores, incluído el químico francés Georges Urbain, afirmaron haber descubierto el elemento de manera independiente pero más tarde se comprobó que se habían confundido3. En 1923 Georg Karl von Hevesy y Dirk Coster, con el asesoramiento del físico danés Niels Henrik David Bohr, utilizaron la espectroscopía de rayos x para estudiar la disposición electrónica de la corteza externa de circonio y su análisis les permitió identificar el hafnio4.

El hafnio tiene 44 isótopos conocidos, cinco de ellos estables (72Hf-176 = 5,26%, 72Hf-177 = 18.60%, 72Hf-178 = 27,28%, 72Hf-179 = 13.62% y 72Hf-180 = 35.08%.). Uno de los isótopos radiactivos, el 72Hf-174 = 0,16%, tiene un período de semi-desintegración tan grande, 2,0 × 1015 años, que se contabiliza su abundancia en la corteza terrestre junto a la de los isótopos estables. A pesar de que el hafnio no es un elemento escaso o raro, no fue descubierto hasta 1923 debido a su estrecha asociación con circonio. Varios científicos sospecharon de la presencia junto al circonio de un nuevo elemento pero nadie fue capaz de separarlos e identificarlo dado que el mineral de circonio contenía cerca de 50 veces más circonio que hafnio. El nombre de hafnio proviene de Hafnia, el nombre en latín de la ciudad de Copenhague (Dinamarca), en honor a Niels Bohr que había nacido en Copenhague, y al hecho de que los trabajos se habían llevado a cabo en el “Niels Bohr Institute” de Copenhague4.

  • El elemento 75, denominado renio, fue descubierto en Berlín en 1925 por el equipo del matrimonio formado por Walter Noddack e Ida Tacke Noddack, que estaban buscando el eka-manganeso, elemento de número atómico 43 (que sería el tecnecio) y el dvi-manganeso, elemento de número atómico 75 (que sería el renio)3,5. En 1925, publicaron el documento (Zwei neue Elemente der Mangangruppe, Chemischer Teil), alegando que habían descubierto ambos, y llamaron masurio y renio, respectivamente a estos nuevos elementos. Fue confirmado el descubrimiento del renio, pero no el del masurio, y luego de descubierto el elemento 43, el nombre de masurio no fue aceptado por cuestiones nacionalistas, pues hacía referencia a Masuria, una región de la antigua Prusia oriental.

Calcularon y predijeron algunas de las propiedades químicas y físicas del dvi-manganeso, elemento de numero atomico 75, y en 1925, mediante el empleo de varias técnicas analíticas, consiguieron concentrar del orden de 100 000 veces un mineral de gadolinio en una pequeña muestra que les permitió estudiar e identificar espectroscópicamente el elemento de número atómico 75, al que bautizaron con el nombre de renio, en honor al río Rin (en alemán, Rhein)4,5.

Se conocen 45 isótopos del renio, y sólo uno de ellos es estable, el 75Re-185, que aporta el 37,40 % a la cantidad total de renio que se encuentran en la tierra. El 75Re-187, radiactivo, con un período de semi-desintegración muy largo, 4,35 × 1010 años, aporta el 62.60 % restante. Los demás isótopos son radiactivos, tienen periodos de semi-desintegración muy cortos, y se obtienen artificialmente4.

  • El honor del descubrimiento del elemento 43, el eka-manganeso de Mendeléyev fué para los italianos Carlo Perrier y Emilio Gino Segrè, que lo obtuvieron 12 años más tarde, en 1937, en la Universidad de California en Berkeley. Llamaron al nuevo elemento Tecnecio (Tc) para reflejar el hecho de que había sido sintetizado artificialmente como subproducto de una reacción nuclear3,5.

Muchos científicos afirmaron haber descubierto el elemento de número atómico 43 e incluso le asignaron nombres como davyum, illmenium, lucium y nipponium, pero sus descubrimientos resultaron ser erróneos. Por esa época Enrico Fermi había transformado un elemento químico en otro por bombardeo con deuterones, 1H-2, núcleos de hidrógeno que tienen 1 protón y 1 neutrón. Esta transmutación artificial permitía transformar un elemento en otro, era lo que habían estado buscando durante mucho tiempo los antiguos alquimistas que intentaron sin éxito transformar el plomo en oro4,5.

El tecnecio fue descubierto mediante espectroscopía de rayos X por Walter Noddack e Ida Tacke, en Berlín, en un mineral de platino enviado desde Colombia, pero sus resultados no pudieron confirmarse. En 1937, Emilio Gino Segrè y Carlo Perrier que conocían el trabajo de Fermi, pensaron que si el elemento 43 no se podía encontrar, quizás podría fabricarse utilizando la técnica de Fermi. Con ayuda de un ciclotrón bombardearon molibdeno (42Mo) con deuterones, de modo que añadieron un protón al núcleo de molibdeno, y así sintetizarón el elemento 43 al que denominaron tecnecio (Tc), que en griego significa artificial4,5.

Se conocen 47 isótopos del tecnecio, ninguno de ellos estable, todos radiactivos, y la mayoría de ellos producidos artificialmente en ciclotrones (aceleradores de partículas) y reactores nucleares. Los isótopos del tecnecio cubren un amplio rango de masa, desde el 43Tc-85 al 43Tc-118, la mayoría con un periodo de semi-desintegración muy corto. Para establecer el peso atómico del tecnecio se utilizaron los dos isótopos con periodo de semidesintegración más largo 43Tc-98 (4,2 × 106 años) y 43Tc-99 (2,111 × 105 años)4.

  • El elemento 87 fue descubierto en 1939, en París (Francia), por Marguerite Perey, asistente de Marie Curie, que le dió el nombre de Francio (Fr), en honor a su país3. Perey descubrió la secuencia de desintegración radiactiva del radio en actinio y luego en otros isótopos desconocidos, uno de los cuales identificó como 87Francio-2234:

Los 33 isótopos del francio (desde el 87Fr-201 al 87Fr-232) son radiactivos, habiéndose utilizado el 87Fr-223, que tiene el periodo de semi-desintegración más largo (del orden de 20 minutos) para la determinación de su peso atómico. El 87Fr-223 es el único isótopo del francio que se puede encontrar de manera natural, como producto de la desintegración de elementos inestables4.

  • El elemento 85, el astato, fue descubierto en 1940 por Emilio Gino Segrè3. Los 41 isótopos conocidos del astato son radiactivos, con vidas medias que van desde 125 nanosegundos hasta 8,1 horas. El isótopo 85As-210, el isótopo más duradero con un periodo de semidesintegración de 8,1 horas, se utilizó para determinar el peso atómico del astato. El 85As-210 decae por decaimiento alfa en 83Bi-206 o por captura de un electrón en 84Po-210. A principios de la segunda guerra mundial, en 1940, Dale Raymond Corson, K. R. Mackenzie y Emilio Gino Segrè crearon un elemento nuevo con 85 protones con ayuda de un ciclotrón. Aunque la guerra interrumpió su trabajo, reanudado éste, en 1945, consiguieron el astato al bombardear con partículas alfa (núcleos de helio) de alta energía un blanco de 83Bi-209. Este el método que todavía hoy se utiliza para la producción de pequeñas cantidades de 85As-211 (más dos neutrones)4.
  • Finalmente el elemento 61, que recibió el nombre de Prometio (Pm), fue descubierto por tres químicos del “Oak Ridge National Laboratory”, Jacob A. Marinsky, Lawrence E. Glendenin, y Charles D. Coryell, entre los productos de la fisión nuclear.3 Su descubrimiento no se produjo de una forma deliberada, sino como un resultado más del descubrimiento de la fisión nuclear.

El prometio tiene 64 isótopos con periodos de semi-desintegración que van desde dos milisegundos a más de 17 años, y todos ellos se producen artificialmente a partir de los residuos remanentes en los reactores nucleares. Aunque el prometio fue descubierto en 1944, sus autores no reclamaron el descubrimiento hasta 1946. Parece ser que fue la esposa de Coryell, Grace Mary Coryell, quien sugirió el nombre de Prometio por ser Prometeo, según la mitología griega, quien robó el fuego de los dioses para dárselo a los hombres.4

 

El elemento 93, descendiente del uranio

Tras los descubrimientos del neutrón en 1932 por James Chadwick y de la radiactividad artificial a principios de 1934 por Irene and Frederic Joliot-Curie, Fermi y su equipo inicaron en 1934 el bombardeo sistemático de todos los elementos químicos a su alcance con el objetivo de producir nuevas especies radiactivas y nuevas reacciones nucleares6,8,9.

En aquel entonces los neutrones se producían mediante la reacción nuclear entre una partícula α, 2He-4, (procedente de 88Ra o de otro emisor α) y berilio. El berilio, elemento monoisotópico, 4Be-9, se mezclaba bien con el emisor α, y en la reacción se emitían neutrones de diferentes energías (diferentes velocidades). La captura del neutrón es más probable con neutrones de baja velocidad, de modo que suele utilizarse parafina como moderador, para conseguir neutrones de baja velocidad (proceso conocido como termalización)7:

Cuando Fermi y su grupo (E.Fermi, E.Amaldi, O.D’Agostino, F.Rasetti y E. G. Segrè) llegaron a uranio, encontraron varias actividades nuevas, todas ellas con emisiones beta (observaron al menos cinco emisores de radiación b, que diferían en sus periodos de semi-desintegración de 10 segundos, 40 segundos, 13 minutos, 90 minutos y alrededor de un día. Determinaron que la radiación no era debida al uranio, ni a elemento alguno por debajo del uranio, así que Fermi propuso que el núcleo de uranio había capturado un neutrón y luego había iniciado una secuencia de decaimiento de tipo beta, con la producción de nuevos elementos, el elemento 93 e incluso el elemento 94, los primeros elementos artificiales. Este estraño descubrimiento atrajo la atención de todos, incluso de la prensa popular6,7,8,9.

El mayor problema, para Fermi y sus posibles nuevos elementos artificiales eran los supuestos físicos y químicos, que luego se desmostrarían falsos, que contradecían los resultados observados5,6.

Los físicos siempre habían observado que los núcleos, incluso los núcleos radioactivos eran bastante estables, de modo que cuando se producía un decaimiento radiactivo u otra reacción nuclear, los cambios siempre eran pequeños. Los resultados obtenidos por Fermi con los neutrones eran consistentes con ello, pues había encontrado que con los elementos más ligeros,  el neutrón podía golpear el núcleo y sacar de él un protón, “reacción (n, p)”, o incluso, una partícula α,”reacción (n,α)”, y que con los elementos más pesados, la reacción el neutrón era siempre una “captura radiativa”, “reacción (n,γ)”. Si un nuevo núcleo artificial era radiactivo, siempre se producía un decaimiento con emisión de una partícula beta para formar el siguiente elemento con número atómico superior5,6.

 
 

No es de extrañar pues, que Fermi, cuando encontró en el uranio varias nuevas actividades todas ellas con emisiones beta, pensase que se debían a elementos con número atómico superior al del uranio6. Sobre la base de la tabla periódica de aquel entonces pensó que el primer elemento transuránico, con número atómico 93, debía ser químicamente como el renio (y lo denominó eka-renio, Eka-Re), el elemento 94 debería ser como el osmio (y lo denominó eka-osmio, Eka-Os) y así sucesivamente10.

Sin embargo, los químicos habían supuesto incorrectamente que los elementos transuránicos (situados más allá del uranio) tendrían que tener la misma química que los elementos de transición. Habían considerado al uranio y a los elementos que le precedían como elementos de transición, puesto que, químicamente, se asemejaban poco entre sí, y se asemejaban más a los elementos de transición situados por encima de ellos, y estaba totalmente asumido que los elementos transuránicos serían también elementos de transición, que ocuparían sus lugares por debajo de la tercera fila de los elementos de transición (es decir, en el 7º período, debajo del Re, Os, Ir, etc.)5,6.

Puesto que las fuentes de neutrones (generalmente radón mezclado con berilio en polvo) eran débiles, las nuevas actividades de tipo beta no eran mucho más fuertes que la radiactividad natural del uranio y de sus productos de decaimiento. Fermi separó las nuevas actividades del uranio mediante coprecipitación de éstas con compuestos de los metales de transición, lo que apoyaba la idea de que se trataban de elementos transuránicos, pero no pudo obtener una evidencia inequívoca6,10.

En 1935, el equipo de Fermi abandonó estas investigaciones, que fueron retomadas, en Berlín, por el equipo de Otto Hahn, Lise Meitner, y Fritz Strassmann, que mejoró el método de separación de Fermi y comenzó un laborioso proceso para conocer a fondo las actividades en el precipitado. En 1937 habían encontrado una cantidad impresionante de nuevas especies radiactivas que se asignaron a tres procesos distintos, dos procesos que mostraban una amplia secuencia de decaimientos de tipo β (que luego se demostraría eran procesos de fisión), y un tercer proceso, muy diferente, atribuido a la captura resonante de un neutrón lento6:

1  
2
3  

En 1940, en el laboratorio de física de la Universidad de California, en Berkeley, Edwin Mattison McMillan y un estudiante de postgrado, Philip Hauge Abelson bombardearon óxido de uranio con neutrones de alta velocidad mediante el empleo de un ciclotrón. Su experimento mostró la presencia que un nuevo elemento que exhibía propiedades químicas y físicas similares al uranio, con estados de oxidación de +4 y +6. Bombarderon 92U-238 con neutrones de alta energía, que produjeron 92U-239 que, a su vez, se descompuso en 93Np-239 con emisión de radiación β4,7,11:

En 1940 pudieron confirmar su descubrimiento y publicar los datos. Puesto que el elemento de número atómico 93 iba a continuación del elemento de número atómico 92, el uranio, McMillan decidió darle el nombre de Neptunio (Np), por ser el planeta Neptuno el siguiente al planeta Urano. El trabajo de McMillan y Abelson se interrumpió durante la segunda guerra mundial y fue luego retomado por Arthur C. Wahl y Joseph W. Kennedy, que determinaron las reacciones físicas que dan lugar a la formación del neptunio4,11.

El neptunio tiene 23 isótopos todos ellos radiactivos con periodos de semi-desintegración que van desde los microsegundos a los 2,144 × 106 años del isótopo 93Np-2374.

Hoy en día, el 93Np-237 se produce en los reactores nucleares mediante las reacciones12:

En un 70%: En un 30%:

Sorprendentemente, las propiedades químicas del neptunio eran similares a las del uranio y no a las del renio, como sugería la tabla periódica de la época. Después de descubrir el neptunio, McMillan empezó a buscar el supuesto eka-osmio producido por el decaimiento del 93Np-239 que obviamente correspondería al nuevo elemento 94. Sin embargo no pudo encontrarlo. Hoy sabemos la causa, el largo periodo de semi-desintegración del 94Pu-239, de 24 000 años, provocaba una radiación tan baja en su muestra, que la detección resultaba imposible7,11. El honor del descubrimiento del plutonio quedaría para G. T. Seaborg, E. M. McMillan, J. W. Kennedy, y A. C. Wahl, que lo conseguirían al bombardear uranio con deuterones en un ciclotrón, y obtener 94Pu-23811,12:

El 94Pu-238 tiene un periodo de semidesintegración de tan solo 88 años12.

 

 

Referencias

  1. “La tabla periódica se asoma a una nueva fila por primera vez en la historia”, https://elpais.com/elpais/2018/01/04/ciencia/1515101255_058583.html
  2. “IUPAC Announces the Names of the Elements 113, 115, 117, and 118”, https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/
  3. “The Periodic Table-Its Story and Its Significance”, Eric R. Scerri, Oxford University Press, 2007.
  4. “The history and use of our earth”s chemical elements-a reference guide”, Robert E. Krebs, Greenwood Press, 2006.
  5. “Chemical Sciences in the 20th Century- Bridging Boundaries”, C. Reinhardt, Wiley-VCH, 2001.
  6. “The Search for Transuranium Elements and the Discovery of Nuclear Fission”, Ruth Lewin Sime, Phys. perspect. (2000) 2: 48-62.
  7. “On Beyond Uranium-Journey to the end of the Periodic Table”, Sigurd Hofmann, Taylor & Francis, 2002
  8. “Artificial Radioactivity Produced by Neutron Bombardment”, E. Fermi, E. Amaldi, O. D’Agostino, F. Rasetti, E. G. Segrè, Proc. R. Soc. Lond. A 1934 146 483-50.
  9. “Artificial radioactivity produced by neutron bombardment—II”, E. Amaldi, O. D’Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, E. G. Segrè, Proc. R. Soc. Lond. A 1935 149 522-558.
  10. “Nuclear Fission and Transuranium Elements-50 Years Ago”, Glenn T. Seaborg, Journal of Chemical Education 1989 66 (5), 379.
  11. “The chemistry of the actinide and transactinide elements”, L.R. Morss, N.M. Edelstein & J.Fuger, fourth edition, volumes 1–6, Springer, 2010.
  12. “Radiochemistry and Nuclear Chemistry”, Gregory R. Choppin, Jan-Olov Liljenzin & Jan Rydberg, Elsevier Inc., 2013.

 

Cloropicrina, para llorar pero no de risa

La cloropicrina fue empleada por primera vez como agente químico de guerra por los rusos en agosto de 1916. La cloropicrina provoca importantes efectos sofocantes y lacrimógenos, y fue considerada durante la I Guerra Mundial como un agente lacrimógeno tóxico. Los alemanes, que marcaban los proyectiles de cloropicrina (a la que denominaban Klop) con una cruz verde (agentes sofocantes), empleaban también mezclas de cloro/cloropicrina (75/25) o de difosgeno/cloropicrina (65/35)1.

La cloropicrina poseia propiedades que la hacían muy útil como gas de guerra ofensivo, pues irritaba notablemente las vías respiratorias actuando como un gas sofocante, de manera similar al cloro y al fosgeno pero con un grado de toxicidad intermedio entre estos. También poseía un intenso poder lacrimógeno, aunque no tanto como los verdaderos agentes lacrimógenos de su época, como por el ejemplo en iodoacetato de etilo o SK. Además la cloropicrina tenía la peculiaridad de penetrar las mascaras alemanas en uso a principios de 19172.

Los ingleses y americanos utilizaban para la cloropicrina el acrónimo PS, y la utilizaban como tal o en mezclas. La mezcla “PG” era fosgeno/cloropicrina (entre 25/75 y 50/50) y la mezcla “NC” era cloropicrina/tetracloruro de estaño (80/20). Los franceses la denominaban “Acquinite” y utilizaban la mezcla cloropicrina/tetracloruro de estaño (75/25)1.

El nombre codificado de PS proviene de “Port Sunlight”. Port Sunlight era una ciudad industrial inglesa, próxima a Liverpool, en el estuario del río Mersey, donde se encontraba la fábrica y los laboratorios de la empresa de jabón Lever Brothers (actualmente, Unilever) que además de fabricar los detergentes “Sunlight”, se realizaron las investigaciones sobre la cloropicrina2.

La cloropicina tiene utilidad como como antimicrobiano de amplio espectro, fungicida, herbicida, insecticida y nematicida3, y también como indicador de peligro en algunas formulaciones de zyklon4,5,6,7. El zyklon C desarrollado por los alemanes era una variante del zyklon B (es decir, cianuro de hidrógeno adsorbido en un soporte) al cual se le añadía un 10 % de cloropicrina, que le confería un extraordinario poder irritante que advertía del peligro existente8.

 

 

La cloropicrina9,10,11,12,13

La cloropicrina es el tricloronitrometano, de fórmula empírica CCl3NO2 y peso molecular 164,38, que presenta una estructura tetraédrica:

La cloropicrina es conocida con diversos nombres o sinónimos: Acquinite, Chlor-O-Pic, Larvacide 100, Mycrolysin, Nitrochloroform, Pic-Chlor, Picfume, Picride, Profume A, PS (acrónimo militar), Trichlor, etc.

Su número CAS es 76-06-2, su número EC es 200-930-9 y su número ONU es UN1580. La cloropicrina está recogida en el anexo sobre sustancias químicas de la Convención para la Prohibición de las Armas Químicas como agente químico de Lista 3 (3A.4)14, pero no está recogida en la lista de control de las exportaciones de precursores de armas químicas (listas comunes de control del Grupo Australia).

Es un líquido incoloro de aspecto aceitoso y olor acre que provoca un intenso lacrimeo. Su umbral de olor es de tan solo 1,1 ppm. Su peso molecular es 164,38, tiene un punto de fusión de -69,2 °C y un punto de ebullición de 112,4 °C. Su densidad como líquido es 1,657 g/cm3 a 25 °C, y sus vapores son más densos que el aire, con una densidad relativa de 5,7. Ligeramente soluble en agua (0,162 g de cloropicrina en 100 mL de agua) su solubilidad disminuye al aumentar la temperatura. Es miscible en todas proporciones con alcohol absoluto, benceno, alcohol amílico y disulfuro de carbono. Además forma azeótropos con diversos alcoholes y con metilciclohexano: 

Mezcla azeotrópica (en %) Puntos de ebulición Punto de ebullición del azeótropo
Cloropricrina/etanol 35/65 112,4 °C/78,3 °C 77,4 °C
Cloropricrina/isopropanol 33,5/66,5 112,4 °C/82,45 °C 82,0 °C
Cloropricrina/propanol 58,5/41,5 112,4 °C/97,2 °C 94,0 °C
Cloropricrina/isobutanol 67,5/32,5 112,4 °C/107,85 °C 102,05 °C
Cloropricrina/metilciclohexano 29/71 112,4 °C/101,1 °C 100,75 °C

 

Para la cloropicrina el coeficiente de reparto Octanol /Agua expresado como Log Kow es de 52,09, indicando con ello que es posible su adsorción en tejidos grasos, suelos y sedimentos, y que por tanto es probable su bioconcentración o bioacumulación.

El rombo de identificación de peligro (basado en el sistema de clasificación NFPA-704 M) muestra un valor de 4 en salud, un valor de 0 en inflamabilidad y un valor de 3 en reactividad:

En su punto de ebullición la cloropicrina se descompone lentamente en cloruro de carbonilo, más conocido como fosgeno (CAS 75-44-5), y cloruro de nitrosilo (CAS 2696-92-6)

También se descompone bajo la acción de la luz ultravioleta, produciéndose primeramente cloruro de nitrosilo y fosgeno, pero luego éste último se descompone en monóxido de carbono y cloro:

 

Efectos de la cloropicrina

Exposición a la cloropicrina produce lagrimeo, irritación de la piel y edema pulmonar, pero el modo de acción no está completamente explicado. La cloropicrina parece que reacciona con los grupos sulfhidrilo de la hemoglobina poniendo en peligro el transporte de oxígeno15.

J.F. Mackworth demostró, en 1948, que los agentes lacrimógenos como el cloruro de fenacilo (CN), la bromoacetofenona (BA), el iodoacetato de etilo, la cloropicrina (PS) o el cianuro de bromobencilo inhibían fuertemente los grupos tiol de la enzima succinato deshidrogenasa (SDH) y del complejo de piruvato deshidrogenasa (PDH), que juegan un importante papel en las rutas metabólicas.16

Muchos efectos de la cloropicrina son consistentes con los efectos que producen los lacrimógenos (agentes de represión de disturbios) pero además produce importantes efectos en las vías aéreas superiores, motivo por el cual fue considerada durante la I Guerra Mundial como lacrimógeno tóxico, y fue posteriormente incluida como agente químico de Lista 3 de la CAQ. La cloropicrina NO es un agente de represión de disturbios por su carácter neumotóxico (sofocante), no está considerado como tal por la OPAQ y debe declararse como sustancia química de Lista 3.

La inhalación provoca dolor abdominal, tos, diarrea, vértigo, dolor de cabeza, náuseas, dolor de garganta, vómitos, debilidad, síntomas no inmediatos (véanse notas). No existen antídotos así que retire al afectado de la zona de exposición y póngale en una zona bien ventilada, en reposo y en posición de semiincorporada. Solicite asistencia médica.

En contacto con la piel produce enrojecimiento y dolor. Sobre los ojos produce enrojecimiento, dolor y visión borrosa. Retire las ropas contaminadas, aclare y lave la piel con agua abundante o mediante ducha, y enjuague los ojos con agua abundante durante varios minutos (quite las lentillas si es posible). Solicite asistencia médica. Si tiene que prestar ayuda procure utilizar protección respiratoria, protección ocular y guantes.

La ingestion es inusual, basta simplemente con que procure no comer, ni beber, ni fumar mientras trabaja en zonas donde exista exposición a la cloropicrina. En caso de ingestión enjuague la boca, beba abundante agua y solicite asistencia médica.

Los valores provisionales para los AEGLs (AEGL, Acute Emergency Guideline Level) son:

Valores provisionales de los AEGL para la cloropicrina (en ppm)
  10 min 30 min 60 min 4 hr 8 hr
AEGL 1 0,050 0,050 0,050 0,050  0,050
AEGL 2 0,15 0,15 0,15 0,15  0,15
AEGL 3 2,0 2,0 1,4 0,79  0,58

 

El valor establecido por el NIOSH para el IDLH (National Institute for Occupational Safety and Health, Immediately Dangerous to Life or Health) es de 2 ppm y el valor establecido por la OSHA para el PEL (Occupational Safety and Health Administration, Permissible Exposure Limits) es de 0,1 ppm, como concentración promedio ponderada, TWA (Time-Weighted Average).

Los valores establecidos por la AIHA para los ERPG (American Industrial Hygiene Association, Emergency Response Planning Guidelines) son:

ERPG-1: 0,1 ppm ERPG-2: 0,3 ppm ERPG-3: 1,5 ppm

 

El factor de conversión (entre ppm y mg/m3) a una temperatura de 25 °C y una atmósfera de presión es de 1 ppm = 6,72 mg/m3. Recuerde que:

C(mg/m3) = C(ppm)×[masa molar (g)/volumen molar (L)]= C(ppm)×[ 164,38/24,465]= C(ppm)×[6,72]

Puesto que P×V=n×R×T, a una temperatura de 25 °C y una atmósfera de presión tenemos que V=0,082054×(273,16+25)=24,465 litros

En el agua de bebida la concentración máxima permisible es de 50 µg/L en función del sabor, y de 37 μg/L en función del olor17.

En caso de un accidente con cloropicrina, la “Guía de Respuesta en caso de Emergencia”, GRE2016, aconseja el empleo de la Guía nº 154, “Sustancias – Tóxicas y/o Corrosivas (no combustibles)”. Las distancias de aislamiento y de protección establecidas para los derrames de cloropicrina son las siguientes:

 

 

Obtención de la cloropicrina13,18

La cloropicrina fue descubierta en 1848 por el químico escocés, John Stenhouse, que la obtuvo al clorar el ácido pícrico, y de ahí que Stenhouse le asignase el nombre de “cloro-picrina”, aunque hay que tener muy claro que el ácido pícrico y la cloropicrina son estructural y químicamente muy diferentes:

J. P. Orton y W. J. Pope obtuvieron, el 9 de mayo de 1918, la patente británica nº 142878 para la preparación de cloropicrina por la acción del cloro sobre el ácido pícrico o sobre otros nitroderivados apropiados de fenoles o naftoles, en presencia de agua y una sustancia alcalina, como hidróxidos o carbonatos de sodio o de potasio para disolver los nitroderivados y neutralizar el ácido producido en la reacción.

J. King obtuvo, el 13 de enero de1920, la pantente americana nº 1327714 sobre un proceso de producción de cloropicrina que consiste en formar una mezcla de hipoclorito cálcico (bleaching powder) con agua, que luego se añade sobre una solución de picrato cálcico.

J. P. Orton y P. V. McKie obtuvieron cloropicrina pasando cloro sobre una suspensión refrigerada de picrato sódico en una solución de carbonato sódico. El ácido pícrico se disuelve en una solución caliente de cuatro partes de carbonato sódico en cincuenta partes de agua. Esta pasta fina se enfria rápidamente por debajo de 5° C (para producir pequeños cristales), y luego se añade cloro, de manera lenta o intermitente (para evitar así la pérdida de cloro y la formación de cloratos). Además de cloropicrina se forma algo de ácido nítrico, también algo de cloruro e hipoclorito, y algo de clorato procedente de la desproporción o dismutación del hipoclorito:

 

Sin embargo la cloropicrina suele fabricarse por cloración del nitrometano con hipoclorito de sodio:

 

 

Aplicaciones de la cloropicrina

Como ya se ha indicado, la cloropicrina se emplea como antimicrobiano de amplio espectro, fungicida, herbicida, insecticida y nematicida3.

La cloropicrina es un fumigante de amplio espectro que se difunde rápidamente través del suelo y es capaz de matar hongos, nemátodos, insectos y otras plagas que atacan las raíces.19

La cloropicrina no tiene propiedades herbicidas tan amplias como las del bromuro de metilo y del dietilditiocarbamato sódico (metam-sódico), ni propiedades nematicidas tan amplias como las del 1,3-dicloropropeno, por lo que se utiliza generalmente en combinación con estos. La cloropicrina tiene un umbral de olor muy bajo y causa irritación sensorial en concentraciones muy bajas, por lo que se ha agregado como un agente de advertencia frente a otros fumigantes como el bromuro de metilo y fluoruro de sulfurilo que son inodoros4,5,6,7,19.

La cloropicrina se utiliza también en síntesis orgánica. Por ejemplo, J.A. Gardner y M. Williams obtuvieron el 13 de marzo de 1922, la patente inglesa nº 198462 para el empleo de cloropicrina como agente nitro-oxidante, en lugar de nitrobenceno, en la síntesis de la quinolina y sus derivados (reacción de Skraup o reacción de Dobner-Von Miller), que sirven, a su vez, para la preparación del azul de alizarina y de otros colorantes5,13.

 
Quinolina CAS 91-22-5 Azul de alizarina CAS 568-02-5

L. Trumbull y W. L. Evans obtuvieron el 1 de marzo de 1922, la patente americana nº 1402195 para un proceso de fabricación del violeta cristal en el cual se utiliza la cloropicrina y la dimetilanilina5,13. 

N,N-dimetilanilina CAS 121-69-7 Violeta cristal CAS 8004-87-3

 

 

Referencias

  1. “Armas quimicas, la ciencia en manos del mal”, Rene Pita
  2. “GAS! -The Story of the Special Brigade”, Major-General C. H. Foulkes, Andrews UK Limited, 2012
  3. “RED Fact Sheet: Chloropicrin”. US Environmental Protection Agency, http://www.epa.gov/oppsrrd1/REDs/factsheets/chloropicrin-fs.pdf
  4. “Zyklon, ni héroe, ni planeta”, cbrn.es, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj5y6HhvbzYAhWGRhQKHVHTAk8QFggnMAA&url=http%3A%2F%2Fcbrn.es%2F%3Fp%3D802&usg=AOvVaw1z2p9vuuOCbsZfPGNarIMO
  5. “Bibliography of chloropicrin, 1848-1932”, R.C. Roark, U.S. Deparment of Agriculture, Miscellaneous publication nº176, February 1934
  6. “Admixture of irritants in hydrocyanic gas disinfection with especial reference to the use of chloropicrin as a danger indicator in zyklon C”, T. Pohl & B. Tesch, Desinfektion 11: 88-90. 1926.
  7. “Experiments with certain fumigants used for the destruction of cockroaches”, J. R. Ridlon, U.S. Public Health Reports, Vol. 46, No. 28, July 10, 1931. http://codoh.com/library/document/875/
  8. “Blausäuredurchgasungen zur Schädlingsbekämpfung”, Von Otto Hecht, Die Naturwissenschaften, Volume 16, Issue 2, pp.17-23. 1928
  9. “6.3. Chloropicrin – PS”, en “Compendium of Chemical Warfare Agents”, Steven L. Hoenig, Springer, 2007
  10. “Chloropicrin (Agent PS)”, Sittigs Handbook of Toxic and Hazardous Chemicals and Carcinogens, Richard P. Pohanish, 6ªEd, 2012
  11. “Cloropicrina, ficha de datos de seguridad”, Sigma-Aldrich, https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=ES&language=es&productNumber=34321&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F34321%3Flang%3Des
  12. “Tricloronitrometano, Fichas Internacionales de Seguridad Química”, INSHT, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjJ5oj_krzYAhWSKewKHcKUABsQFgg4MAI&url=http%3A%2F%2Fwww.insht.es%2FInshtWeb%2FContenidos%2FDocumentacion%2FFichasTecnicas%2FFISQ%2FFicheros%2F701a800%2Fnspn0750.pdf&usg=AOvVaw1bIqUoALPTJvuhnmd-_5u7
  13. “Chloropicrin”, Kirby E. Jackson, Chem. Rev., 1934, 14 (2), pp 251–286
  14. “Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción”, OPAQ, https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf
  15. “Action of chloropicrin on hemoglobin”, Claude Liebecq, Bull. Soc. Chim. Biol. 28:517, 1946, citado en “Chloropicrin Acute Exposure Guideline Levels (AEGLs)” , EPA, http://www.epadatadump.com/pdf-files-2014/chloropicrin_interim_0.pdf
  16. “The inhibition of thiol enzymes by lachrymators”, J.F. Mackworth, Biochem. J., 42, 82-90, 1948, citado en “Handbook of Toxicology of Chemical Warfare Agents”, Ramesh C. Gupta, 2ªEd
  17. US Environmental Protection Agency, National primary and secondary drinking water regulations, Fed. Regist. 54(97) (1989) 22062-22160
  18. “Nitro Compounds, Aliphatic” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005)​
  19. “Evaluation of chloropicrin as a toxic air contaminant” http://www.cdpr.ca.gov/docs/emon/pubs/tac/part_b_0210.pdf

 


 

Sulfuro de hidrógeno, para vivir y morir

El maloliente sulfuro de hidrógeno está de moda, esta vez por su posible uso terrorista mediante un dispositivo químico improvisado (IQD)1,2,3. La última vez que objeto de interés fue en el año 2008 cuando en Japón hubo una oleada de suicidios empleando sulfuro de hidrógeno de fabricación casera4. A pesar de su toxicidad y de sus posible usos con fines terroristas o suicidas, el sulfuro de hidrógeno y sus derivados forman un importante papel para la vida.

 

El sulfuro de hidrógeno5,6,7,8,9

El sulfuro de hidrógeno, también conocido como ácido sulfhídrico, con número CAS 7783-06-4, es una molécula pequeña, de fórmula empírica, H2S, y estructura angular:

Tiene un peso molecular de 34,08, con punto de fusión -85 °C y punto de ebullición -60 °C. Es un gas, de densidad relativa 1,19, es decir, es algo más denso que el aire, incoloro, y con un característico olor a huevos podridos.

Es un gas extremadamente inflamable y sus mezclas con aire son explosivas (límite inferior de inflamabilidad 4,3 % v/v, y límite superior de inflamabilidad del 46 % v/v).

El sulfuro de hidrógeno es bastante soluble en agua (a 20 °C se disuelve 1 g en 242 ml de agua) y la disolución acuosa tiene propiedades ligeramente ácidas debido a formación de ácido sulfhídrico, un ácido débil, dibásico con constantes de disociación pKa1= 7,0 y pKa2= 13,9.

El sulfuro de hidrógeno se comporta como reductor, tanto en forma gaseosa, como en disolución acuosa, oxidándose lentamente en presencia del oxígeno del aire. Los potenciales redox estándar del sulfuro de hidrógeno a 25 °C son8:

H2S ⇔ S + 2 H+ + 2 e     E0 = 0,142 – 0,0591 pH – 0,0295 log(H2S)

HS ⇔ S + H+ + 2 e         E0 = -0,065 – 0,0295 pH – 0,0295 log(HS)

S2- ⇔ S + 2 e                    E0 = -0,476 – 0,0295 log(S2-)

Sulfuro de hidrógeno se libera como gas en los volcanes, manantiales de azufre, pantanos, masas de agua estancada, petróleo crudo, gas natural y pozos de carbón o estiércol. También es liberado por las bacterias, hongos y actinomicetos durante la descomposición de las proteínas que contienen azufre y por reducción directa del sulfato. En la desulfuración de las fracciones de destilado de gasoil y coque en presencia de hidrógeno, también se produce sulfuro de hidrógeno

Por otro lado se puede producir el sulfuro de hidrógeno en la boca y en el tracto intestinal por el metabolismo bacteriano de los aminoácidos que contienen grupos SH y el sulfuro de hidrógeno endógeno juega un importante papel en algunos procesos neurológicos y fisiológicos.

Sulfuro de hidrógeno se utiliza en la producción de ácido sulfúrico y azufre elemental, en la preparación de sulfuros inorgánicos que se utilizan en la fabricación de numerosos productos, en la purificación de ciertos elementos y compuestos químicos, como desinfectante agrícola, y como fuente de hidrógeno. Se utiliza también en metalurgia, en la producción de agua pesada para la industria nuclear y como reactivo analítico.

 

Sulfuro de hidrógeno para vivir10,11,12

A pesar de ser un gas tóxico y maloliente, el sulfuro de hidrógeno desempeña en nuestro organismo funciones esenciales sobre diversos procesos fisiológicos, entre ellos, la reducción de la tensión arterial y la regulación del metabolismo10.

En 1987, se descubrió que el óxido nítrico (NO) actuaba como una molécula endógena capaz de actuar como gas neurotransmisor. Más tarde en la década de los 90 se descubrió un segundo gas neurotransmisor, el monóxido de carbono (CO), y tan sólo hace unos años se descubrió un tercer gas neurotransmisor, el sulfuro de hidrógeno (H2S)11.

Nuestro organismo produce sulfuro de hidrógeno (H2S), aunque en muy pequeñas cantidades, en los vasos sanguíneos a través de la L-cisteina y la enzima cistationina-gamma-liasa (CSE), y en el sistema nervioso por acción de la enzima cistationina-beta-sintetasa (CBS) 10.

También se ha descubierto que se produce sulfuro de hidrógeno en el cerebro y en el endotelio vascular, por acción sobre la cisteína de la 3-mercaptopiruvato sulfotransferasa (3MST) junto con la cisteína aminotransferasa (CAT)12.

El sulfuro de hidrógeno contribuye a nuestra salud actuando sobre las células, tejidos, órganos y sistemas fisiológicos, con diversos efectos10:

  • En el cerebro estimula la respuesta de los circuitos neuronales lo que podría facilitar el aprendizaje y potenciar la memoria, y promueve la producción de un antioxidante, el glutatión, que parece proteger a las neuronas de las agresiones.
  • En el sistema circulatorio dilata los vasos sanguíneos y reduce la tensión arterial, protegiendo el corazón, y podría servir para prevenir o tratar la hipertensión, el infarto de miocardio y el accidente cerebrovascular.
  • En los pulmones parece que ayuda a regular la contractilidad de células de la musculatura lisa, aumentando la luz de las vías aéreas
  • En los intestinos relaja células de la musculatura lisa del intestino delgado y regula así el movimiento de materiales por su interior
  • En el pene relaja el tejido peniano; facilita el aflujo de sangre y la erección

 

Efecto dilatador producido por el H2S en los vasos sanguíneos, tomado de “La función dual del sulfuro de hidrogeno”, Rui Wang, Investigación y Ciencia, Mayo 2010

 

Sin embargo, no todos sus efectos son beneficiosos, por ejemplo, el exceso de H2S puede mermar la síntesis de insulina y, según ciertos datos, agravar las inflamaciones.

 

Sulfuro de hidrógeno para morir5,13,14,15,16,17,18

En muchos campos industriales, como por ejemplo, en la agricultura, en el tratamiento de las aguas residuales y en la industria del petróleo los trabajadores pueden estar expuestos al sulfuro de hidrógeno, del orden de un tercio de los trabajadores del petróleo experimentan algún síntoma de exposición al sulfuro de hidrógeno por vía inhalatoria y un 8% de ellos llega a sufrir pérdida del conocimiento13.

Además el sulfuro de hidrógeno puede generarse con cierta facilidad a partir de algunos productos químicos simples, por lo que ha utilizado bastante en los suicidios13,14,15.

El gobierno estadounidense considera que el H2S es una amenaza química de alta prioridad tanto por su uso industrial como por su posible uso terrorista; su olor característico a huevos podridos es un arma de doble filo pues en concentraciones moderadas produce la parálisis de los nervios olfativos, engañando a la gente sobre su presencia13.

Después de su absorción, la detoxificación en nuestro organismo del H2S se realiza por oxidación enzimática y no enzimática de los sulfuros y del azufre a tiosulfato y polisulfuros. Esta reacción es catalizada por la oxihemoglobina. Según estudios recientes, el sulfuro de hidrógeno se metaboliza por oxidación a sulfato, por metilación con formación de metanotiol y sulfuro de dimetilo, y por reacción con las metaloproteínas (responsable de los efectos tóxicos más graves16,17.

Al igual que el cianuro, el H2S es un veneno celular que inhibe la citocromo C oxidasa interrumpiendo el transporte de electrones. De hecho se dice que es un inhibidor de la citocromo C oxidasa más potente que el cianuro. El resultado de la inhibición de la fosforilación oxidativa produce hipoxia celular y metabolismo anaerobio. El metabolismo anaerobio provoca una acidosis láctica. El H2S es un fuerte irritante respiratorio y reacciona con la humedad en la superficie de las membranas mucosas, formando sulfuro sódico16,17.

El olor característico, a huevos podridos, del sulfuro de hidrógeno permite su detección en concentraciones muy bajas, del orden de 0,008-0,1 ppm. Incluso a concentraciones del orden de 0,1 ppm se empieza a producir una cierta anosmia (pérdida del sentido del olfato) y a concentraciones superiores a 100 ppm no se puede percibir su olor, pues afecta al nervio olfativo. El valor del umbral de olor varía mucho según las personas y la pérdida del sentido del olfato a concentraciones elevadas puede crear en los afectados una falsa sensación de seguridad, cuando en realidad están en grave peligro.

La tabla que se muestra a continuación resume algunos de los efectos producidos por diferentes concentraciones de sulfuro de hidrógeno14,15,18:

Concentración (ppm) Síntomas/Efectos
0,01-1,5 Umbral de olor (olor característico a huevos podridos).
2-5 La exposición prolongada puede provocar náuseas, lagrimeo de los ojos, dolores de cabeza o pérdida del sueño. En los pacientes con asma pueden aparecer problemas en las vías respiratorias (constricción bronquial).
20 Posible fatiga, pérdida de apetito, dolor de cabeza, irritabilidad, mala memoria o mareos.
50-100 Leve conjuntivitis e irritación de las vías respiratorias al cabo de 1 hora. Puede aparecer pérdida de apetito y malestar digestivo.
100 Tos, irritación de los ojos, pérdida del olfato (anosmia) al cabo de 2-15 minutos (fatiga olfativa). Alteración respiratoria, somnolencia al cabo de 15-30 minutos. Irritación de garganta al cabo de 1 hora. Agravamiento gradual de los síntomas al cabo de varias horas. La muerte puede ocurrir después de 48 horas.
100-150 Pérdida del olfato (fatiga olfativa o parálisis).
200-300 Después de 1 hora marcada conjuntivitis e irritación de las vías respiratorias. Puede aparecer edema pulmonar tras una exposición prolongada.
500-700 Tambaleo, colapso al cabo de 5 minutos. Daños graves en los ojos al cabo de 30 minutos. Muerte después de 30-60 minutos.
700-1000 Pérdida rápida del conocimiento, desmayo o colapso inmediato con tan solo 1 ó 2 inhalaciones, parada respiratoria, muerte al cabo de unos minutos.
1000-2000 Muerte casi instantánea.

 

La exposición al sulfuro de hidrógeno por vía inhalatoria produce generalmente dolor de cabeza, náuseas, vértigo, mareos, debilidad, desorientación, hipotensión e irritación respiratoria. La lesión pulmonar puede progresar a lo largo de algunas horas. La intoxicación grave con sulfuro de hidrógeno puede causar inconsciencia, fallo respiratorio y cardiovascular. Es característico en exposiciones elevadas la pérdida rápida de la consciencia o “desmayo”. Los pacientes que vuelven a despertarse pueden experimentar un síndrome confusional agudo, con agitación y confusión5.

La exposición de los ojos a bajas concentraciones de sulfuro de hidrógeno gas causa molestias por quemadura, parpadeo espasmódico o cierre involuntario de los párpados, enrojecimiento y lagrimeo. A altas concentraciones o exposiciones repetidas pueden aparecer opacidades en la córnea5.

Si la piel está mojada o húmeda el contacto con la piel del sulfuro de hidrógeno gas puede causar irritación y el contacto de la piel con sulfuro de hidrógeno líquido (licuado por presión) puede dar lugar a congelaciones5.

Si el paciente sobrevive las primeras 48 horas después de la exposición, es probable la recuperación. Después de una exposición aguda, la función pulmonar vuelve a su estado normal en 7-14 días. Es habitual la recuperación completa; sin embargo, los síntomas y deficiencias pulmonares pueden mantenerse. La hiperreactividad de las vías respiratorias a irritantes no específicos pueden persistir, resultando en broncospasmos e inflamación crónica de los bronquios. El síndrome de disfunción de las vías respiratorias reactivas puede persistir durante años. Las secuelas de cicatrices y destrucción en el tejido pulmonar pueden conducir a una dilatación crónica de los bronquios y a una gran susceptibilidad de infección. Pueden producirse secuelas neurológicas como resultado de la insuficiencia respiratoria5.

 

Referencias

  1. “Australian police charge two men over plane bomb plot”, http://www.aljazeera.com/news/2017/08/australian-police-charge-men-plane-bomb-plot-170804003917635.html
  2. “Australia terror plot: Brother likely ‘had no idea’ bomb was in luggage, police say”, http://www.foxnews.com/world/2017/08/04/australia-terror-plot-brother-likely-had-no-idea-bomb-was-in-luggage-police-say.html
  3. “Foiled plot to blow up plane, unleash gas revealed in Australia”, http://edition.cnn.com/2017/08/03/asia/australia-plane-terror-plot-isis/index.html
  4. “Japanese experience of hydrogen sulfide: the suicide craze in 2008”, D. Morii, Y. Miyagatani, N. Nakamae, M. Murao & K. Taniyama, Journal of Occupational Medicine and Toxicology 2010, 5:28
  5. “FDS sulfuro de hidrógeno”, Murcia Salud, 2007, http://www.murciasalud.es/recursos/ficheros/114700-sulfuro_de_hidrogeno.pdf
  6. “FDS sulfuro de hidrógeno”, Praxair, 2014, http://www.praxair.com.mx/-/media/documents/safety-data-sheets/sulfuro-de-hidrogeno-hds-p4611g-2009.pdf
  7. “FDS sulfuro de hidrógeno”, NJHealth, 2012, http://nj.gov/health/eoh/rtkweb/documents/fs/1017sp.pdf
  8. “Atlas d´équilibres électrochimiques à 25 °C”, Marcel Pourbaix, GV, 1963
  9. “Hydrogen sulfide-human health aspects”, WHO, 2003
  10. “La función dual del sulfuro de hidrogeno”, Rui Wang, Investigación y Ciencia, Mayo 2010
  11. “Hydrogen Sulfide-The Third Gasotransmitter in Biology and Medicine”, Rui Wang, Antioxidants & redox signaling, Volume 12, Number 9, 2010
  12. “H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects”, Caleb Weihao Huang and Philip Keith Moore, en “Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide”, Philip K. Moore & Matt Whiteman, Springer, 2015
  13. “Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote”, J. Jiang & Others, Scientific Reports 6, Article number: 20831 (2016), https://www.nature.com/articles/srep20831.pdf
  14. “Japanese experience of hydrogen sulfide: the suicide craze in 2008”, D. Morii, Y. Miyagatani, N. Nakamae, M. Murao & K. Taniyama, Journal of Occupational Medicine and Toxicology 2010, 5:28
  15. “Suicide by Hydrogen Sulfide Inhalation”, Eleanor Bott & Malcolm Dodd, Am J Forensic Med Pathol, Volume 34, Number 1, March 2013
  16. “Modern Medical Toxicology”,V.V. Pillay, Jaypee Brothers Medical Publishers, 4th Ed., 2013
  17. “A critical review of the literature on hydrogen sulfide toxicity”, O. Beauchamp, J. S. Bus, J. A. Popp, C. J. Boreiko & D. A. Andjelkovich, Crit Rev Toxicol. 1984; 13(1):25-97
  18. “Hydrogen Sulfide (H2S) Code of Practice”, Cenovus, 2015, http://www.cenovus.com/contractor/docs/health-safety-practices/hydrogen-sulfide-code-of-practice.pdf

La amenaza química del Daesh tras la pérdida del califato

Análisis del Real Instituto Elcano (ARI) 81/2017 por René Pita y Juan Domingo

http://www.realinstitutoelcano.org/wps/wcm/connect/f1319bcb-20f5-4fbf-bdc9-96defe87a9d6/ARI81-2017-Pita-Domingo-Amenaza-quimica-Daesh-perdida-califato.pdf?MOD=AJPERES&CACHEID=f1319bcb-20f5-4fbf-bdc9-96defe87a9d6

!Qué sucias las bombas sucias¡

En términos coloquiales, una bomba sucia (Dirty Bomb), es un dispositivo explosivo de dispersión radiológica, un artefacto explosivo que combina un explosivo con material radioactivo en forma de polvo o gránulos. El objetivo es diseminar material radioactivo en la zona alrededor de la explosión, para contaminar con material radiactivo el personal y las instalaciones, consiguiendo con ello su exposición a las “radiaciones”. Aunque el número de víctimas mortales sea muy reducido, se consigue aterrorizar a la población, inutilizando durante un largo período de tiempo las instalaciones y el terreno, lo que supone un elevado coste económico al que habría que añadir además el elevado coste que conllevaría la descontaminación.

Además, no todos los dispositivos de dispersión radiológica son bombas sucias, y no todas las bombas sucias son dispositivos de dispersión radiológica.

Sólo se consideran bombas sucias los dispositivos de dispersión radiológica, que dispersan el material radiactivo mediante un explosivo, pero también hay bombas sucias que dispersan una sustancia química tóxica mediante un explosivo.

 

Empleo terrorista de material radiactivo

Los terroristas, en función del tipo de material radiactivo disponible y del objetivo buscado pueden emplear el material radiactivo para la preparación de diferentes dispositivos radiológicos con fines delictivos:

  • Dispositivos Explosivos de Dispersión Radiológica.
  • Dispositivos No Explosivos de Dispersión Radiológica.
  • Dispositivos de Exposición Radiológica

Los Dispositivos Explosivos de Dispersión Radiológica son los que se conocen como Bombas Sucias (Dirty Bombs), aunque es un error bastante común el pensar que todos los dispositivos de dispersión radiológica (RDDs, Radiological Dispersion Devices) son bom­bas sucias. Para una buena dispersión del material radiológico por efecto de la explosión, conviene que éste se encuentre en forma líquida o en forma de polvo, para conseguir tamaños de partícula suficientemente pequeños, del orden de 5-10 µm, de modo que el material radiactivo quede en suspensión y pueda ser inhalado, o/y cubra eficientemente una gran superficie. Además puede resultar interesante el empleo de materiales inflamables capaces de provocar un incendio tal, que los gases calientes alcancen alturas elevadas facilitando con ello el arrastre y dispersión más amplia del material radiactivo. El empleo de un material radiactivo sóli­do, de tipo metálico, con cierta dureza, supondría la dispersión de fragmentos de tamaño considerable lo que disminuiría notablemente los efectos buscados.

Los Dispositivos No Explosivos emplean medios mecánicos para dispersar el material radiactivo, aprovechando las condiciones atmosféricas locales generadas por las corrientes de aire e ins­talaciones de ventilación. Aquí, al no existir efecto explosivo, resulta de vital importancia que el material radiactivo se encuentre en forma líquida o de polvo muy fino para conseguir con ello una buena dispersión.

Los Dispositivos de Exposición Radiológica conocidos por sus siglas en inglés RED (Radiological Exposure Device) tienen una aplicación muy limitada. El procedimiento consiste en situar el material radiactivo encapsulado o no, en un punto tal que las radiaciones afecten a las personas. El material radiactivo debería ser preferiblemente un emisor de radiación gamma, de rayos X o de neutrones, ya que si fuera un emisor de partículas alfa o beta, el material radiactivo debería estar muy próximo al objetivo, a ser posible en contacto íntimo con el mismo para conseguir además un mayor tiempo de exposición.

 

Materiales radiactivos

Recordemos que los materiales radiactivos son aquellos que presentan radiactividad o radioactividad, fenómeno físico por el cual los núcleos de algunos elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas radiográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como por ejemplo, las partículas alfa (4He2+), las partículas beta (electrones, e, o positrones, e+), los protones o los neutrones. La radiactividad ioniza el medio que atraviesa. Los neutrones no producen una ionización directa, pero ionizan la materia en forma indirecta.

Un aspecto importante del material radiactivo, es decir de los radionucleidos, es su velocidad de desintegración o actividad radiactiva que se mide en Bq. Un becquerelio es 1 desintegración por segundo y un curio, Ci, equivale a 3,7·1010 desintegraciones por segundo (unidad basada en la actividad de 1 g de 226Ra que es cercana a esa cantidad).

La desintegración radiactiva se comporta conforme a la ley de decaimiento exponencial:

Nt = N0 × e -λt

Donde, Nt es el número de radionúclidos existentes en un instante de tiempo t, N0 es el número de radionúclidos existentes en el instante inicial, y λ es la constante de desintegración radiactiva, esto es, la probabilidad de desintegración por unidad de tiempo.

La actividad A, o sea la emisión de radiación por unidad de tiempo, es proporcional al número de radionúclidos N presente en cada instante, esto es, A = λ × N. Se llama tiempo de vida o tiempo de vida media de un radioisótopo, τ, al tiempo promedio de vida de un átomo radiactivo antes de desintegrarse, y es igual a la inversa de la constante de desintegración radiactiva, λ, de modo que τ = 1/λ. También τ es igual al tiempo necesario para que el número de átomos se reduzca en un factor de 2,718281828 (número e). Véase la tabla 1

t ½ = τ ⋅ ln ⁡ 2  = ln 2/λ

Al tiempo que transcurre hasta que la cantidad de núcleos radiactivos de un isótopo radiactivo se reduzca a la mitad de la cantidad inicial se le conoce como periodo de semidesintegración, período, semiperiodo, semivida o vida media (no confundir con el mencionado tiempo de vida). Al final de cada período, la radiactividad se reduce a la mitad de la radiactividad inicial. Cada radioisótopo tiene un período de semidesintegración característico, diferente del de otros radioisótopos. Véase la tabla 1.

 

Radionucleido Radiación principal Período de semidesintegración Peso de 1000 curios

1 Ci ≡ 3,7·1010 Bq

192Ir Beta / gamma 73,827 días 0,11 gramos
60Co Gamma 5,2714 años 0,91 gramos
252Cf Alfa 2,645 años 1,88 gramos
90Sr Beta 28,9 años 7,17 gramos
137Cs Beta / gamma 30,17 años 11,8 gramos
241Am Alfa 432,2 años 300 gramos
226Ra Alfa 1600 años 1040 gramos
240Pu Alfa 6500 años 4540 gramos
239Pu Alfa 24100 años 16800 gramos
235U (al 5%) Alfa 7,04 × 108 años 420000 gramos
238U (DU) Alfa 4,468 × 109 años 3060000 gramos

Tabla 1. Para diferentes radionucleidos se muestra su tipo principal de radiación, su periodo de semidesintegración y peso requerido del mismo para conseguir una actividad de 1000 curios

Además, cada radionucleido decae de manera específica. El estroncio-90 decae emitiendo partículas beta pero sin emitir radiación gamma, mientras que el cobalto-60 emite fundamentalmente radiación gamma y algo de radiación beta. El americio-241 decae emitiendo fundamentalmente partículas alfa y también emite algo de radiación gamma de baja energía.

 

Elección de los componentes de una bomba sucia

Los dos componentes más importantes de una bomba sucia son obviamente el material explosivo y el material radiactivo. No vamos a tratar aquí la elección del material explosivo, tan solo vamos considerar algunos aspectos relativos al material radiactivo.

Uno de los principales puntos a considerar para preparar una bomba sucia es el cómo conseguir el material radiactivo. El tipo de radiación emitida, la actividad y el periodo de semidesintegración de los radionucleidos, son muy diferentes, y eso unido a las características físico-químicas del material radiactivo hace que los peligros inherentes y las medidas de seguridad y control establecidas para cada uno de ellos sean también muy diferentes.

La Agencia Internacional de Energía Atómica (IAEA) en su guía de seguridad No. RS-G-1.9 “Clasificación de las fuentes radiactivas” ha establecido cinco categorías de peligro aplicables a las fuentes radiactivas utilizadas en algunas prácticas comunes.

Las fuentes de la categoría 1 son las más “peligrosas” porque pueden suponer un riesgo altísimo para la salud de los seres humanos si no se manejan en condiciones de seguridad tecnológica y física. La exposición durante sólo unos cuantos minutos a una fuente de categoría 1 no blindada puede ser fatal. En el extremo inferior del sistema de clasificación, las fuentes de la categoría 5 son las menos peligrosas; ahora bien, incluso éstas pueden dar lugar a dosis superiores a las dosis límite si no se controlan correctamente y, por consiguiente, hay que mantenerlas bajo el adecuado control regulador.

Las categorías 1-“Extremadamente peligrosa para las personas”, 2-“Muy peligrosa para las personas”, y 3-“Peligrosa para las personas”, son las que están sujetas a mayores medidas de seguridad y control. Las fuentes gamma y beta están sujetas a controles más estrictos que las fuentes alfa, por lo cual cabe pensar que la sustracción de una fuente alfa sería más factible.

La radiactividad (actividad) de los diferentes radionucleidos es muy variable. La tabla 2 resume algunas características y aplicaciones de algunos de los radionucleidos más comunes. Aunque no existen datos suficientes para establecer con exactitud las dosis letales en seres humanos, si hay diferencia entre las dosis letales de los emisores alfa (de unos miles de curios) con las dosis letales de los emisores gamma (de unos cientos de curios).

 

Radionucleido Radiación principal Período de semi desintegración Uso habitual Actividad (Ci)
60Co Gamma 5,2714 años Irradiadores para alimentos y esterilización 5000-15000000
Teleterapia 1000-15000
90Sr Beta 28,9 años Generadores termoeléctricos de radioisótopos 9000-680000
137Cs Beta / gamma 30,17 años Irradiadores para sangre y tejidos 1000-12000
Teleterapia 500-1500
Indicadores de nivel 1-5
192Ir Beta / gamma 73,827 días Radiografía industrial 5–200
210Po Alfa 138,376 días Eliminadores de estática 0,03–0,11
241Am Alfa 432,2 años Testificación geofísica 0,5–23
Servicios de calibración 5–20
Eliminadores de estática 0,03–0,11
252Cf Alfa 2,645 años Testificación geofísica 0,03–0,11
Investigación científica hasta 27

Tabla 2. Para diferentes radionucleidos se muestra su tipo principal de radiación, su periodo de semidesintegración, su uso habitual y su rango de actividad.

 

Después habría que considerar el tiempo requerido de actividad para el material radiactivo y aquí habría que considerar el tiempo que transcurrirá desde la preparación de la bomba hasta su explosión, y el tiempo que se desea dure la contaminación radiactiva después de dispersado el material radiactivo. Para la preparación de una bomba sucia, los terroristas prefieren materiales radiactivos con un periodo de semidesintegración intermedio (varios años), pues si fuese muy corto, de horas o días, el material se desintegraría muy rápidamente y resultaría muy radiactivo, pero decaería muy rápidamente mientras se prepara la bomba sucia, y además si la bomba sucia dispersase el material radiactivo, bastaría casi tan solo con esperar varios días para que la radiación decayese y se produjese de este modo una “descontaminación” natural de las zonas contaminadas.

En el extremo opuesto, material radiactivo con un periodo de semidesintegración muy grande (miles o millones de años) decaen muy lentamente y producen poca radiación, requiriendo para una bomba sucia grandes cantidades. Algunos autores indican que estos materiales no son adecuados para una bomba sucia, pero recordemos que los terroristas pueden estar interesados en una bomba sucia cuyos efectos no sean producir bajas a corto o medio plazo, sino provocar miedo y aterrorizar a la población, contaminando la zona con material que puede ser inhalado o ingerido, que puede producir algunos efectos no solo por la radiación sino también por la toxicidad química. El uranio empobrecido, material de desecho de la industria nuclear, es básicamente uranio-238 (más del 99%), emisor alfa con un periodo de semidesintegración de 4,468 × 109 años, muy poco radiactivo, pero de fácil adquisición y además pirofórico (se inflama espontáneamente en contacto con el aire), hecho este último que favorecería su dispersión.

Las propiedades físico-químicas también es un factor importante, ya que las sustancias en forma de polvo se dispersarían más fácilmente. La solubilidad del material en agua facilitaría la descontaminación pero a su vez favorecería la contaminación de los cauces acuosos. Por ejemplo, el cesio-137 (uno de los radionucleidos más utilizados) se suministra como polvo cloruro de cesio-137, sustancia blanca, cristalina, muy soluble en agua, y de punto de ebullición 1297 °C. Por todo ello el cesio-137, emisor beta/gamma sería un buen material radiactivo para una bomba sucia. El americio-241 emisor alfa también se suministra, para algunas aplicaciones, en forma de polvo. El cobalto-60, un isótopo radiactivo sintético del cobalto, es fundamentalmente un emisor gamma (con una energía muy alta, del orden de 1,3 MeV), con un periodo de semidesintegración de 5,2714 años, que suele emplearse en forma metálica. El cobalto metálico, de una dureza similar a la del hierro, en forma de barras cilíndricas, se dispersaría mal por efecto de la explosión que produciría muy probablemente fragmentos de gran tamaño fáciles de localizar y retirar.

 

Efectos sobre la salud y actuación

Las radiaciones ionizantes afectan a la salud a nivel del genoma celular, actuando sobre las moléculas de ADN, produciendo una serie de efectos que se engloban en dos grandes grupos:

  • efectos estocásticos y
  • efectos deterministas.

Los efectos estocásticos son aquellos que no presentan una dosis umbral por debajo de la cual no aparecen consecuencias. Su gravedad no depende de la dosis recibida, pues son siempre graves si suceden. Hay dos tipos de efectos estocásticos conocidos. Si una célula cualquiera (células somáticas) del cuerpo sufre una mutación, puede llegar a transformarse en un tumor (cancerígeno o benigno). Si la célula mutada es un gameto (células germinales), éste puede tener como resultado un efecto hereditario. La probabilidad de que se produzca un efecto estocástico aumenta con la dosis. Los efectos estocásticos aparecen tras unos años de latencia. El periodo de latencia más corto que se conoce es el de la leucemia, que puede aparecer después de dos años.

Los efectos deterministas causan la muerte de la célula. Algunos ejemplos de dolencias por efectos deterministas son: vómitos, quemaduras por radiación, cataratas o efectos sobre el desarrollo por exposición del útero. En contraste con los efectos estocásticos, para cada efecto determinista existe una dosis umbral, por debajo de la cual los efectos no aparecen.  No se aprecian efectos deterministas si se reciben dosis inferiores a la dosis umbral. Sin embargo, una vez que el umbral se ha superado, el efecto es seguro (“determinista”) y se agrava más con el incremento de la dosis.

Como el ser humano no puede ver, oler, sentir o percibir el sabor de la radiación, el personal presente en el lugar de una explosión, no sabrá si había o no materiales radioactivos presentes. Si el personal no sufre heridas demasiado graves a causa de la explosión inicial, debería:

  • No entrar en pánico, salir de la zona de la explosión caminando y no tomar transportes públicos o privados porque si había material radioactivo presente, podrían contaminar los medios de transporte y extender la contaminación.
  • Entrar en el edificio más cercano para eliminar su posible exposición a la contaminación y por ello a la radiación.
  • Si se sospecha de una posible contaminación, debería quitarse lo antes posible la ropa, colocarla en una bolsa plástica y sellarla. Al quitarse la ropa, retirará la mayor parte de la contaminación radiactiva y al guardar la ropa contaminada evitará extender la contaminación y permitirá analizar la misma para saber la naturaleza del material radiactivo.
  • Si es posible debería ducharse o lavarse con agua y jabón, para reducir la contaminación radioactiva sobre el cuerpo y reducir de manera eficaz la exposición a la radiación.
  • Prestar atención a la información y consignas del personal de emergencias para un mejor desarrollo de las actividades.

 

 

Referencias

  1. “Bombas sucias, preguntas frecuentes”, Ministerio de salud de Dakota del Norte, https://www.ndhan.gov/data/translation/Dirty%20Bombs-Spanish.pdf
  2. “Dirty Bomb-Fact Sheet”, FEMA, 2007, https://www.fema.gov/media-library-data/20130726-1621-20490-3999/dirtybombfactsheet_final.pdf
  3. “Dirty Bomb-Fact Sheet”, U.S.NRC, 2012, https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/fs-dirty-bombs.pdf
  4. “Bomba sucia como acontecimiento de terrorismo”, South Central District Health, https://phd5.idaho.gov/factsheets/er/dirty_bomb_bt_spanish.pdf
  5. “Radiological Dispersion Device (Dirty Bomb)”, WHO/RAD Information sheet, 2003, http://www.who.int/ionizing_radiation/en/WHORAD_InfoSheet_Dirty_Bombs21Feb.pdf?ua=1
  6. “Terrorist “Dirty Bombs”-A Brief Primer”, https://fas.org/sgp/crs/nuke/RS21528.pdf
  7. “Radiological Terrorism”, P. Andrew Karam, Human and Ecological Risk Assessment, 11: 501–523, 2005http://www.andrewkaram.com/pdf/terrorism.pdf
  8. “Radiological Terrorism Fact Sheet”, http://cs.erplan.net/WMD/dirty.pdf
  9. “Proliferación de ADM y de Tecnología Avanzada. Capítulo 5. Armas radiológicas”, Julio Ortega García, Cuaderno de Estrategia nº 153, IEEE, 2011 https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0ahUKEwidnejq8vLLAhXKPRoKHQAiDpoQFgg_MAU&url=https%3A%2F%2Fdialnet.unirioja.es%2Fdescarga%2Farticulo%2F3835369.pdf&usg=AFQjCNH5ULAN6AeDeTUBkoTTVkjR5wF-9g
  10. “Clasificación de las fuentes radiactivas”, IAEA, Guía de seguridad RS-G-1.9, http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227s_web.pdf
  11. “Uranium and Dirty Bombs”, Federation of American Scientists, 2008, https://fas.org/programs/ssp/nukes/non-proliferation%20and%20arms%20control/uraniumdirtybombs.html
  12. “Beyond the Dirty Bomb: Re-thinking Radiological Terror”, James M. Acton, M. Brooke Rogers & Peter D. Zimmerman, Survival Vol. 49 , Iss. 3, 2007
  13. “Módulo 4: protección radiológica”, Consejo de Seguridad Nuclear, Vicente Gamo Pascual , Curso General de Formación de Actuantes en Emergencias Nucleares, https://www.csn.es/documents/10182/950714/Curso+General+de+Formaci%C3%B3n+de+Actuantes+en+Emergencias+Nucleares.+TEMA+04.+Protecci%C3%B3n+radiol%C3%B3gica

 

Rusia marca la diferencia

El Director General de la Organización para la Prohibición de las Armas Químicas (OPAQ), Ahmet Üzümcü, anunció, el pasado miércoles 27 de septiembre, que la Federación de Rusia había completado, bajo verificación de la OPAQ, la destrucción de sus 39.967 toneladas métricas de armas químicas.

La Federación de Rusia firmó la Convención para la prohibición de las Armas Químicas (CAQ), el mismo día que ésta se abrió para su firma, el 13 de enero de 1993, al igual que hizo Estados Unidos.

Sin embargo, Estados Unidos ratificaba la CAQ el 25 de abril de 1997 tan sólo unos días antes de que ésta entrase en vigor, el 29 de abril de 1997, mientras que la Federación de Rusia no ratificó la CAQ hasta el 5 de noviembre de 1997, y ésta no entraría en vigor para la Federación de Rusia hasta transcurridos treinta días, el 5 de diciembre de 1997.

Ambos países declararon a la entrada en vigor de la CAQ ser poseedores de armas químicas, de modo que conforme estipula el artículo IV “Destrucción”, párrafo 6, de la CAQ:

  1. Cada Estado Parte destruirá todas las armas químicas especificadas en el párrafo 1 de conformidad con el Anexo sobre verificación y ateniéndose al ritmo y secuencia de destrucción convenidos (denominados en lo sucesivo “orden de destrucción”). Esa destrucción comenzará dos años después, a más tardar, de la entrada en vigor de la presente Convención para el Estado Parte y terminará diez años después, a más tardar, de la entrada en vigor de la presente Convención. Nada impedirá que un Estado Parte destruya esas armas químicas a un ritmo más rápido.

Es decir, se comprometían a la destrucción de sus armas químicas antes del 29 de abril de 2007. La Federación de Rusia debería destruir 39.967 toneladas métricas de armas químicas de la categoría 1 y los Estados Unidos de América 27.770 toneladas métricas de armas químicas de la categoría 1, además por supuesto de las armas químicas de categorías 2 y 3.

La CAQ establecía además diferentes plazos intermedios para las diferentes categorías de armas químicas, y su artículo IV “Destrucción”, en su apartado “Orden de destrucción”, párrafos 15, 16 y 17 establece lo siguiente:

  1. El orden de destrucción de las armas químicas se basa en las obligaciones previstas en el artículo I y en los demás artículos, incluidas las obligaciones relacionadas con la verificación sistemática in situ. Dicho orden tiene en cuenta los intereses de los Estados Partes de que su seguridad no se vea menoscabada durante el período de destrucción; el fomento de la confianza en la primera parte de la fase de destrucción; la adquisición gradual de experiencia durante la destrucción de las armas químicas; y la aplicabilidad, con independencia de la composición efectiva de los arsenales y de los métodos elegidos para la destrucción de las armas químicas. El orden de destrucción se basa en el principio de la nivelación.
  2. A los efectos de la destrucción, las armas químicas declaradas por cada Estado Parte se dividirán en tres categorías:

Categoría 1:         Armas químicas basadas en las sustancias químicas de la Lista 1 y sus piezas y componentes;

Categoría 2:         Armas químicas basadas en todas las demás sustancias químicas y sus piezas y componentes;

Categoría 3:         Municiones y dispositivos no cargados y equipo concebido específicamente para su utilización directa en relación con el empleo de armas químicas.

  1. Cada Estado Parte:

a) Comenzará la destrucción de las armas químicas de la categoría 1 dos años después, a más tardar, de la entrada en vigor para él de la presente Convención, y completará la destrucción diez años después, a más tardar, de la entrada en vigor de la presente Convención. Cada Estado Parte destruirá las armas químicas de conformidad con los siguientes plazos de destrucción:

i) Fase 1: dos años después, a más tardar, de la entrada en vigor de la presente Convención, se completará el ensayo de su primera instalación de destrucción. Por lo menos un 1% de las armas químicas de la categoría 1 será destruido tres años después, a más tardar, de la entrada en vigor de la presente Convención;

ii) Fase 2: por lo menos un 20% de las armas químicas de la categoría 1 será destruido cinco años después, a más tardar, de la entrada en vigor de la presente Convención;

iii) Fase 3: por lo menos un 45% de las armas químicas de la categoría 1 será destruido siete años después, a más tardar, de la entrada en vigor de la presente Convención;

iv) Fase 4: todas las armas químicas de la categoría 1 serán destruidas diez años después, a más tardar, de la entrada en vigor de la presente Convención.

b) Comenzará la destrucción de las armas químicas de la categoría 2 un año después, a más tardar, de la entrada en vigor para él de la presente Convención, y completará la destrucción cinco años después, a más tardar, de la entrada en vigor de la presente Convención. Las armas químicas de la categoría 2 serán destruidas en incrementos anuales iguales a lo largo del período de destrucción. El factor de comparación para esas armas será el peso de las sustancias químicas incluidas en esa categoría; y

c) Comenzará la destrucción de las armas químicas de la categoría 3 un año después, a más tardar, de la entrada en vigor para él de la presente Convención, y completará la destrucción cinco años después, a más tardar, de la entrada en vigor de la presente Convención. Las armas químicas de la categoría 3 se destruirán en incrementos anuales iguales a lo largo del período de destrucción. El factor de comparación para las municiones y dispositivos no cargados será expresado en volumen de carga teórica (m3) y para el equipo en número de unidades.

Incumplidos los plazos intermedios, e incumplido el plazo final de 29 de abril de 2007, la OPAQ amplió el plazo 5 años más, hasta el 29 de abril de 2012, pero de nuevo el plazo establecido resultó ser insuficiente, y se establecieron nuevas fechas para completar la destrucción.

La Conferencia de los Estados Partes pidió al Director General en su decisión C-16/DEC.11, de fecha 1 de diciembre de 2011,que en cada periodo ordinario de sesiones del Consejo Ejecutivo proporcionara por escrito un informe sobre los avances globales hechos por los Estados Partes poseedores en relación con la destrucción de sus arsenales de armas químicas restantes.

La Federación de Rusia estableció el 31 de diciembre de 2020 como fecha prevista para completar la destrucción de su arsenal químico, mientras que los Estados Unidos de América esperan completar la destrucción de su arsenal químico el 30 de septiembre de 2023.

A 31 de mayo de 2017, según informaba el Director General al Consejo Ejecutivo en su informe EC-85/DG.23 de fecha 3 de julio de 2017, la Secretaría había verificado la destrucción por parte de la Federación de Rusia de 39.418 tm, el 98,6%, de su arsenal de armas químicas de la categoría 1. Esa cantidad incluía 0,026 tm de agentes de guerra química que se retiraron de los arsenales de armas químicas de la categoría 1, con arreglo al artículo VI de la Convención y al apartado d) del párrafo 2 de la Parte VI del Anexo sobre verificación, con fines no prohibidos por la Convención. Además, la Federación de Rusia ya había destruido todas sus armas químicas de la categoría 2 y de la categoría 3.

De conformidad con el plan detallado para la destrucción de sus armas químicas de la categoría 1 restantes tras el plazo prorrogado del 29 de abril de 2012 y su adenda, presentados por la Federación de Rusia (EC-68/P/NAT.1, de fecha 3 de abril de 2012; y Add.1, de fecha 6 de octubre de 2014), la destrucción de las armas químicas de la categoría 1 restantes en las instalaciones de destrucción de armas químicas (IDAQ) de Maradykovsky, Leonidovka, Pochep y Shchuchye habían concluido en diciembre de 2015, mientras que en la instalación de Kizner en la República de Udmurtia, las operaciones de destrucción proseguirían hasta diciembre de 2020.

En su último informe sobre los avances logrados para concluir la destrucción de sus arsenales de armas químicas restantes (EC-85/P/NAT.5, de fecha 16 de junio de 2017), la Federación de Rusia comunicó a la Secretaría que, a 31 de mayo de 2017, la cantidad de armas químicas destruidas en la instalación de Kizner ascendía al 90,5% del total, 5.196 tm, del agente químico. La cantidad restante de las armas químicas de la categoría 1 por destruir ascendía en ese momento a 548 tm.

Hace unos días, el 21 de septiembre de 2017,  Mikhail Babich, el Presidente de la Comisión Estatal de Desarme Químico de la Federación de Rusia, anunciaba que Rusia podría completar la destrucción de todos sus arsenales de armas químicas a finales de septiembre de 2017.

Y efectivamente así ha sucedido, el pasado miércoles 27 de septiembre, en una ceremonia a la que asistió una delegación de la Organización Internacional para la Prohibición de las Armas Químicas (OPAQ), el presidente de Rusia, Vladímir Putin, en vídeo conferencia con la planta de destrucción Kizner, en la región rusa de Udmurtia destacaba el hecho indicando:

“Se puede decir sin alardear que es realmente un acontecimiento histórico, teniendo en cuenta los arsenales de armas químicas que heredamos de los tiempos soviéticos, con los que se habría podido destruir varias veces toda la vida de la Tierra”.

Kizner ha sido la última instalación en funcionamiento de las siete instalaciones de destrucción de armas químicas en Rusia. Las otras seis instalaciones de destrucción (Kambarka, Gorny, Maradykovsky, Leonidovka, Pochep y Shchuchy) se cerraron entre 2005 y 2015 una vez finalizados sus trabajos. Ahora Kizner será cerrada y Rusia habrá cumplido con sus compromisos para la destrucción de todas sus armas químicas tres años antes de lo previsto, marcando diferencias con su eterno rival los Estados Unidos de América.

Uf, menos mal que el ClCN no está en Lista 1

Con la llegada del otoño las piscinas municipales de verano echarán el cierre por final de temporada. Disminuirá notablemente, la producción de cloruro de cianógeno.

 

Los agentes cianogénicos

El cloruro de cianógeno, ClCN, también conocido como CK, es un agente químico de guerra, de la familia de los agentes cianogénicos, recogido en el anexo sobre sustancias químicas de la Convención para la prohibición de las Armas Químicas (CAQ), en la Lista 3 (3A.2, cloruro de cianógeno, CAS 506-77-4). La Lista 3 incluye sustancias químicas tóxicas y precursores, no incluidos en las Listas 1 y 2, que en algún momento se han producido, almacenado o empleado como armas químicas y que pueden producirse en grandes cantidades comerciales para fines no prohibidos por la CAQ.1

Durante la 1ª Guerra Mundial, a finales de 1915 y principios de 1916, los franceses emplearon cianuro de hidrógeno, HCN, como agente químico de guerra. De este agente cianogénico llegaron a producir más de 3600 tm, generalmente mediante reacción de una solución concentrada de cianuro potásico con ácido sulfúrico diluido. A pesar de que el HCN es bastante tóxico y no era retenido fácilmente por el carbón de las máscaras de protección de aquel entonces, su empleo desde el punto de vista táctico deja mucho que desear, pues sus vapores son menos densos que el aire, su volatilidad resulta demasiado elevada, no presenta efectos acumulativos y la cantidad que cargaban las municiones era tan pequeña, que difícilmente se alcanzaban en el campo de batalla las concentraciones necesarias para conseguir los efectos incapacitantes o letales buscados. Además los alemanes conocedores de todo ello habían dotado a sus tropas de máscaras eficaces frente al HCN.2 El HCN también está recogido en el anexo sobre sustancias químicas de la CAQ, en la Lista 3 (3A.3, cianuro de hidrógeno, CAS 74-90-8)1.

En septiembre de 1916, los franceses introdujeron en el campo de batalla otro agente cianogénico, el cloruro de cianógeno, cuyos vapores son más densos y menos volátiles que los del cianuro de hidrógeno, y presentaban un cierto efecto acumulativo sobre los afectados. El cloruro de cianógeno era producido mediante cloración de una solución saturada de cianuro potásico a 0 °C. Su toxicidad es similar a la del HCN, pero el ClCN resulta más efectivo a bajas concentraciones (irrita los ojos y los pulmones, en un efecto tóxico retardado, similar al de los agentes sofocantes o pulmonares como el cloro y el fosgeno2. Los franceses emplearon el cloruro de cianógeno tal cual, o mezclado con tricloruro de arsénico en una composición que denominaban “Vivrite”3.

 

Preparación del cloruro de cianógeno

El primero en preparar cloruro de cianógeno fue el químico francés, Claude-Louis Berthollet, en 1787, mediante la acción del cloro sobre el ácido cianhídrico. Debido a su malentendido acerca de la naturaleza de cloro llamó al producto “ácido prúsico oxidado”, sin llegar a determinar su constitución4.

En 1815 el químico francés Joseph Louis Gay-Lussac determinó su naturaleza química, y le asignó la fórmula ClCN, la aceptada hoy en día, asignándole el nombre de “ácido clorociánico”. Para su preparación saturó con cloro una solución acuosa de ácido cianhídrico y eliminó el sobrante de cloro por agitación con mercurio. Inicialmente purificó el producto por destilación, pero luego, pensando que podría descomponerse por acción del calor, lo purificó por destilación a presión reducida. Gay-Lussac también consiguió preparar el “ácido clorociánico” mediante reacción del cloro y el ácido cianhídrico húmedo, y por la acción del cloro sobre el cianuro de mercurio seco en presencia de la luz solar4.

El francés Georges-Simon Serullas, en 1827, encontró que la presencia de humedad facilitaba enormemente la reacción entre el cloro y el cianuro de mercurio; añadía agua para humedecer, sin llegar a disolver, el cianuro mercúrico4.

En 1847 el también químico francés Charles Adolphe Wurtz trataba una solución diluida de ácido cianhídrico enfriada a 0 °C con cloro. Al cabo de algún tiempo se formaba una capa líquida en la superficie de la solución, que separada y lavada con agua, hervía a 20 °C y sus vapores ardían con una llama violeta. Llamó a este líquido “clorohidruro de cianógeno” y le asignó la fórmula 2ClCN.HCN. Este líquido, una vez enfríado y tratado con óxido de mercurio para eliminar el HCN, producía cloruro de cianógeno que se destilaba a través de de cloruro de calcio4.

Los trabajos del alemán Alexander Naumann y del suizo Emil Vogt, en 1870, demostraron que el producto que se formaba en primer lugar al pasar cloro sobre las soluciones de ácido cianhídrico no era un compuesto de cloruro de cianógeno y ácido cianhídrico, sino simplemente una mezcla, en proporciones variables, de estas dos sustancias4.

En 1850 el alemán Friedrich Wöhler preparaba cloruro de cianógeno agregando un ligero exceso de cianuro de mercurio a una solución saturada de esta sal en el agua, sobre la que pasaba luego cloro hasta saturar la solución y llenar de cloro el espacio sobre la misma. El frasco cerrado, coloca en un cuarto oscuro y se agita frecuentemente hasta que todo el cianuro se haya disuelto o todo el cloro se haya consumido. Cualquier exceso de cloro es eliminado por el mercurio, y el cloruro de cianógeno se destila luego a través de cloruro de calcio y se condensa en un tubo en forma de U refrigerado4.

En 1854, los franceses Auguste André Thomas Cahours y François Stanislas Cloez describieron un método que se diferenciaba del método de Wohler en que utilizaba una solución diluida de cianuro de mercurio (100 g en 4 litros de agua) y el cloro se eliminaba haciendo pasar los gases a través de un tubo que contenía limaduras de cobre4.

Más recientemente, en 1947, Barnett y colaboradores siguiendo una propuesta inicial de A. Held, de 1897, prepararon cloruro de cianógeno por acción del cloro, en condiciones controladas, sobre una solución de sulfato de cinc y de cianuro de sodio. Con este procedimiento conseguían cloruro de cianógeno de gran pureza y con un rendimiento cercano al 70%5.

Von Hans Schröder, en 1954, obtenía un rendimiento cercano al 100 % por reacción del cloro con una solución de K2Zn(CN)4, a temperatura ambiente6.

R. Varma y A.J. Signorelli, en 1969, obtenían cloruro de cianógeno con rendimiento cercano al 95 % por reacción a temperatura ambiente del monóxido de cloro, Cl2O, con cianuro de plata sólido7:

 

 Propiedades del cloruro de cianógeno

El cloruro de cianógeno, ClCN, es un compuesto lineal, al igual que el cianuro de hidrógeno y los otros haluros de cianógeno (FCN, BrCN, ICN), con el cloro unido al átomo de carbono mediante un enlace simple y un triple enlace entre los átomos de carbono y nitrógeno.

Es una molécula pequeña de peso molecular 61,47 con punto de fusión de -6 °C y punto de ebullición de 13,7 °C. En condiciones normales de presión y temperatura es un gas incoloro, con un olor acre, más denso que el aire (densidad relativa de los vapores 2,16). Es muy soluble en agua, con una constante de la lay de Henry de 2,48 kPa·m3/mol que sugiere una fácil volatilización8.

El cloruro de cianógeno reacciona con el amoníaco para formar cianamida y cloruro amónico9:

Las soluciones acuosas de hidróxido de sodio o de potasio provocan su descomposición, con formación de cloruros y cianatos9:

La hidrólisis producida por los iones hidroxilo produce ácido ciánico, un ácido débil de pKa=3,4810:

La acción de los hipocloritos provoca la destrucción del cloruro de cianógeno por oxidación total a nitrógeno11:

Por acción de las altas temperaturas sufre polimerización, formando triclotriazina (CAS 108-77-0), un sólido cristalino que funde a 190 °C9:

 

 La orina

La orina es un líquido acuoso transparente y amarillento, de olor característico, secretado por los riñones y eliminado al exterior por el aparato urinario. Su constitución es compleja y variable, estando constituida fundamentalmente por un 91-96% de agua y el resto sustancias orgánicas e inorgánicas en una relación aproximada de 7 a 5. La composición de la orina depende de factores tales como la dieta, la salud y la condición física.

Los componentes orgánicos más importantes son la urea (CAS 57-13-6), el ácido úrico (CAS 69-93-2) y la creatinina (CAS 60-27-5) (residuo procedente del fosfato de creatina, CAS 67-07-2, o de la propia creatina, CAS 50-00-1). La urea supone aproximadamente el 95% del nitrógeno de la orina.12

Relación entre la creatina y la creatinina13

 

La orina artificial preparada conforme a la norma DIN EN 1616:1999 tiene un pH de 6,6 ± 0,1 y es una solución acuosa preparada con agua destilada desionizada, que contiene14:

  • 25,0 g/L de urea (CAS 57-13-6),
  • 2,0 g/L de creatinina (CAS 60-27-5),
  • 9,0 g/L de cloruro sódico (CAS 7647-14-5),
  • 2,5 g/L de hidrógeno ortofosfato disódico anhidro (CAS 7558-79-4),
  • 2,5 g/L de dihidrógeno ortofosfato potásico (CAS 7778-77-0),
  • 3,0 g/L de cloruro amónico (CAS 12125-02-9) y
  • 3,0 g/L de sulfito sódico (CAS 7757-83-7)

 

 

ClCN en las piscinas15,16,17,18

Se ha comprobado mediante estudios por espectrometría de masas en muestras de agua de piscinas, que cuando se orina en una piscina, los compuestos que ésta contiene pueden reaccionar con el cloro activo del agua, y formar, entre otros compuestos orgánicos más o menos volátiles, ClCN, y tricloramina o tricloruro de nitrógeno (NCl3), que resultan tóxicos por inhalación.

Además estudios en laboratorio sobre la reacción de hipoclorito con los compuestos habitualmente presentes en la orina y en el sudor (urea, algunos aminoácidos como L-arginina, L-histidina, y glicina, creatinina, ácido úrico, etc.) también detectaron la formación de ClCN y de NCl3.

Las concentraciones típicas de ácido úrico en el sudor y en la orina son 0,012 y 4,54 mM, respectivamente, y si suponemos estas son las únicas fuentes de ácido úrico en las piscinas, entonces aproximadamente el 93% de ácido úrico presente en las piscinas procedería de la orina.

La formación y persistencia del ClCN depende de diversos factores tales como pH, temperatura, concentración de cloro, concentración de fluido orgánico, radiación ultavioleta, etc..

Sin embargo lo que verdaderamente condiciona la presencia o ausencia de ClCN en las piscinas son las prácticas de higiene de los bañistas. Si estos se duchan antes de entrar en las piscinas y no se orinan en ellas, la producción de ClCN se viene abajo.

 

 

Referencias

  1. “Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas y sobre su destrucción”, texto completo, https://www.opcw.org/sp/convencion-sobre-las-armas-quimicas/texto-completo/
  2. “Medical Aspects of Chemical and Biological Warfare”, “Chapter 10. Cyanide Poisoning”, Medical Department of the Army, F.R. Sidell, E.T.Takafuji & D.R. Franz, 1997
  3. “The war gases”, Mario Sartori, D. Van Nostrand Company, Inc., 1939
  4. “The preparation of cyanogen chloride”, W. L. Jennings & W. B. Scott
  5. “The preparation of cyanogen chloride”, H. W. Barnett, R. G. Davis & R. P. Graham, Canadian Journal of Research, Vol. 25, Sec. B, 289-294, 1947.
  6. “Zur Darstellung von Cyanchlorid”, Hans Schröder, Z. anorg. allg. Chem., 297, 5-6, Dezember 1958, 296–299
  7. “A new synthesis of cyanogen chloride”, R. Varma & A. J. Signorelli, Inorg. Nucl. Chem. Letters, Vol. 5, pp. 1017-1019, 1969
  8. “Cyanogen Chloride in Drinking-water”, http://www.who.int/water_sanitation_health/dwq/chemicals/phe_cyanogen_background_document.pdf
  9. “An outline of organic nitrogen compounds”, F. Degering, University Lithoprinters, 1945
  10. “The hydroxide-assisted hydrolysis of cyanogen chloride in aqueous solution”, E. J. Pedersen III&B.J. Mariñas, Wat. Res. Vol. 35, No. 3, pp. 643-648, 2001
  11. “Hydrolysis and Chlorinolysis of Cyanogen Chloride”, Charles C. Price, T. E. Larson, Karl M. Beck, F. C. Harrington, L. C. Smith, Ilya Stephanoff, J. Am. Chem. Soc., 1947, 69 (7), pp 1640–1644
  12. “Synthetic Urine Composition”, http://syntheticurineworld.blogspot.com.es/2015/12/synthetic-urine-composition.html
  13. “Creatine Basics and Biochemistry”, Prabhat Bhama, http://umich.edu/~medfit/supplementation/creatinebasicsandbiochemistry101705.html
  14. “Industry Specific Artificial Urine”, http://www.pickeringtestsolutions.com/artificial-urine2/
  15. “Volatile Disinfection Byproduct Formation Resulting from Chlorination of Organic-Nitrogen Precursors in Swimming Pools”, Jing Li & Ernest R. Blatchley III, Environ. Sci. Technol. 2007, 41, 6732-6739
  16. “Volatile disinfection by-product analysis from chlorinated indoor swimming pools”, William A. Weaver, Jing Li, Yuli Wen, Jessica Johnston, Michael R. Blatchley, Ernest R. Blatchley III, Water Research, 43 (2009), 3308-3318
  17. “Ultraviolet-Induced Effects on Chloramine and Cyanogen Chloride Formation from Chlorination of Amino Acids”, ShihChi Weng & Ernest R. Blatchley III, Environ. Sci. Technol., 2013, 47, 4269−4276
  18. “Volatile Disinfection Byproducts Resulting from Chlorination of Uric Acid- Implications for Swimming Pools”, Lushi Lian, Yue E, Jing Li & Ernest R. Blatchley III, Environ. Sci. Technol., 2014, 48, 3210−3217

 

N95, sólo para partículas

Los agentes NBQ pueden penetrar en el organismo por inhalación, por vía cutánea y por ingestión.

  • Por inhalación el agente NBQ, en forma de vapor, gas o aerosol, penetra en el sistema respiratorio y ejerce su acción de manera muy rápida y peligrosa, pues la elevada superficie alveolar permite un rápido paso al torrente sanguíneo
  • Por vía cutánea, el agente NBQ, en forma líquida, y en menor grado en forma de gas o aerosol, puede ejercer su acción a través de la piel, las heridas y los ojos.
  • Por ingestión, el agente NBQ puede penetrar en el organismo, de manera accidental o intencionada, al comer o beber.

La vía respiratoria es con diferencia la principal vía de entrada de los agentes NBQ y por ende de otros contaminantes presentes habitualmente en el aire, ya sean de procedencia natural o humana. Para evitar la inhalación de gases o vapores de sustancias químicas tóxicas, o la inhalación de aerosoles de materiales biológicos o de sustancias químicas tóxicas o radiactivas, es necesario utilizar algún dispositivo de protección respiratoria.

Algunos dispositivos de protección permiten la retención de los gases y vapores, o la retención de los aerosoles, o incluso la retención de todos ellos, en mayor o menor grado, en función de su diseño. Conviene diferenciar pues entre “filtración de aire”, en referencia a la retención de contaminantes en forma de aerosol, y “limpieza del aire”, en referencia a la eliminación o retención de los gases o vapores del aire contaminado. Es importante comprender que los sorbentes retienen gases y vapores, pero no aerosoles; a la inversa, los filtros retienen los aerosoles, pero no los gases y vapores.

 

Filtración

La mayoría de los filtros de partículas basan su eficacia en el uso de materiales fibrosos no tejidos, como por ejemplo, polipropileno. Las fibras se entrecruzan para formar una red de “tejido no tejido”, que funciona de manera diferente a como lo hace un tamiz, y son los espacios entre las fibras los que permiten que el filtro transpire. Las partículas quedan atrapadas en las fibras del filtro debido a la participación de diferentes mecanismos: captura por interceptación, impacto por inercia y captura por difusión que forman parte de la denominada filtración mecánica, y atracción electrostática, utilizada en la filtración electrostática. Uno de ellos o todos en conjunto pueden ser responsables de la retención eficaz de una partícula suspendida en el aire, dependiendo del tamaño y peso de la misma, y del tipo de material filtrante utilizado.

  • En la captura por interceptación las partículas grandes que fluyen entre las fibras según las líneas de flujo, sobresalen debido a su tamaño, chocan con las fibras del filtro y quedan retenidas.
  • En el mecanismo de impacto por inercia las partículas más grandes aumentan su velocidad al atravesar los espacios entre las fibras, y en lugar de seguir las líneas de flujo, siguen debido a su inercia una trayectoria recta y acaban detenidas tras impactar con las fibras del filtro.
  • Las partículas más pequeñas y ligeras son capturadas por difusión. Debido a su pequeño tamaño estas partículas colisionan de manera aleatoria con las moléculas del aire y este movimiento aleatorio, conocido como movimiento browniano facilita la colisión de estas partículas con las fibras del filtro. La eficacia de filtración se basa en aumentar las capas filtrantes para aumentar la probabilidad de que las partículas choquen con las fibras del filtro.
  • En la filtración electrostática las partículas son atraídas a la superficie de la fibra filtrante gracias a la presencia de cargas electrostáticas. Ocurre tanto con las partículas grandes como con las pequeñas, puesto que la mayoría de las partículas en suspensión, ya sean gotas líquidas o aerosoles sólidos, tienen una cierta carga electrostática. No obstante, para favorecer la filtración electrostática, se añade al filtro una carga electrostática en el momento de su fabricación y esta carga permanece inalterada durante la vida estimada del filtro.

Las partículas de 10 µm o menores se consideran partículas respirables y pueden quedar retenidas en los pulmones causando efectos adversos para la salud. Las partículas respirables constituyen más del 99% de los 7 millones de partículas que inhalamos en una inspiración.

Las partículas de tamaño, por ejemplo, entre 0,07 µm y 0,3 µm son las partículas con mayor poder de penetración dado que su retención es más difícil.

Un filtro HEPA es un filtro muy eficiente capaz de retener al menos el 99,99 % de las partículas mayores de 0,3 µm. El acrónimo “HEPA” es, según definición del DOE (Department Of Energy), “High Efficiency Particulate Air filter“, esto es, “filtro de alta eficacia para partículas en aire”. En realidad, el acrónimo correspondía originalmente a “High Efficiency Particulate Arresting filter“, esto es, “filtro de alta eficacia para retención de partículas. El término “Particulate Air” carece de significado.

Un filtro ULPA es un filtro muy eficiente capaz de retener al menos el 99,9995 % de las partículas mayores de 0,12 µm. “ULPA” es el acrónimo de “Ultra-Low Particulate Air filter“, esto es, “filtro para partículas ultra-pequeñas en aire”.

 

Protección respiratoria

La elección de la protección respiratoria más adecuada requiere considerar numerosos factores tales como tipo y concentración de los contaminantes, disponibilidad o no suficiente concentración de oxígeno para respirar, duración y esfuerzo de las tareas a realizar, condiciones de trabajo, etc.

La situación más favorable sería aquella que sólo requiere protección frente a partículas, en un entorno con suficiente concentración de oxígeno y ausencia de gases o vapores tóxicos o nocivos. En este caso el sistema de protección respiratoria más utilizado es la mascarilla de protección respiratoria, conocida simplemente como mascarilla, y en los países de habla inglesa como “Filtering FacePiece” (FFP)

 

Mascarillas de protección respiratoria FFP

Las mascarillas de protección respiratoria cubren sólo la boca y la nariz, pueden tener o no una válvula de exhalación para disminuir la fatiga y mejorar las prestaciones, y son desechables en casi su totalidad.

Las mascarillas vienen a ser una barrera física de separación entre la boca y nariz del usuario y el entorno inmediato, pudiendo utilizarse para bloquear las partículas de los aerosoles biológicos o químicos y las salpicaduras de todo tipo, para que no penetren en el sistema respiratorio del usuario, o para que la saliva y las secreciones el usuario no afecten a otros.

Las mascarillas se fabrican con diferentes materiales, en diferentes espesores y con diferente capacidad de protección frente al contacto con líquidos. Todo ello influye en la facilidad respiratoria (confort) y en su grado de protección (eficiencia).

Las máscaras faciales no deben compartirse y deben desecharse en los plazos establecidos por los fabricantes, o cuando el usuario note que está dañada o no realiza un buen ajuste facial. Las mascarillas aprobadas para diferentes usos van debidamente etiquetadas con un código de letras y números, y en muchos casos con un código de colores para facilitar su diferenciación.

Existen numerosos tipos de mascarillas de distintos fabricantes. En Estados Unidos, deben contar con la aprobación NIOSH (National Institute for Occupational Safety and Health) y en Europa cumplir la normativa EN.

NIOSH emplea un código con las letras N, R y P que indican el grado de resistencia al aceite, y unos números que indican la eficiencia de filtración, cuyo significado se resume en la tabla siguiente:

 

Eficiencia Ensayo frente a un aerosol de cloruro sódico

(NO resistente al aceite)

Ensayo frente a un aerosol de dioctil ftalato

(resistente al aceite)

Ensayo frente a un aerosol de dioctil ftalato

(Muy resistente al aceite)

95% N95 R95 P95
99% N99 R99 P99
100 (99.97%) N100 R100 P100

 

La normativa EN, en concreto la norma EN149:2001 “Filtering Halfmasks to protect against particles“, “Mascarillas filtrantes para protección contra partículas”, clasifica las mascarillas de protección respiratoria, de acuerdo con su eficacia de filtración y su valor de fuga hacia el interior, en tres clases:

  • FFP1, que retienen más del 80 % de las partículas, con una fuga hacia el interior <25 % y <22 % (para 46/50 y 8/10, respectivamente). Protegen en ambientes contaminados con hasta cuatro veces el valor límite umbral (TLV) de partículas.
  • FFP2, que retienen más del 92% de las partículas, con una fuga hacia el interior <11 % y <8 % (para 46/50 y 8/10, respectivamente). Protegen en ambientes contaminados con hasta 10 veces el TLV.
  • FFP3, que retienen más del 99% de las partículas, con una fuga hacia el interior <5 % y <2 % (para 46/50 y 8/10, respectivamente). Protegen en ambientes contaminados con hasta 50 veces el TLV.

Algunos fabricantes, para un rápido y fácil reconocimiento del nivel de protección, utilizan diferentes colores en el clip nasal o en la válvula, por ejemplo, azul oscuro (FFP1), azul celeste (FFP2) y blanco (FFP3).

Las mascarillas de protección respiratoria deben llevar marcados los siguientes datos:

  • Nombre, marca registrada u otros medios de identificación del fabricante. Marca de identificación del tipo
  • La marca CE acompañada del número del Organismo Notificado que le ha realizado el último control de calidad de la producción.

  • El número y la fecha de la norma.
  • Deben estar claramente identificados los componentes y las partes diseñadas para ser reemplazadas por el usuario autorizado y los subconjuntos con una influencia importante en la seguridad (en el caso de que alguna de las partes no pueda ser razonablemente marcada, la información correspondiente deberá estar incluida en la información proporcionada por el fabricante).
  •  Símbolos de acuerdo con el tipo y clase.

 

 

N95

Las mascarillas de protección N95 son las mascarillas más simples. La denominación “N95” de NIOSH significa que la mascarilla retiene al menos el 95% de las partículas de 0,3 µm o mayores y la letra N indica que NO es resistente al aceite. Por supuesto NO protege frente a gases y vapores tóxicos.

Se utilizan en la industria de la construcción y en otras industrias donde el trabajador está expuesto al polvo y a partículas pequeñas, como las presentes en trabajos de lijado, esmerilado, barrido, aserrado, embolsado o procesamiento de minerales, carbón, mineral de hierro, harina, metal, madera, polen y algunas otras sustancias. Algunas mascarillas están autorizadas para su empleo en los servicios médicos y de emergencias, para la protección del usuario y de los pacientes, pero tenga en cuenta que no proporcionan una protección completa contra los gérmenes y otros contaminantes debido a que el ajuste entre la superficie de la mascarilla y la cara no es perfecto.

Las mascarillas autorizadas por la FDA (Food and Drug Administration) para su uso en entornos de atención médica, se denominan mascarillas quirúrgicas N95. La autorización para estas mascarillas N95 implica la evaluación de los datos sobre seguridad de los ensayos de biocompatibilidad, y de los ensayos de resistencia a los fluidos e inflamabilidad. Además, las mascarillas quirúrgicas N95 están certificadas por NIOSH, en lo relativo a los ensayos de eficiencia de filtración y presión diferencial exigidos a las mascarillas de protección respiratoria N95.

Todas las mascarillas quirúrgicas N95 aprobadas por la FDA están etiquetadas como de “un solo uso”, dispositivos desechables. Si la mascarilla quirúrgica N95 está dañada o sucia, o si la respiración se vuelve difícil, debe quitársela, desecharla convenientemente y reemplazarla por una nueva. Para desechar de manera segura una mascarilla quirúrgica, colóquela en una bolsa de plástico y deposítela en un contenedor apropiado. Lávese las manos después de manejar las mascarillas quirúrgicas usadas.

Las mascarillas quirúrgicas N95 son mascarillas de protección N95 pero en general las mascarillas quirúrgicas no son mascarillas de protección N95

La Organización Mundial para la Salud recomienda el uso para procedimientos de aislamiento ó con posible generación de aerosoles infecciosos (tuberculosis, sarampión, varicela, síndrome respiratorio agudo grave, etc.) una mascarilla de protección con una eficiencia de filtración de al menos el 95 % para partículas de 0,3 micras de diámetro, lo que equivaldría una mascarilla de protección N95 según normativa americana NIOSH. La normativa americana no equivale a la europea y este nivel de protección quedaría entre el FFP2 y el FFP3.

   
Mascarilla quirúrgica Mascarilla quirúrgica N95

 

 

Referencias

  • “EN149:2001 Filtering Halfmasks to protect against particles”, CEN
  • “Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure”, K. M. Shakya, A. Noyes, R. Kallin & R. E. Peltier, J Expo Sci Environ Epidemiol. 2017 May;27(3):352-357.
  • “Filtering Facepiece Respirators (Particle Masks N-95 to P-100)”, UCSC Industrial Hygiene Services, https://ehs.ucsc.edu/programs/safety-ih/documents/n95.pdf
  • “Legislation and standards-European standards”, 3M, http://multimedia.3m.com/mws/media/433598O/european-standards.pdf
  • “Masks and N95 Respirators”, FDA, https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/PersonalProtectiveEquipment/ucm055977.htm
  • “Medias máscaras filtrantes (mascarillas autofiltrantes)”, INSHT, http://www.insht.es/EPI/Contenidos/Promocionales/Proteccion%20respiratoria/Promocional%20a%20Contenido/Fichas%20seleccion%20y%20uso%20de%20equipos/fichero/Mediasmascaras.pdf
  • “Particulate Respirator N95-User Instructions”, 3M, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiD55_ikKLVAhUBnBoKHd27AEIQFggsMAA&url=http%3A%2F%2Fmultimedia.3m.com%2Fmws%2Fmedia%2F92131O%2F3m-8000-series-n95-particulate-respirator-user-instructions.pdf&usg=AFQjCNF_bAeoO-v5y03af1JZ-iHzclJhiA
  • “Performance of N95 Respirators: Filtration Efficiency for Airborne Microbial and Inert Particles”, Y. Qian, K. Willeke, S. A. Grinshpun, J. Donnelly & C. C. Coffey, Am Ind Hyg Assoc J. 1998 Feb;59(2):128-32.
  • “Protección respiratoria: mascarillas quirúrgicas y mascarillas de protección”, Rioja Salud, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwiL24iM56HVAhWCVxoKHau5Cj8QFghAMAQ&url=https%3A%2F%2Fwww.riojasalud.es%2Frrhh-files%2Frrhh%2Fproteccion-respiratoria-rev-3175.pdf&usg=AFQjCNHNV2qeGGzI2QiV2jwhbKIC5k0xHw

Cien años del gas mostaza, el «rey de los gases»

En la noche del 12 al 13 de julio de 1917, el Ejército alemán lanzaba proyectiles cargados con una nueva arma química en el preludio de la tercera Batalla de Ypres. El ataque causó más de 2.000 bajas entre las tropas británicas. Los alemanes habían almacenado grandes cantidades de estos proyectiles químicos marcados con una cruz amarilla, con el fin de realizar una dura campaña contra los aliados en el saliente de Ypres.

El nuevo agente químico, el sulfuro de bis(2-cloroetilo), pasó a conocerse como iperita, en referencia a su empleo en Ypres, y como «gas mostaza», por el olor de los vapores que describían los combatientes próximos a las zonas donde se producía la detonación de la munición. Sin embargo, la iperita no es un gas a temperatura ambiente sino un líquido que se evapora lentamente, persistiendo un tiempo considerable en la zona afectada.

La iperita se sintetizó por primera vez en el siglo XIX, pero no fue hasta la Primera Guerra Mundial, entre 1916 y 1917, cuando dos químicos alemanes, Lommel y Steinkopf, desarrollaron un proceso de producción a gran escala. Ya en 1915, el Centro de Porton Down en el Reino Unido había barajado su uso como arma química, pero sería rechazada por no considerarla suficientemente letal. Enfadados por la decisión, los científicos británicos que habían trabajado en el programa colocaron una gota de iperita en la silla del director del centro, quien no podría sentarse durante un mes debido a la lesión que le produjo.

Hasta la incorporación de los proyectiles de iperita en la Primera Guerra Mundial, las armas químicas empleadas consistían en bombonas para la dispersión de gases, como el cloro o el fosgeno, y proyectiles cargados con líquidos muy volátiles, como el difosgeno, que una vez inhalados tenían un efecto sofocante y que persistían poco en la zona en la que eran empleados. Desde el 22 de abril de 1915, cuando los alemanes emplearon por primera vez esta táctica, la máscara de gas formaba parte del pertrecho habitual de los combatientes de todos los bandos.

Pero la iperita no solo producía lesiones en las vías respiratorias, sino también en la piel, de ahí que el empleo de las máscaras no proporcionara protección suficiente. Los primeros equipos para la protección corporal tardaron en estar disponibles, y solo para un pequeño número de tropas especializadas en labores de descontaminación. Un contratiempo añadido era que los efectos no se manifestaban hasta pasadas varias horas, de manera que el personal expuesto no era consciente de estar en contacto con una sustancia tóxica. Pasado ese tiempo, aparecían las dolorosas ampollas en la piel que causaban la incapacitación de la persona. Esto entrañaba un problema grave, ya que un combatiente incapacitado, al contrario que uno muerto, requería de evacuación y tratamiento médico, consumiendo recursos logísticos materiales y personales.

Según los registros del Ejército británico, aproximadamente un 80% de los iperitados podía volver a su puesto entre 4 y 8 semanas después de la exposición. Hubo incluso tropas que decidían autolesionarse para evitar continuar en combate y que buscaban intencionadamente exponerse a la iperita, hecho que consideraban mejor alternativa que dispararse en una pierna o en un brazo. Un soldado canadiense iperitado en Ypres describía sus síntomas como una «agradable y suave peste» en comparación con los que padecían sus compañeros heridos por munición convencional.

La eficacia de la iperita en los ataques alemanes hizo que se ganase el título de «rey de los gases» y que los Ejércitos aliados iniciaran los preparativos para su empleo. El propio Adolf Hitler en Mein Kampf narra cómo en un ataque británico, en octubre de 1918, sufrió sus efectos cuando servía como mensajero en el 16º Regimiento de Infantería Bávaro de Reserva. Sin embargo, este hecho ha sido puesto en tela de juicio por algunos historiadores.

A lo largo de la Primera Guerra Mundial se utilizaron unas 12.000 toneladas de iperita y las armas químicas, en general, causaron más de 1,3 millones de bajas, incluidas 100.000 víctimas mortales. Si bien el uso de armas químicas no fue decisivo en el resultado final de la guerra, sí lo fue en muchas batallas. Además, no solo hay que tener en cuenta el número de bajas físicas que provocaron, sino los importantes efectos psicológicos que tenían sobre los combatientes, así como la disminución de su operatividad al tener que utilizar la máscara de protección.

Finalizada la guerra, los servicios de guerra química y la industria de EE. UU., Francia y el Reino Unido iniciaron una campaña para fomentar la idea de que el arma química era el arma del futuro. Se llegaron incluso a poner en marcha campañas publicitarias para intentar explicar que las armas químicas eran más «humanas» que las convencionales, con absurdos mensajes sobre sus supuestos usos pacíficos, como la eficacia de la iperita para tratar la tuberculosis.

La iperita pasó a ser el principal agente de los arsenales químicos de todos los países que decidieron poner en marcha programas con esta nueva arma. No resulta, por tanto, extraño que se emplease en distintos conflictos armados, como fueron los casos de España en la guerra del Rif en la década de 1920, Italia en Etiopía entre 1935 y 1936, y Japón contra China desde 1938. En el teatro de operaciones europeo de la Segunda Guerra Mundial todos los bandos estaban preparados para el empleo de armas químicas, pero tenían recelo de ser los primeros en emplearlas por el riesgo de contraataques similares, un claro ejemplo de su importante poder disuasorio. Aun así, se dieron casos puntuales en los que algunos mandos militares, sin autorización de sus superiores, decidieron emplear armas químicas en situaciones tácticas desesperadas.

Durante la Guerra Fría, la producción y almacenamiento de iperita continuó, sobre todo en las grandes potencias. Se denunció su empleo en la guerra civil de Yemen del Norte a mediados de los años 60 y, entre 1983 y 1988, Irak utilizó 1.800 toneladas en la guerra contra Irán, donde las armas químicas causaron más de 45.000 bajas. Con la entrada en vigor de la Convención de Armas Químicas en 1997, se declararon, a nivel mundial, unas 18.000 toneladas de iperita de un total de 70.000 toneladas de armas químicas. Gracias a este tratado internacional, a fecha de hoy, un 95% de los arsenales químicos declarados ya han sido destruidos, aunque cuatro países –Corea del Norte, Egipto, Israel y Sudán del Sur–, algunos de ellos sospechosos de poseer armamento químico, todavía no se han adherido a la Convención.

A pesar de los importantes logros conseguidos por la Convención en el desarme y la no proliferación, la amenaza química no ha desaparecido. A los recientes ataques químicos en Siria hay que añadir el interés que el terrorismo yihadista ha mostrado por acceder a este tipo de armamento. De hecho, procedimientos para sintetizar iperita ya se probaron en los antiguos campos de entrenamiento de Al Qaeda en Afganistán y siguen apareciendo en publicaciones electrónicas vinculadas al terrorismo yihadista. Estos métodos han sido heredados por el Daesh para llevar a cabo ataques en Irak y Siria desde el año 2014. Si bien la mala calidad de la iperita obtenida no permite causar un elevado número de víctimas, el que continúen empleándola deja claro que el terrorismo yihadista es consciente de su importante efecto psicológico para desmoralizar a las tropas y para provocar miedo y pánico entre la población. Todo esto apunta a que, después de cien años, el reinado de la iperita aún no ha finalizado.

 

El teniente coronel René Pita es jefe del Departamento de Defensa Química de la Escuela Militar de Defensa NBQ.

El teniente coronel (reserva) Juan Domingo es especialista en Defensa NBQ y editor de la página web cbrn.es.

El proceso Levinstein

La reacción de obtención del sulfuro de bis(2-cloroetilo), más conocido como iperita o gas mostaza (CAS 505-60-2), haciendo borbotear etileno seco (CAS 74-85-1) sobre monocloruro de azufre (CAS 10025-67-9) a 35 °C, y posterior destilación del material resultante, se conoce generalmente como proceso Levinstein, y en menor medida como reacción de Levinstein.1,2,3

El producto producido mediante este proceso contiene normalmente hasta un 70% de sulfuro de bis(2-cloroetilo), y aproximadamente un 30% de polisulfuros de bis(2-cloroetilo)4,5, desde trisulfuro a nonasulfuro4, dependiendo de las condiciones bajo las cuales se lleva a cabo la reacción (temperatura, grado de agitación, velocidad de adición del etileno, características del monocloruro de azufre5.

 

Las mostazas de azufre

En la noche del 11 de julio de 1917, los alemanes bombardearon a las tropas inglesas de Ypres con proyectiles químicos marcados con una cruz amarilla y cargados con un nuevo tipo de agresivo, de fuerte olor a mostaza. El sulfuro de bis(2-cloroetilo), utilizado como agente vesicante pasó a conocerse como iperita (derivado de Ieper, nombre en flamenco de Ypres), o gas mostaza (por el fuerte olor a mostaza de los vapores y aerosoles, aunque en condiciones normales de temperatura la sustancia está en forma líquida)1,2,4,6,7

La iperita fue descubierta por César-Mansuete Despretz8, 9,10,11 en 1822, preparada por la reacción entre el cloruro de etileno y el azufre. Después de Despretz, la iperita también fue preparada por Alfred Riche8,9,10,12 en 1854 y más adelante Frederick Guthrie8,9,10,13 en 1860, cuando éste último estudiaba los productos de condensación resultantes de la reacción de los compuestos halogenados de azufre con las olefinas. Más tarde, en 1896, Viktor Meyer8,9,10,14 preparaba la iperita por cloración del tiodiglicol (Lista 2B.13, CAS 111-48-8) con tricloruro de fósforo (Lista 3B.6, CAS 7719-12-2).

También se ha preparado iperita mediante la cloración del tiodiglicol con cloruro de hidrógeno, HCl, (Hans Thacher Clarke8,9,10,15 en 1913), con cloruro de tionilo, SOCl2 (Lista 3B.14, CAS 7719-09-7), (Wilhelm Steinkopf8,9,10,16 en 1920) y con monocloruro o dicloruro de azufre, SCl (Lista 3B.12, CAS 10025-67-9) y SCl2 (Lista 3B.13, CAS 10545-99-0), (Lundin8,9,10,17)

Mediante el método de Meyer y Stephen8,9,10,18, puede obtenerse iperita con un rendimiento de casi el 98 %, rociando una mezcla constituida por 75 partes de S2Cl2 y 25 partes de SCI2 en una atmósfera de etileno.

El sulfuro de bis(2-cloroetilo), iperita, gas mostaza o “cruz amarilla” (“Gelbkreuz”), también se conoce como “LOST”” o “S-LOST” después de que el ingeniero químico alemán Wilhelm Lommel (1877-1962), y el químico, también alemán, Georg Wilhelm Steinkopf (1879-1949) desarrollaran en 1915 un procedimiento industrial para su obtención. Los americanos que obtenían el sulfuro de bis(2-cloroetilo), mediante el proceso Levinstein también lo denominaron, agente “H” cuando el producto estaba sin purificar y agente “HD” cuando el producto había sido purificado por destilación.19,20

Los agentes químicos clasificados como agentes vesicantes por su acción fisiopatológica se subdividen normalmente en tres grandes grupos20,21:

  • Las mostazas de azufre (recogidas en la Lista 1A.4, con un total de nueve sustancias químicas)
  • Las lewisitas (vesicantes con arsénico, recogidas en la Lista 1A.5, tres sustancias químicas) y
  • Las mostazas de nitrógeno (recogidas en la Lista 1A.6, tres sustancias químicas)

 

 

El proceso Levinstein

Durante la I Guerra Mundial los alemanes utilizaban para la obtención del sulfuro de bis(2-cloroetilo) el método de Meyer, consistente básicamente en la cloración del tiodiglicol22:

Los aliados utilizaban el método de Guthrie, consistente básicamente en hacer reaccionar el etileno gaseoso con cloruro de azufre22:

El procedimiento utilizado, primero por los americanos, y más tarde por los aliados, y conocido como proceso Levinstein, se llevaba a cabo en un recipiente cilíndrico de unos 100 cm de diámetro y unos 130 cm de altura, de chapa de acero o hierro fundido, forrado con plomo, dotado de un sistema de refrigeración, y provisto de un agitador. Un tubo introducido a través de la tapa del recipiente, llegaba hasta casi el fondo del mismo y permitía la introducción del etileno gaseoso. Se llenaba el recipiente con suficiente monocloruro de azufre como para cubrir el extremo del tubo, y luego se hacía borbotear etileno, ajustando la velocidad de borboteo y el sistema de refrigeración para mantener la temperatura de reacción de la mezcla entre 30- 35 °C. A medida que la reacción progresaba se iba añadiendo más monocloruro de azufre en pequeñas porciones. Para unos 430 kg de etileno, se requerían unos 750 kg de cloruro de azufre, y la reacción se completaba en aproximadamente 20 horas. Al final de la reacción el producto se extraía mediante sifón a un decantador donde se eliminaba el azufre22.

En 1920, Conant, Hartshorn y Richardson estudiaron el mecanismo de reacción entre el etileno y el cloruro de azufre, y postularon la formación del cloruro de (2-cloroetil)sulfenilo (CAS 26650-04-4) como una sustancia intermedia en la obtención del sulfuro de bis(2-cloroetilo), pero no consiguieron aislarla23:El siguiente diagrama muestra el mecanismo de intercambio propuesto entre los distintos sulfuros y polisulfuros del proceso Levinstein1, con la participación de los diferentes cloruros de azufre y del cloruro de (2-cloroetil)sulfenilo :

El cloruro de (2-cloroetil)sulfenilo reacciona rápidamente con azufre para producir una mezcla de productos que incluyen monocloruro de azufre, S2Cl2, disulfuro de bis(2-cloroetilo), (ClCH2CH2)2S2, y trisulfuro de bis(2-cloroetilo), (ClCH2CH2)2S3.2,24

Las reacciones más interesantes del cloruro de (2-cloroetil)sulfenilo son aquellas que tiene con las olefinas, especialmente con el etileno. Cuando se hace borbotear etileno sobre cloruro de (2-cloroetil)sulfenilo puro, no hay reacción. Sin embargo, si el cloruro de (2-cloroetil)sulfenilo se disuelve en tetracloruro de carbono, el etileno reacciona muy rápidamente, con desprendimiento de calor y formación del sulfuro de bis(2-cloroetilo). Este resultado corroboraría la hipótesis de Conant, Hartshorn y Richardson de que el cloruro de (2-cloroetil)sulfenilo es un producto intermedio en el proceso de obtención del sulfuro de bis(2-cloroetilo) por reacción del etileno con los cloruros de azufre.2

La falta de reacción en ausencia de disolvente se atribuye al hecho de la baja solubilidad del etileno en el cloruro de (2-cloroetil)sulfenilo puro. Algo similar se observa en la reacción de etileno con monocloruro de azufre; la reacción es muy lenta a menos que se utilice un disolvente o se añada una “semilla” que inicie la reacción.2,25

La formación de polisulfuros se debe a la desproporción molecular del monocloruro de azufre en azufre dicloruro de azufre y dicloruro de triazufre; el último reacciona con etileno para formar trisulfuro de bis(2-cloroetilo) (CAS 19149-77-0) y otros polisulfuros de bis(2-cloroetilo). Al aumentar la temperatura de la reacción (por ejemplo, a 60 °C), la producción de sulfuro de bis(2-cloroetilo) se incrementa hasta un 80% y aparecen inmediatamente depósitos de azufre; a temperaturas más bajas (por ejemplo, a 20 °C), la producción de sulfuro de bis(2-cloroetilo) baja al 61%, y el azufre aparece en el sulfuro de bis(2-cloroetilo) al cabo de varias semanas.5

La Lista 1A.4 de la CAQ, “Mostazas de azufre”, recoge 9 sustancias químicas consideradas “mostazas de azufre”, incluida la iperita, pero no recoge ninguna de las “mostazas de azufre” consideradas impurezas en el proceso Levinstein:

“mostazas de azufre” en la Lista 1A.4 “mostazas de azufre” en el proceso Levinstein

CAS 2625-76-5

CAS 26650-04-4

CAS 505-60-2

CAS 505-60-2

CAS 63869-13-6

CAS 19149-77-0

CAS 3563-36-8

 

CAS 63905-10-2

CAS 1002-41-1

CAS 142868-93-7

 

 

CAS 142868-94-8

 

CAS 63918-90-1

 

 

CAS 63918-89-8

 

 

La ausencia en las Listas de la CAQ de los polisulfuros de bis(2-cloroetilo) probablemente se deba a su débil poder vesicante. La siguiente tabla recoge el poder vesicante de varias mostazas de azufre, algunas recogidas en las Listas de la CAQ (en rojo) y otras no (en negro)26:

“mostazas de azufre” Poder vesicante comparado con la iperita (PVesc=100)

CAS 505-60-2

100

CAS 1002-41-1

1

CAS 63869-13-6

200

CAS 3563-36-8

500

CAS 63905-10-2

400-500

CAS 142868-93-7

400

CAS 142868-94-8

200
  50
  1
  1
  1

De todos los productos y subproductos que aparecen en el proceso Levinstein, sólo el sulfuro de bis(2-cloroetilo), CAS 505-60-2 y Lista 1A.4, el monocloruro de azufre, CAS 10025-67-9 y Lista 3B.12 , y el dicloruro de azufre, CAS 10545-99-0 y Lista 3B.13, están recogidos en el anexo sobre sustancias químicas de la CAQ.

 

Referencias

  1. “392-Levinstein Process”, Comprehensive Organic Name Reactions and Reagents, Zerong Wang, John Wiley & Sons, Inc, 2010, pags. 1747-1749
  2. “Levinstein mustard gas-I-2-haloalkylsulfenyl halides”, R.C. Fuson, C. C. Price, R. A. Bauman, O. H. Bullitt, W. R. Hatchard & E. W. Maynert, J. Org. Chem., 1946, 14, 469-474.
  3. “Levinstein mustard gas-V-The action of chlorine and sulfur chlorides on the bis(2-chloroethyl)polysulfides”, R. C. Fuson, D. M. Burness, R. E. Foster & R. D. Lipscomb, J. Org. Chem., 1946, 11, 499-503.
  4. “Levinstein mustard gas-IV-The bis(2-chloroethyl) polysulfides”, R. C. Fuson, C. C. Price, D. M. Burness, R. E. Foster, W. R. Hatchard & R. D. Lipscomb, J. Org. Chem., 1946, 11, 487-498.
  5. “Levinstein mustard gas-VI-The mode of formation”, R. C. Fuson, R. E. Foster, & R. D. Lipscomb, J. Org. Chem., 1946, 11, 504-509.
  6. “The Polysulfides in Levinstein Process Mustard Gas”, R. Macy, G. N. Jarman, A. Morrison & E. Emmet Reid, Science, 1947, 106, 355-359.
  7. “Levinstein mustard gas-III-The structure of the monochlorination product of mustard gas”, R. C. Fuson & W. E. Parham, J. Org. Chem., 1946, 11, 482-486.
  8. “Mustard Gas-Its Pre-World War I History”, R. J. Duchovic & J.A. Vilensky, J. Chem. Educ., 2007, 84 (6), p 944-948
  9. ¿El ácido sulfúrico, precursor de la iperita?, J. Domingo, http://cbrn.es/?m=201610
  10. “Chemistry and Toxicology of Sulphur Mustard-A Review”, R.C. Malhotra, K. Ganesan, K. Sugendran & R.V. Swamy, Defence Science Journal, vol 49, No 2, April 1999, pp. 97-116
  11. “Sulphur mustard preparation and properties”, César-Mansuete Despretz, Annales de Chimie et de Physique, 1822, 21, 428.
  12. “Recherches sur des combinaisons chlorées dérivées des sulfures de méthyle et d’éthyle”, M. Alfred Riche, Annales de Chimie et de Physique, 1855, 43(3), 283-304.
  13. “On some derivatives from olefines”, F.G. Guthrie, Quart. J. Chem. Soc., 1860, 12, 116 & 1861, 13, 129-35.
  14. “Weitere Studien zur Kenntnis der Thiophengruppe”, V. Meyer, Dtsch. Chem. Ges., 1986,19: 628–632.
  15. ” 4-Alky-1:4-thiazans”, Hans Thacher Clarke, J. Chem. Soc., 1912, 101, 1583-90.
  16. “Über das Thiodiglykolchlorid und einige abkömmlinge desselben”, Wilhelm Steinkopf, Julius Herold & Joseph Stöhr, Chemische Berichte, 1920, 53, 1007-12.
  17. “Verification of dual-use chemicals under the Chemical Weapon Convention: The case of thiodiglycol”, S.J. Lundin, Oxford University Press, UK, 1991.
  18. “Über thiodiglykolverbindungen”, V. Meyer, Chemische Berichte, 1886, 19, 3259-65.
  19. “Medical Aspects of Chemical and Biological Warfare”, “Chapter 7. Vesicants”, F. R. Sidell, E. T. Takafuji, & D.R. Franz, Walter Reed Army Medical Center, 1977.
  20. “Toxicología cutánea y sistémica de los agentes vesicantes de guerra”, Pita y S. Vidal-Asensi, Actas Dermosifiliogr. 2010;101(1):7–18
  21. “Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción (CAQ)”, disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf y en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc
  22. “The War Gases: Chemistry and Analysis”, M. Sartori, Van Nostrand, New York, 1939.
  23. “The mechanism of the reaction between ethylene and sulfur chloride”, J. B. Conant, E. B. Hartshorn, G. O. Richardson. J. Am. Chem. Soc. , 1920, 42 (3), pag 585–595.
  24. “The composition of mustard gas made by the Levinstein process”, Kinnear, A. M. and Harley-Mason, J., J. Soc. Chem. Ind., London, Trans. & Commun., 1948, 67, 107-110.
  25. “XXXIV-beta,beta’-Dichloroethyl Sulphide”, C. S. Gibson & W. J. Pope, J . Chem. Soc., 117, 271 (1920).
  26. “8. New organic sulphur vesicants-Part II-Analogues of 2,2′-dichlorodiethyl sulphide and 2,2′-di-(2-chloroethylthio)diethyl ether”, A. H. Williams & F. N. Woodward, J. Chem. Soc., 1948, 38-42