Archivo de la categoría: Uncategorized

El papel lo aguanta todo

 Y nunca mejor dicho, pues los papeles detectores aguantan opiniones de todo tipo.

 

Detección colorimétrica

Los detectores colorimétricos son sistemas que emplean la «química húmeda» (término utilizado para referirse a la química general realizada en fase líquida) para poner de manifiesto la presencia de determinados agentes químicos mediante reacciones químicas que producen un cambio de color cuando los agentes entran en contacto con determinadas soluciones o sustratos. El cambio de color puede ser detectado visualmente o mediante dispositivos espectrofotométricos1.

Los tubos de detección colorimétricos, los papeles detectores o los kits de reactivos colorimétricos permiten la detección de muchos agentes químicos industriales y también de muchos agentes químicos de guerra. Los papeles detectores se emplean para la detección de agentes químicos líquidos (no en el agua), mientras que los tubos de detección colorimétricos y los kits de reactivos colorimétricos se emplean para la detección de agentes químicos en forma de gases y vapores1.

Las reacciones colorimétricas empleadas en los sistemas de detección suelen ser reacciones de tipo ácido-base, redox o de formación de complejos, bastantes estudiadas, que tienen una buena sensibilidad pero una moderada selectividad. Algunas fuentes de información señalan que los detectores colorimétricos son dispositivos de detección altamente específicos dado que responden a cierto número de sustancias químicas para las cuales fueron diseñados como detectores, con escasa o nula interferencia de otras sustancias químicas, y en consecuencia con un limitado número de falsas alarmas:

(«they are highly specific detection devices and have higher selectivity, as they respond to a certain number of specific chemicals that they were designed to detect with little or no interference from other chemicals. Consequently, the potential for false responses/alarms is limited.»2).

Ciertamente las reacciones colorimétricas se seleccionan en función de la sensibilidad y selectividad deseadas, y con ayuda de otras reacciones no colorimétricas podemos mejorar su selectividad eliminando sustancias interferentes, pero dado que su mecanismo es generalmente una reacción ácido-base, redox o de formación de complejos, la selectividad está bastante limitada y no pueden evitarse algunos falsos positivos o interferencias.

Lo que si es cierto es que la elección de una determinada reacción para la detección de un determinado grupo de sustancias químicas supone que muchas otras sustancias químicas no van a poder detectarse dado que no sufren esa reacción. Las sustancias químicas que no son detectadas y que desearíamos detectar constituyen falsos negativos. El usuario debe tener claro que tendrá que utilizar varios sistemas de detección colorimétrica si desea realizar la detección de sustancias químicas diferentes.

Los detectores colorimétricos, especialmente los tubos de detección colorimétrica, son más útiles como complemento a otras tecnologías de detección en tiempo real, para conseguir un nivel de detección confirmada2.

 

Papeles detectores de agentes químicos de guerra

Los papeles detectores de agentes químicos de guerra se emplean en numerosas Fuerzas Armadas desde hace muchos años pues resultan el sistema de detección más rápido, barato, ligero y sencillo para su empleo en el campo de batalla3.

Aunque algunas fuentes indican que los papeles indicadores se emplean para la detección de agentes químicos en forma líquida, o en forma de aerosol, lo cierto es que las fuentes más fidedignas indican claramente que no detectan agentes químicos en forma de vapor o aerosol, ni agentes químicos en el agua3.

Los papeles indicadores consisten en un papel sin coloración especial (sin blanquear) impregnado con uno o más colorantes (pigmentos) o colorantes indicadores (indicadores). Cuando una gota de una sustancia química (agente químico de guerra) moja el papel (es absorbida por el papel) se disuelve(n) los pigmentos mostrando su color, provocando en algunos casos un cambio en la coloración del indicador (si el papel contiene indicador). El color que se muestra indica la presencia de la sustancia química. En algún caso la aparición de diferentes colores permite clasificar la sustancia como perteneciente a un determinado grupo, pero nunca identifican la sustancia1.

La apreciación del color o de un cambio en el mismo puede resultar problemática en algunas situaciones. En primer lugar, cada persona tiene una percepción de color ligeramente diferente, e incluso algunas personas pueden sufrir algún grado de ceguera de color, lo que les impide, en algunos casos, observar ciertos cambios de color. Además, en condiciones de luz tenue o de luz muy brillante es difícil de observar los colores, lo que repercute en la efectividad del dispositivo de detección colorimétrica3.

Por su fundamento los papeles detectores tienen el inconveniente de su falta de selectividad o especificidad, que provoca la aparición de falsos positivos dado que muchas sustancias corrientes, como disolventes, líquidos de freno, anticongelantes, repelentes de insectos, etc., provocan un cambio de color. Estos falsos positivos son especialmente indeseables en situaciones civiles porque pueden llevar a situaciones de pánico. Como ya se ha indicado, es conveniente que los papeles detectores se empleen junto con otros detectores de distintas tecnologías para disminuir la presencia de falsos positivos y conseguir una detección confirmada3.


Papel detector M8/C84

El papel detector M8 (NSN 6665-00-050-8529) fue desarrollado para detectar agentes líquidos, específicamente agentes neurotóxicos, de tipo G y de tipo V, y agentes vesicantes, de tipo H. El papel detector C8 es equivalente al papel de M8; la «C» indica que está fabricado para uso comercial (civil). Los papeles detectores M8/C8 no detectan agentes químicos en forma de vapor.

El papel detector M8 viene en forma de librillo, de aproximadamente 6 cm × 10 cm, con 25 hojas, que pueden desprenderse con facilidad dado que están microperforadas.

Una carta de colores que acompaña al librillo de papeles detectores ayuda a determinar el tipo de agente detectado. El resultado es cualitativo, pero el papel del detector tiene una sensibilidad de alrededor de 20 microlitros (μL) de líquido. Algunas sustancias, tales como insecticidas, anticongelantes y productos de petróleo, pueden actuar como interferencias y producir falsos positivos. También existe un producto similar, llamado papel «3-way», equivalente a los papeles de M8/C8, que lleva en la cara posterior del papel un adhesivo que permite pegar las hojas de papel a los materiales, equipos y EPI.

El cambio de color del papel depende del tipo de agente presente, por ejemplo los agentes vesicantes, como la iperita, HD, disuelven el colorante rojo y aparece coloración rojiza; los agentes neurotóxicos de tipo G disuelven el colorante amarillo y aparece coloración amarillenta, y los agentes neurotóxicos de tipo V disuelven en colorante amarillo pero al mismo tiempo provoca que el colorante indicador verde cambie a color azul, y aparece una coloración verdosa3.

colores M8La norma MIL-P-51408 Military Specification «Paper, Chemical Agent Detector, VGH, ABC-M8» indica que el papel indicador M8 está impregnado con tres colorantes, en la siguiente proporción:

  • Un 0,6 ± 0,2 % de colorante rojo (MIL-D-51412)
  • Un 1,3 ± 0,3 % de colorante amarillo (MIL-D-51411) CAS 80234-33-9 y
  • Un 1,0 ± 0,3 % de colorante verde (MIL-D-51410) CAS 5833-18-1

El colorante rojo es, según la MIL-D-51412, el 2,5,2′,5′-tetramethyl triphenylmethane-4,4′;-diazo-bis-beta-hydroxynaphthoic anilide. Por este nombre no aparece número CAS alguno, pero resulta que la estructura corresponde al colorante rojo E que es el 4,4′-[(phenylmethylene)bis[(2,5-dimethyl-4,1-phenylene)azo]]bis[3-hydroxy-N-phenylnaphthalene-2-carboxamide],cuyo número CAS es 60033-00-3.

colrojoColorante rojo

2,5,2′,5′-tetramethyl triphenylmethane-4,4′-diazo-bis-beta-hydroxynaphthoic anilide

4,4′-[(phenylmethylene)bis[(2,5-dimethyl-4,1-phenylene)azo]]bis[3-hydroxy-N-phenylnaphthalene-2-carboxamide]

El colorante amarillo es, según la MIL-D-51411, el thiodiphenyl-4,4′-diazo-bis-salicylic acid, cuyo número CAS es 80234-33-9.

colamarColorante amarillo

thiodiphenyl-4,4′-diazo-bis-salicylic acid

El colorante verde es, según la MIL-D-51410, el ethyl-bis-2,4-dinitrophenyl acetate, un indicador de pH que tiene un pKa=8,39. El intervalo de transición va de pH=7,5 (incoloro) a pH=9,1 (azul profundo). Su número CAS es 5833-18-1 y su número EINECS es 227-415-1.

colindverColorante indicador verde

ethyl-bis-2,4-dinitrophenyl acetate


Papel detector M94

El papel detector M9 (NSN 6665-01-226-5589 y NSN 6665-01-049-8982) detecta la presencia de agentes neurotóxicos y vesicantes en forma líquida mediante la aprición de una coloración rojiza. No distingue el tipo de agente, ni detecta agentes químicos en forma de vapor. Se necesita una gota de agente químico que produzca una mancha de mojado de al menos 100 micrómetros (μm) de diámetro. Sustancias interferentes que producen un falso positivo incluyen insecticidas, anticongelantes y productos de petróleo. El papel detector M9 viene en forma rollo, de 5,1 centímetros de ancho y 9,1 metros de largo, y la parte trasera del papel lleva un adhesivo que permite pegarlo a los materiales, equipos y EPI.

M9 colorPueden aparecer manchas en cualquier tono de rojo,

  • Una persona daltónica puede ver una mancha roja como gris o negro. Las manchas deben ser controladas por una persona que no sufra daltonismo.
  • Las manchas de color azul, amarillo, verde, gris o negro no son se atribuyen a la presencia de agente químico líquido

La composición del papel indicador M9 en cuanto a los colorantes ha variado con el tiempo. Parece que el colorante inicial que llevaba era el colorante B-1, esto es, el 1-[(4- nitrophenyl)azo]naphthalen-2-amine, CAS 3025-77-2 (MIL-D-51494) pero debido a su acción mutagénica y posiblemente cancerígena fue sustituido por el colorante SR119 (Solvent Red 119), CAS 12237-27-3.

Las normas MIL-P-51493 y MIL-51518 recogen la composición del papel indicador M9. La primera, de acceso público, es la que hace referencia al colorante B-1, mientras que la segunda, que no es de acceso público (es CLASSIFIED), haría referencia al colorante SR119.

Según la MIL-P-51493 y la MIL-D-51494, el papel M9 tiene en su composición:

  • Un 0,8 ± 0,1 % de colorante B-1, 1-[(4- nitrophenyl)azo]naphthalen-2-amine, (CI 11385) y CAS 3025-77-2,
  • Un 0,16 % de pigmento azul 15, copper phthalocyanine, (CI 74160) y CAS 147-14-8,
  • Un 1,6 % de amarillo óxido de hierro, yellow iron oxide o goethite, (CI 77492) y CAS 51274-00-1, y
  • Un 0,05 % de negro de humo, carbón black, (CI 77266) y CAS 1333-86-4

ColB1

colorante B-1

1-[(4- nitrophenyl)azo]naphthalen-2-amine

Sin embargo las hojas de seguridad del papel M9 (la norma MIL-DTL-51518 es CLASSIFIED) indican una composición ligeramente distinta13:

  • Un 0,17 % de colorante B-1, 1-[(4- nitrophenyl)azo]naphthalen-2-amine, (CI 11385) y CAS 3025-77-2,
  • Un 0,34 % de pigmento azul 15, copper phthalocyanine, (CI 74160) y CAS 147-14-8, y
  • Un 0,17 % de amarillo óxido de hierro, yellow iron oxide o goethite (CI 77492) y CAS 51274-00-1
  • PAPER, CHEMICAL AGENT DETECTOR, M9 6665-01-049-8982, Anachemia Chemical Inc., http://www.hazard.com/msds/f2/brt/brtgs.html

Y al reemplazar el B-1 por el SR11914:

  • Un 0,17 % de colorante solvent red119, CAS 12237-27-3 (aunque también aparece con el CAS 73297-20-8),
  • Un 0,34 % de pigmento azul 15, copper phthalocyanine, (CI 74160) y CAS 147-14-8, y
  • Un 0,17 % de amarillo óxido de hierro, yellow iron oxide o goethite, (CI 77492) y CAS 51274-00-1

SR119colorante SR119

 

Papel detector triple (3-way)4

El papel detector triple (3-way) es similar al papel detector M8 pero en este caso las hojas llevan en su cara posterior un adhesivo que permite pegar las hojas de papel a los materiales, equipos y EPI. La información encontrada indica que se ha sustituido alguno de los colorantes, concretamente el amarillo, simplemente sustituyéndolo por su sal sódicaal parecer por su carácter mutagénico. Según las firmas Nextteq15 y Anachemia16 la composición del papel detector triple (3-way) sería:

  • Un 0,6 ± 0,2 % de colorante rojo E, CAS 60033-00-3
  • Un 1,2 ± 0,4 % de colorante amarillo A2, CAS 8003-87-0
  • Un 1,0 ± 0,3 % de colorante verde EDA, CAS 5833-18-1

Los colorantes rojo y verde se corresponden con los ya citados para el papel detector M8, 4,4′-[(phenylmethylene)bis[(2,5-dimethyl-4,1-phenylene)azo]]bis[3-hydroxy-N-phenylnaphthalene-2-carboxamide] y ethyl-bis-2,4-dinitrophenyl acetate, respectivamente, y el colorante amarillo A2 es el disodium 5,5′-[thiobis(phenyleneazo)]disalicylate cuyo número CAS es 8003-87-0.

colamarNa

colorante amarillo A2

disodium 5,5′-[thiobis(phenyleneazo)]disalicylate

 

Utilización17

  • Los papeles detectores NO DETECTAN VAPORES de agentes químicos.
  • Los papeles detectores detectan agentes químicos en ESTADO LÍQUIDO. Sitúe los papeles donde puedan entrar en contacto con la contaminación líquida
  • No sitúe los papeles detectores sobre superficies calientes, sucias, aceitosas o grasientas porque puede dar un falso positivo
  • Los papeles detectores pueden dar falsos positivos con algunos descontaminantes, si se emplean en zonas donde se ha realizado una descontaminación
  • Puede ayudarse de otros objetos, por ejemplo un palo, para colocar el papel en su extremo y tocar de este modo con el papel sobre la posible contaminación. ¡NO FROTE EL PAPEL CONTRA LA CONTAMINACIÓN!
  • Los papeles detectores dan falsos positivos con productos derivados del petróleo, amoníaco, anticongelentes, insecticidas, descontaminantes, etc.. Si observa un cambio de color hay que pensar que se trata de un agente químico. Protégase completamente, de la alarma, descontamínese (si fuese necesario) y confirma la presencia del agente químico mediante el empleo de otros medios de detección y del control visual de su entorno.
  • Los papeles detectores SÓLO DETECTAN.
  • Los cambios de color significativos sólo permiten una CLASIFICACIÓN DEL AGENTE.
  • Los cambios de color NO SIGNIFICATIVOS no se atribuyen a la presencia de agentes químicos líquidos.
  • En base al tamaño de las manchas y al número de éstas sobre el papel detector, es posible estimar el tamaño original de las gotas del agente líquido y el grado de contaminación. Una gota de líquido de 0,5 mm de diámetro genera una mancha en el papel detector de unos 3 mm de diámetro. Una gota de este tamaño por cm2 en el papel detector correspondería a una contaminación líquida en la superficie contaminada de aproximadamente 0,5 g/m2. El límite de detección en los mejores casos es del orden de 0,005 g/m2. 18

 

Referencias

  1. «Guide for the Selection of Chemical Detection Equipment for Emergency First Responders», Preparedness Directorate Office of Grants and Training, 2007, http://www.nist.gov/oles/upload/DHS_100-06ChemDetFinReport_3-20-07.pdf
  2. «Detection technologies for chemical warfare agents and toxic vapors», Yin Sun & Kwok Y. Ong, CRC Press
  3. «A Review of CWA Detector Technologies and Commercial-Off-The-Shelf Items», https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjP2uGJkdrMAhXD1xQKHbMVAEUQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fcgi-bin%2FGetTRDoc%3FAD%3DADA502856&usg=AFQjCNFzu6LE81VHF6xJNSFTyltbXshk-g&bvm=bv.122129774,d.d24&cad=rja
  4. «OSHA Technical Manual-SecII Chap3- Technical Equipment-On-site Measurements-AppB-chemical warfare agent detection», https://www.osha.gov/dts/osta/otm/otm_ii/pdfs/otmii_chpt3_appb.pdf
  5. MIL-P-51408 Military Specification «Paper, Chemical Agent Detector, VGH, ABC-M8»
  6. MIL-D-51412 Military Specification «Dye, Red, 2,5,2′,5′-tetramethyl triphenylmethane-4 ,4′-diazobis-betahydroxynaphthoic anilide»
  7. MIL-D-51411 Military Specification «Dye, Yellow, Thiodiphenyl-4,4’-diazo-bis-salicylic acid»
  8. MIL-D-51410 Military Specification «Dye, Green, ethyl-bis(2,4-dinitrophenyl) acetate»
  9. «Handbook of Acid-Base Indicators», R. W. Sabnis, CRC Press
  10. MIL-D-51494 Military Specification «Dye, B-1, water dispersed formation»
  11. MIL-P-51493 Military Specification «Paper, Chemical Agent Detector, M9»
  12. MIL-DTL-51518 Military Specification «Paper, Chemical Agent Detector, M9 (SR119 Dye)»
  13. «M9 Detection Paper MSDS, B-1», 6665-01-049-8982, Anachemia Chemical Inc., http://www.hazard.com/msds/f2/brt/brtgs.html
  14. «M9 Detection Paper MSDS,SR119», 6665-01-226-5589, Anachemia Chemical Inc., http://hazard.com/msds/f2/bqk/bqkkt.html
  15. «M8 Detection Paper MSDS», Nextteq LLC, http://www.heinzlabs.com/msds/Chem-Agent-Detect_MSDS.pdf
  16. «M8 Detection Paper MSDS», Anachemia Chemicals Inc., http://hazard.com/msds/f2/bqk/bqkhl.html
  17. Detect Chemical Agents Using M8 or M9 Detector Paper, https://trainingnco.pbworks.com/f/031-503-1037+Detect+Chemical+Agents+Using+M8+or+M9+Detector+Paper.pdf
  18. «A Survey of Commercially Available Chemical Agent Instrumentation for Use in the Field», J. Haas, A. Alcaraz, B. Andresen, C. Pruneda, https://e-reports-ext.llnl.gov/pdf/242985.pdf

 

Nota: los nombres químicos de los colorantes se han mantenido en inglés para facilitar las búsquedas

De tres en tres

Tres apartados en la definición de «armas químicas»

La Convención para la prohibición de las Armas Químicas (CAQ) en su ARTÍCULO II «Definiciones y criterios» indica en su apartado 1 que por «armas químicas» se entiende, conjunta o separadamente:

  1. Las sustancias químicas tóxicas o sus precursores, salvo cuando se destinen a fines no prohibidos por la presente Convención, siempre que los tipos y cantidades de que se trate sean compatibles con esos fines;
  2. Las municiones o dispositivos destinados de modo expreso a causar la muerte o lesiones mediante las propiedades tóxicas de las sustancias especificadas en el apartado a.) que libere el empleo de esas municiones o dispositivos; o
  3. Cualquier equipo destinado de modo expreso a ser utilizado directamente en relación con el empleo de las municiones o dispositivos especificados en el apartado b.).

Estos tres apartados referidos a la definición de armas químicas no deben confundirse con las Listas (1, 2 y 3), ni con las Categorías (1, 2 y 3).

A continuación, en el apartado 2 del ARTÍCULO II, «Definiciones y criterios» indica que por  «sustancia química tóxica» se entiende:

«Toda sustancia química que, por su acción química sobre los procesos vitales, pueda causar la muerte, la incapacidad temporal o lesiones permanentes a seres humanos o animales.  Quedan incluidas todas las sustancias químicas de esa clase, cualquiera que sea su origen o método de producción y ya sea que se produzcan en instalaciones, como municiones o de otro modo.»

Y añade que a los efectos de la aplicación de la presente Convención, las sustancias químicas tóxicas respecto de las que se ha previsto la aplicación de medidas de verificación están enumeradas en Listas incluidas en el Anexo sobre sustancias químicas.

 

Tres Listas en el Anexo sobre sustancias químicas

Pues bien en el citado Anexo se enumeran las sustancias químicas tóxicas y sus precursores y se identifican en tres Listas las sustancias químicas respecto de las que se prevé la aplicación de medidas de verificación con arreglo a lo previsto en las disposiciones del Anexo sobre verificación. De conformidad con el apartado a) del párrafo 1 del artículo II, estas Listas no constituyen una definición de armas químicas.

La CAQ define en tres Listas (1,2 y 3) las sustancias químicas tóxicas y los precursores (A. Agentes y B. Precursores) que podrían ser empleados como armas químicas o bien empleados en la fabricación de armas químicas.

Lista 1:

La Lista 1 incluye sustancias químicas tóxicas y precursores:

  • que se han desarrollado, producido, almacenado o empleado como armas químicas,
  • tienen escasa o nula utilidad para fines no prohibidos y
  • suponen un alto riesgo para el objeto y propósito de la CAQ debido a su elevado potencial de empleo en actividades prohibidas.

 

Lista 2:

La Lista 2 incluye sustancias químicas tóxicas y precursores no incluidos en la Lista 1:

  • que no se producen en grandes cantidades comerciales para fines no prohibidos,
  • suponen un riesgo significativo para el objeto y propósito de la CAQ debido a su toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química,
  • y pueden emplearse como precursores en una de las reacciones químicas de síntesis de sustancias químicas tóxicas de la Lista 1 o de la Lista 2.

Lista 3             

La Lista 3 incluye sustancias químicas tóxicas y precursores no incluidos en las Listas 1 y 2:

  • que se han producido, almacenado o empleado como armas químicas,
  • se producen en grandes cantidades comerciales para fines no prohibidos y
  • suponen un riesgo para el objeto y propósito de la CAQ debido a que poseen tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química y emplearse en la síntesis de sustancias químicas de la Lista 1 o de la Lista 2.

 

 

Tres Categorías para la destrucción de las armas químicas

Las tres categorías no tienen nada que ver las tres Listas, ni con los tres apartados de la definición de «armas químicas». La CAQ en su Parte IV (A),  DESTRUCCION DE ARMAS QUIMICAS Y SU VERIFICACION DE CONFORMIDAD CON EL ARTICULO IV,  C. DESTRUCCION, «Principios y métodos para la destrucción de las armas químicas» en su apartado 16 indica que a los efectos de la destrucción, las armas químicas declaradas por cada Estado Parte se dividirán en tres categorías:

Categoría 1:   Armas químicas basadas en las sustancias químicas de la Lista 1 y sus piezas y componentes;

Categoría 2:   Armas químicas basadas en todas las demás sustancias químicas y sus piezas y componentes;

Categoría 3:   Municiones y dispositivos no cargados y equipo concebido específicamente para su utilización directa en relación con el empleo de armas químicas.

Es decir, las sustancias químicas de Lista 1 (sustancias químicas tóxicas y sus precursores, primer apartado de la definición de «armas químicas») y sus piezas y componentes (segundo y tercer apartado de la definición de «armas químicas») constituyen la Categoría 1.

Todas las sustancias químicas de Lista 2 y de Lista 3 (sustancias químicas tóxicas y sus precursores, primer apartado de la definición de «armas químicas») y sus piezas y componentes (segundo y tercer apartado de la definición de «armas químicas») constituyen la Categoría 2.

Y en la Categoría 3, no figuran sustancias químicas tóxicas, ni precursores, sólo municiones y dispositivos no cargados y equipo concebido específicamente para su utilización directa en relación con el empleo de armas químicas.

 

 

Conclusión

La CAQ no recoge sustancias químicas, ni categorías, «prioritarias», ni de «primera prioridad», así que, por favor, procuremos hablar con propiedad máxime cuando existen definiciones para hacerlo posible.

 

 

Referencias

«Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción», disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc, https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf, y también en http://www.minetur.gob.es/industria/ANPAQ/Convencion/Paginas/txtconvencion.aspx

«Listas de la CAQ», https://cbrn.es/?p=308

Hipoclorito cálcico-cal clorada

El hipoclorito cálcico (calcium hypoclorite) también se conoce como cal clorada (chlorinated lime) debido a que suele producirse mediante la cloración (con cloro) del hidróxido cálcico (calcium hydroxide), también conocido como «cal muerta» (slaked lime).

El oxido cálcico o «cal viva» (quicklime) y el cloruro cálcico (calcium chloride) guardan relación con el hipoclorito cálcico y con el hidróxido cálcico, pero son sustancias totalmente diferentes.

¡NO CONFUNDIR CHLORINE CON CHLORIDE, NI CAL CLORADA CON CLORURO CÁLCICO!

 

Un poco de historia

El cloro fue descubierto en 1774 por el sueco Carl Wilhelm Scheele. Trató un mineral llamado «pirolusita» con ácido clorhídrico (al que Scheele llamó «ácido marino») y la reacción produjo un gas verdoso con un olor sofocante y desagradable. Scheele pensó que este gas se había formado al retirar el flogisto del ácido clorhídrico, por lo que llamó al gas «ácido marino desflostigizado», aunque éste creía que se trataba de un compuesto que contenía oxígeno. Lo obtuvo a partir de la reacción del ácido sulfúrico con la pirolusita:

4HCl + MnO2 → MnCl2 + 2 H2O + Cl2

Poco después el químico inglés Humphry Davy demostró que este gas era un nuevo elemento, y le dio el nombre de cloro debido a su color verdoso (del griego χλωρος, que significa «verde pálido).

Los compuestos oxigenados del cloro atrajeron rápidamente el interés científico y comercial. Y así, por ejemplo, en 1787 el químico Claude Louis Berthollet preparó el primer hipoclorito haciendo pasar cloro sobre una solución de hidróxido potásico. Esta solución de lejía (conocida como agua de Javel o hipoclorito potásico) se utilizó para el blanqueo de tejidos y para la fabricación de papel. El químico francés Antoine-Germain Labarraque  sustituyó la solución de hidróxido potásico por una de hidróxido sódico, más barato y fácil de obtener, y obtuvo el hipoclorito sódico, también conocido como agua de Labarraque). El hipoclorito sódico se produce por electrólisis de cloruro de sodio desde 1801, procedimiento mucho más seguro y rentable que otras vías de síntesis.

En 1799 los químicos escoceses Charles Tennant y Charles Macintosh desarrollaron un proceso para la producción de «lejía en polvo» mediante la reacción de cloro con hidróxido cálcico seco. Este hipoclorito en polvo, hipoclorito cálcico, era mucho más estable que las disoluciones de hipoclorito descubiertas con anterioridad. A principios del siglo XX, en 1906, el químico alemán Gustav Pistor consiguió producir hipoclorito cálcico, en polvo, con más de un 70% de «cloro disponible».

 

El hipoclorito cálcico

El hipoclorito cálcico, Ca(ClO)2, es conocido también como cal clorada. Es una sustancia de color blanco y tacto suave, de peso molecular 142,98 g/mol, punto de fusión de 100 °C y densidad 2,35 g/cm3 (20 °C). Su número CAS es 7778-54-3, su número EC es 231-908-7 y su número ONU es 1748.

Normalmente el hipoclorito cálcico se presenta en forma de polvo seco, en mezclas que contienen hasta un 80% de hipoclorito cálcico, aunque lo más común es un 65-75 % e incluso menos. Comercialmente se conoce con otros muchos nombres, «cal hypo», «polvo blanqueador», «bleaching powder», «cal clorada», «chlorinated lime», «Caporit», «HTH», «BK powder», «Pittchlor», «Chemichlor G», «Chlorkalk», » Losantin»,  «Hy-Chlor «,»Chloride of lime (DOT)», etc..

El hipoclorito cálcico es poco soluble en agua, aproximadamente 21,4 g/L (20 °C), disociándose en iones Ca2+ e iones hipoclorito ClO. El hipoclorito es una base débil que reacciona con el agua para dar ácido hipocloroso, HClO, con una constante ácido-base de 2,904 × 10-8 (pKa = 7,537) a 25 °C:

ClO + H2O  ⇔ HClO + OH

HClO ⇔ ClO + H+

Por tanto su disolución en agua produce un pH alcalino, acrecentado por el hecho de ir acompañado de otras sustancias como el hidróxido cálcico o el óxido cálcico que son bases fuertes.

Además el hipoclorito cálcico es un polvo seco con fuertes propiedades oxidantes. Es un material oxidante que fácilmente cede oxígeno o que reacciona fácilmente para oxidar materiales combustibles. Por acción del calor se descompone en cloruro cálcico y oxígeno:

Ca(ClO)2 →CaCl2 + O2

¡PRECAUCIÓN EL HIPOCLORITO CALCICO EN POLVO REACCIONA VIGOROSAMENTE CON MATERIALES ORGÁNICOS Y OTROS AGENTES REDUCTORES PUDIENDO GENERAR INCENDIO Y EXPLOSIÓN!

Algunos hipocloritos son casi inodoros, mientras que otros presentan un olor más o menos fuerte a cloro o a ácido clorhídrico debido a la descomposición que sufren durante el almacenamiento:

Ca(ClO)2 + CaCl2 +2H2O 2 Ca(OH)2 +2Cl2

Ca(ClO)2 + CaCl2 +2CO2 2 CaCO3 +2Cl2

Ca(ClO)2 +CO2 +H2O CaCO3 + 2 HClO

La estabilidad de hipocloritos depende principalmente de su contenido en agua, que suele ser inferior a 1%; el hipoclorito cálcico que se emplea en las zonas tropicales se conoce como «bleach tropical» o blanqueador tropical, contiene incluso menos de un 0,3% de agua. Todos los hipocloritos sólidos son estables hasta unos 80 °C, y el hipoclorito cálcico empleado en zonas tropicales incluso hasta 100 °C. Cuando se calientan a 180 °C, se descomponen en cloruro y oxígeno. Los metales tales como hierro, níquel o cobalto disminuyen la estabilidad de los hipocloritos. Por lo tanto, las materias primas utilizadas para la fabricación de hipocloritos deben estar libres de tales metales. El hipoclorito cálcico empleado en zonas tropicales «Bleach tropical» (con menos de un 0,3% de agua) libre de metales pesados tiene una vida útil de más de 2 años, si se almacena correctamente.

Si no se almacenan en contenedores herméticos, los hipocloritos sufren pérdida de cloro:

  • reacción con agua:

Ca(ClO)2 + CaCl2 +2H2O 2 Ca(OH)2 +2Cl2

  • reacción con el dióxido de carbono:

Ca(ClO)2 + CaCl2 +2CO2 2 CaCO3 +2Cl2

  • reacción con agua y dióxido de carbono:

Ca(ClO)2 +CO2 +H2O CaCO3 + 2 HClO

El término «contenido de cloro disponible», también denominado «cloro activo», representa la fracción en peso de cloro liberado cuando el producto reacciona con ácido clorhídrico. Los contenidos de cloro disponible, en % en peso oscilan entre el 34-35 % del hipoclorito tropical, el 35-37 % del polvo de blanquear y el 70 % del hipoclorito de alto porcentaje:

Ca(ClO)2 + 4HCl CaCl2 + 2H2O + 2Cl2 (99,2 % de cloro disponible)

NaClO + 2HCl H2O + NaCl + Cl2 (95,3 % de cloro disponible)

Ca(ClO)2 + CaCl2 + 4HCl 2CaCl2 + 2H2O + 2Cl2 (55,8 % de cloro disponible)

2NH2Cl + 4HCl 2NH4Cl + 2Cl2 (137,7 % de cloro disponible)

2ClO2 + 8HCl 4H2O + 5Cl2 (262,8 % de cloro disponible)

¡PRECAUCIÓN, LOS HIPOCLORITOS REACCIONAN CON LOS ÁCIDOS Y GENERAN CLORO GAS. EL CLORO GAS ES TÓXICO POR INHALACIÓN!

 

Fabricación

Los blanqueadores en polvo o lejías en polvo comerciales son una mezcla de hipoclorito cálcico, Ca(ClO)2, (CAS 7778-54-3), cloruro cálcico (CAS 10043-52-4) e hidróxido cálcico, Ca(OH)2, (CAS 1305-62-0), que contiene cantidades variables de agua. Se obtienen pasando cloro sobre cal hidratada. El método de preparación de Rheinfelden de Dynamit Nobel es una operación por lotes, donde la cal hidratada, cal muerta o hidróxido cálcico, en forma de polvo seco se trata con cloro líquido a 45 °C y baja presión (5,3 kPa) en un tambor de reacción horizontal, que agita permanentemente la masa de reacción mediante un rastrillo giratorio.

La reacción del hidróxido cálcico sólido y el cloro conduce a la formación de una mezcla de hipoclorito cálcico dibásico, Ca(ClO)2•2Ca(OH)2, (CAS 12394-14-8), y cloruro cálcico básico, CaCl2•Ca(OH)2•H2O, correspondiente a la conversión del 40% del hidróxido cálcico disponible:

5Ca(OH)2 +2Cl2 → Ca(ClO)2•2Ca(OH)2 + CaCl2•Ca(OH)2•H2O + H2O

En una cloración posterior, se forman el hipoclorito cálcico hemibásico, Ca(ClO)2•½Ca(OH)2, (CAS 62974-42-9), y cloruro cálcico hidratado. Después de la conversión de aproximadamente el 60 % del hidróxido cálcico, se detiene la reacción:

10Ca(OH)2 + 6Cl2 → Ca(ClO)2•Ca(OH)2 + Ca(ClO)2•½Ca(OH)2 +CaCl2•Ca(OH)2•H2O + 2 CaCl2•H2O + 3H2O

La reacción es fuertemente exotérmica, generando 1100 kJ por kg de cloro convertido. Este calor y la baja presión provocan que el agua formada durante la reacción y el cloro líquido se evaporen. En consecuencia, la masa de reacción se seca completamente al vacío a una temperatura máxima de 85 °C. El producto es un polvo de blanquear con un contenido de cloro disponible del 35-37%.

Para esta reacción también puede emplearse cloro gas pero la reacción es mucho más lenta (tarda de 2 a 3 veces más), la pérdida de cloro es mayor, y el contenido de cloro disponible del producto es menor.

Blanqueador tropical. Para reducir el contenido de agua, se añade al polvo de blanquear una cierta cantidad de óxido cálcico, «cal viva», que absorbe el agua transformándose en hidróxido cálcico. Aunque esta operación disminuye el contenido de cloro disponible en un 1-2 %, el «secado extra» permite que el polvo de blanquear resultante, conocido como blanqueador tropical, «Tropical Bleach», sea estable hasta temperaturas de 100 °C.


Hipoclorito de alto porcentaje.

Hipocloritos sólidos con contenido de cloro disponible del 70% o más pueden obtenerse por cloración de una lechada de hidróxido cálcico o de hipoclorito cálcico. Inicialmente, se forma el hipoclorito cálcico hemibásico, Ca(ClO)2•½Ca(OH)2. Si se continua clorando se forma hipoclorito cálcico dihidratado, Ca(ClO)2•2H2O (CAS 10035-04-8), que luego se seca para obtener el hipoclorito de alto porcentaje. En todas estas reacciones, se forma como subproducto cloruro cálcico. Algunos procesos buscan la recuperación del calcio mediante la adición de hipoclorito sódico:

2NaClO + CaCl2 Ca(ClO)2 + 2NaCl

En estos casos, el producto consiste principalmente en hipoclorito cálcico, cloruro sódico y agua, que luego se elimina.

 

Disoluciones de hipoclorito cálcico

Si se desea una solución de hipoclorito cálcico, se clora una lechada de cal, suspensión de hidróxido cálcico en agua. La solubilidad del hidróxido cálcico en agua es 1,3 g/L a 20 °C, por lo que es necesaria una filtración para obtener una solución de hipoclorito cálcico.

Para evitar el almacenamiento prolongado de las soluciones de hipoclorito, las lavanderías prefieren almacenar el polvo decolorante y luego preparar las soluciones de hipoclorito sódico utilizando carbonato sódico, sulfato sódico o hidróxido sódico (sosa caústica):

CaCl(ClO) +Na2CO3 NaClO + NaCl + CaCO3

CaCl(ClO) +Na2SO4 NaClO + NaCl + CaSO4

CaCl(ClO) + 2NaOH NaClO + NaCl + Ca(OH)2

Una desventaja de este método es la precipitación de CaCO3, CaSO4 y Ca(OH)2, que requiere la filtración o sedimentación de producto de reacción antes de la utilización de la solución de hipoclorito.

 

El hipoclorito cálcico como desinfectante

Las disoluciones que contienen cloro presentan una actividad desinfectante universal. Con la concentración adecuada y con el suficiente tiempo de contacto, las soluciones de hipoclorito pueden considerarse esterilizantes químicos ya que son capaces incluso de inactivar las esporas bacterianas. Sin embargo también tienen sus inconvenientes, son corrosivas para los metales y los tejidos vivos, y los compuestos orgánicos consumen mucho cloro y reducen rápidamente la concentración del mismo.

Las soluciones que contienen de 50-500 ppm de cloro disponible son eficaces contra bacterias vegetativas y la mayoría de los virus. La destrucción de las esporas bacterianas requiere concentraciones de orden de 2500 ppm con tiempos de exposición prolongados.

 

El hipoclorito cálcico como descontaminante

El hipoclorito cálcico se utiliza como agente descontaminante frente a los agentes químicos y biológicos, bien en forma de lechadas acuosas, disoluciones o incluso en forma de polvo, formando parte de diversas composiciones.

Descontaminante Composición
Lejía 2–6 %, en peso, de NaClO en agua
HTH (High-Test Hypochlorite) Ca(ClO)Cl + Ca(ClO)2 como sólido en forma de polvo o como lechada acuosa al 7%, en peso.
STB (Super-Tropical Bleach) Ca(ClO)2 + CaO como sólido en forma de polvo o como lechada acuosa al 7, 13, 40 y 70 %, en peso.
Polvo holandés (Dutch powder) Ca(ClO)2 + MgO
ASH (Activated Solution of Hypochlorite) Solución acuosa con un 0,5% de Ca(ClO)2 + un 0,5% de dihidrógeno fosfato sódico, NaH2PO4 + un 0,05% de detergente.
SLASH (Self-Limiting Activated Solution of Hypochlorite) Solución acuosa con un 0,5% Ca(ClO)2 + un 1.0% de citrato sódico + un 0,2% ácido cítrico + un 0,05% de detergente.

 

 

Referencias:

«Chlorine Oxides and Chlorine Oxygen Acids», Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.

«White’s handbook of chlorination and alternative disinfectants», Black&Veatch Corporation, 5Ed.

«Calcium hypochorite», Fact Sheet 2-19, http://www.who.int/water_sanitation_health/hygiene/emergencies/fs2_19.pdf

«Calcium Hypochlorite», APSP Fact Sheet, https://apsp.org/Portals/0/PDFs/Fact%20Sheets/Calcium%20Hypochlorite%20-%20July%2029,%202014.pdf

«Hypochlorite salts», https://monographs.iarc.fr/ENG/Monographs/vol52/mono52-8.pdf

«Calcium Hypochlorite (CaCl2O2)/Sodium Hypochlorite (NaOCl)», ATSDR, http://www.atsdr.cdc.gov/MHMI/mmg184.pdf

«Dry Calcium Hypochlorite», http://theprovidentprepper.org/wp-content/uploads/2015/07/calcium-hypochlorite-instructions.pdf

«Selection and Use of Chemical Disinfectants», http://www.memphis.edu/ehs/pdfs/disinfectant.pdf

«Chemical warfare agents: toxicology and treatment», Timothy C. Marrs, Robert L. Maynard & Frederick R. Sidell.

«Decontamination of Chemical Warfare Agents», Beer Singh, G.K. Prasad, K.S. Pandey, R.K. Danikhel, & R. Vijayaraghavan, Defence Science Journal, Vol. 60, No. 4, July 2010, http://www.publications.drdo.gov.in/ojs/index.php/dsj/article/viewFile/487/245

 

 

 

 

 

La amenaza química del Daesh

La amenaza química del Daesh

René Pita y Juan Domingo

Este artículo de análisis se escribió el 21 de noviembre de 2015. Una versión resumida fue publicada en La Voz de Galicia el 21 de febrero de 2016. El texto completo se publica ahora en cbrn.es.

 

Tras los atentados yihadistas del 13 de noviembre de 2015 en París, ha crecido la preocupación por la posibilidad de que el Daesh pudiera llevar a cabo ataques terroristas con armas químicas. Una situación parecida se produjo después de los atentados de Al Qaeda el 11 de septiembre de 2001 (11-S) en EE.UU. Pocos días después del 11-S, se realizaron varios envíos de sobres postales que contenían esporas de Bacillus anthracis, el agente biológico responsable del carbunco, una enfermedad conocida coloquialmente como ántrax. Estos envíos causaron cinco víctimas mortales, cifra que podría haber sido mayor si las autoridades sanitarias norteamericanas no hubiesen establecido el tratamiento con antibióticos de todas las personas sospechosas de haber estado expuestas a las esporas del microorganismo.

Por la proximidad en el tiempo con los atentados del 11-S, la lógica del momento hizo pensar que también era Al Qaeda la responsable del ataque biológico. Se sospechaba que durante los años que llevaba operando impunemente en territorio afgano, la organización terrorista había adquirido una importante capacidad de empleo de armas de destrucción masiva. Pero una vez finalizadas las operaciones militares en Afganistán no se encontró rastro alguno de esa capacidad, y únicamente se descubrieron tentativas para la puesta en marcha de algunos programas que no pasaron de una fase de planeamiento. Finalmente, en 2008, la investigación oficial sobre los envíos postales concluía que el responsable no fue el terrorismo yihadista sino un miembro del programa de defensa biológica del propio ejército norteamericano.

Tras los atentados en París de 2015, el primer ministro francés, Manuel Valls, alertaba sobre el riesgo de que el Daesh pudiese emplear armas químicas o biológicas. Estas declaraciones fueron entendidas como una amenaza concreta identificada por los servicios de inteligencia franceses. Sin embargo, las declaraciones de Valls se debían a que, pocos días antes, la Organización para la Prohibición de Armas Químicas (OPAQ) había hecho público un informe según el cual su Misión de Determinación de los Hechos en Siria confirmaba el empleo de iperita –también conocida como gas mostaza– en un ataque atribuido al Daesh en agosto de 2015. Con los ataques de París todavía recientes, la información de la OPAQ hacía verosímil la hipótesis de que el Daesh podía exportar este tipo de tácticas fuera de Siria.

Actualmente el Daesh ocupa territorios en Irak y Siria, si bien existen diferencias con respecto a la situación que tenía Al Qaeda en Afganistán. En primer lugar, el Daesh explota todos los recursos y riquezas de los territorios bajo su dominio. La financiación a través de la venta de petróleo es un claro ejemplo. En segundo lugar, y a diferencia de Afganistán, Irak y Siria tuvieron importantes programas de armas químicas. Por todo ello, cabe la posibilidad de que el Daesh pueda aprovechar las capacidades químicas que caigan en sus manos.

El programa químico iraquí permitió el uso masivo de armas químicas, especialmente iperita y sarín, en la guerra contra Irán en los años ochenta. Las investigaciones de la ONU y del Irak Survey Group –misión de investigación creada en el año 2003 y liderada por EE.UU.– confirmaron que el programa químico iraquí había finalizado a principios de los años noventa. No obstante, a fecha de hoy aún se siguen descubriendo restos de arsenales químicos que fueron abandonados o quedaron sin control.

El programa sirio, al igual que el iraquí, se decantó por la iperita y por los agentes neurotóxicos, como el sarín y el VX. Precisamente fue el sarín el agente químico utilizado el 21 de agosto de 2013 en las afueras de Damasco, que causó cientos de víctimas civiles. La presión de la comunidad internacional hizo que, semanas después, Siria se adhiriese a la Convención para la Prohibición de Armas Químicas (CAQ) y declarase su arsenal químico, que incluía, entre otros, unas 20 toneladas de iperita y 581 toneladas de DF, un precursor inmediato del sarín. Ante una difícil situación de guerra y de manera excepcional, se autorizó su destrucción fuera de Siria y el stock de iperita y DF fue trasladado a un buque norteamericano donde fue neutralizado, en aguas del Mediterráneo, bajo supervisión de la OPAQ.

Aun así, existen dudas de que Siria haya declarado toda su capacidad química. Durante las primeras inspecciones realizadas por la OPAQ en territorio sirio se encontraron discrepancias con las cantidades declaradas de agentes químicos e instalaciones de producción. Asimismo, tal y como ocurrió en Irak, es probable que, debido a la situación de guerra, algunos stocks de armas químicas pudieran haber quedado abandonados y fuera del control del gobierno sirio.

Con este escenario, existen distintas posibilidades que permitirían al Daesh acceder al arma química. La primera y más obvia sería a través de un arsenal abandonado en territorio bajo su control. En el caso de las armas químicas iraquíes, su principal problema sería el grave deterioro de la munición con el paso de los años, que haría peligrosa su manipulación. Además, el agente químico estaría bastante degradado por la acción del tiempo y las condiciones de almacenamiento. Por ejemplo, es frecuente que la munición cargada con iperita encontrada en Irak esté polimerizada, lo que impediría su empleo.

Con respecto a la munición química siria, de más reciente producción, la limitación de uso estaría condicionada por la disponibilidad de vectores de lanzamiento. De nada le serviría al Daesh poseer granadas de mortero o proyectiles de artillería químicos si no dispusiese de los morteros o de los cañones necesarios para su lanzamiento. Por ello, su uso estaría restringido al territorio sirio o sus proximidades, donde la organización terrorista dispone de medios de lanzamiento que pueden adaptarse a esta munición. De hecho, todo apunta a que en los ataques con iperita que tuvieron lugar en Irak y Siria en agosto de 2015, se habría empleado munición de origen sirio. En ambos casos, las escasas consecuencias de los ataques se habrían debido a la poca munición química disponible.

Otra de las posibles opciones sería que el Daesh consiguiese sintetizar sus propios agentes químicos de guerra y cargar las municiones en sus talleres de producción. En este sentido, se conocen los intentos de captar a personal de la Universidad de Mosul con conocimientos de síntesis en química orgánica y de acceder a instalaciones industriales iraquíes con pequeñas cantidades de precursores de iperita. Sin embargo, la producción de armas químicas a gran escala es un proceso complejo que requiere un equipo multidisciplinar de personal con el conocimiento explícito y tácito, es decir, con el know-how adquirido a través de la investigación aplicada. Esto complica a cualquier organización terrorista la opción de la producción propia.

Debido a estas dificultades para acceder a un arma química «clásica», el Daesh ha optado por recurrir a otro tipo de alternativas. Es el caso de los productos químicos industriales tóxicos (TIC) que, aunque son menos tóxicos, resultan de más fácil obtención. Con frecuencia se producen en Irak y Siria atentados con artefactos explosivos improvisados (IED) combinados con bombonas de cloro y otros TIC. A pesar de que estos artefactos causan menos víctimas que los IED convencionales, documentos incautados al Daesh muestran su interés en continuar con su empleo por el importante impacto psicológico que producen. Al mismo tiempo, dejan clara su intención de seguir explorando el acceso a otros agentes químicos más peligrosos.

Por último, es necesario hacer mención a Libia, que también desarrolló un programa de armas químicas. Si bien aquí el Daesh no tiene una presencia tan amplia como en Irak o Siria, sí ha mostrado su interés en afianzarse y expandirse en este país por su posición estratégica en el litoral mediterráneo y a las puertas de Europa. Libia se adhirió a la CAQ en enero de 2004, declarando 25 toneladas de iperita y 1.390 toneladas de precursores. Esta cantidad se incrementó a finales de 2011, tras la caída de Muamar el Gadafi, cuando se descubrieron dos instalaciones no declaradas con cerca de 2 toneladas de iperita cargada en proyectiles de artillería y bombas de aviación. La destrucción de toda la iperita almacenada, verificada por la OPAQ, finalizó a principios de 2014.

Tal y como ocurre en Irak y Siria, también existe la posibilidad de que otros stocks no declarados en Libia, de forma intencionada o no, puedan caer en manos de organizaciones terroristas. Ahora bien, el programa libio tuvo problemas técnicos para estabilizar los agentes químicos que producía, especialmente los agentes neurotóxicos, de los que sólo se tiene constancia del almacenamiento de precursores. Según la doctrina libia de empleo de armas químicas, su producción y carga en municiones se hacía justo antes de su empleo. También la experiencia de la destrucción del armamento químico supervisada por la OPAQ muestra que la iperita de reciente producción se encontraba polimerizada, lo que indicaría problemas de estabilización. El empleo de munición del programa libio estaría, por tanto, limitado por el estado en el que se encontrase.

Al igual que el resto de organizaciones terroristas yihadistas, el Daesh ha mostrado interés por conseguir una capacidad química, consciente del poder que le conferiría. Tras los ataques con iperita en Irak y Siria en agosto de 2015, la organización terrorista ya debe conocer los considerables problemas técnicos y de seguridad que supone transportar y emplear este armamento de forma eficaz. Pero aun siendo conscientes de estas limitaciones y de la escasa probabilidad de éxito, el importante efecto psicológico y mediático que entrañaría incluso el simple intento de atentar con este armamento en Occidente, nos obliga a no despreciar ni minimizar la posibilidad de un escenario de este tipo.

Impresoras 3D, ¿Nacidas para matar?

Pues yo diría que no, pero no parece opinar lo mismo la analista del Instituto Español de Estudios Estratégicos (IEEE) que firma el documento de análisis «Las impresoras 3D: un desafío en la lucha de la proliferación de armas de destrucción masiva»1.

El IEEE es un organismo del Ministerio de Defensa de España dependiente del Centro Superior de Estudios de la Defensa Nacional (CESEDEN) y del Secretario General de Política de Defensa (SEGENPOL), que en el 2010 celebró su 40º aniversario de servicio a la sociedad española. El que el IEEE sea un organismo del Ministerio de Defensa ha hecho que este documento haya sido motivo de numerosos comentarios en medios de comunicación social, siendo recibido por el público con comentarios jocosos, que en el mejor de los casos lo tachan tan solo de alarmista o de barbaridad2,3,4,5,6.

Aunque no soy un experto en impresión 3D, mis conocimientos como especialista en Defensa NBQ me hacen pensar que las impresoras 3D no representan un desafío en la lucha de la proliferación de armas de destrucción masiva.

No es objeto de este artículo explicar en qué consiste la impresión 3D. Indicar tan solo que lo que ahora se llama popularmente Impresión 3D (3DP, 3D Printing) se corresponde con la Fabricación Aditiva (AM, Additive Manufacturing), término formal para lo que en un principio fue conocido como Prototipado Rápido (RP, Rapid Prototyping). Según la  ASTM F2792-12A «Standard Terminology for Additive Manufacturing Technologies»7, la Fabricación Aditiva es el proceso de unión de materiales para hacer objetos a partir de datos 3D de un modelo, generalmente capa sobre capa, en contraposición con las metodologías de fabricación sustractivas.

Las tecnologías y materiales empleados, así como las aplicaciones, probadas y en desarrollo, de lo que se entiende por impresión 3D son muy variadas y numerosas, y el lector interesado en el tema puede consultar en internet estos términos, o profundizar en ello con la lectura de algunos de los numerosos libros publicados8,9,10.

 

«Tubérculo» no es lo mismo que «Ver tu culo»

Proliferación Nuclear

En referencia a la proliferación nuclear, el documento del IEEE explica:

«Como se ha señalado con anterioridad, la información sensible, con mayor o menor dificultad, puede estar al alcance de una organización con fines delictivos y si además, se añade la posibilidad de materializar esa información en algo físico nos encontramos con un gran reto desde el punto de vista de la seguridad. Por ejemplo, en el caso de la proliferación nuclear, no se puede fabricar material fisible con una impresora 3D pero en el futuro y a medida que la impresión 3D de metal se vaya desarrollando11, se podrían crear centrifugadoras o cabezas de misiles»1.

La cita corresponde al artículo «3D printing WMD proliferation and terrorism risks»11, cuyo autor Francisco Galamas, licenciado en Relaciones Internacionales, recoge el comentario del escritor Stew Magnusson en su artículo «Proliferation of cheap 3-D printers raises security concerns»12.

Faltaría más que las impresoras 3D fuesen la piedra filosofal tan buscada por los alquimistas. Por supuesto que las impresoras 3D no pueden transformar el plomo en oro, ni transformar el uranio-238 en uranio-235. Eso sí, con cierto tipo de impresoras, que no están al alcance de cualquiera, pueden fabricarse, en distintos tipos de materiales, determinadas partes de algunos elementos, tales como válvulas, centrifugadoras o cabezas de misiles.

No se puede fabricar el elemento completo, pero la tecnología de impresión puede hacer más sencillo y fácil el proceso de producción. Los precios de las impresoras 3D pueden ir desde unos 1000€, una RepRapBCN (tamaño máximo de impresión 250×200×200 mm) a unos 300.000€, una Fortus900mc (tamaño máximo de impresión 914×610×914 mm)13.

 

Proliferación Química

Sobre las armas químicas el documento del IEEE indica:

“Por lo que respecta a la proliferación de armas químicas, las impresoras 3D también ofrecen la posibilidad, hasta la fecha de forma incipiente, de combinar diferentes reactivos para crear un producto químico. Este desarrollo se está llevando a cabo, principalmente, en la industria farmacéutica ya que permite la fabricación de medicamentos ˈin situˈ es decir producir un medicamento donde se necesite. Esta opción tiene la gran ventaja de ofrecer una mayor disponibilidad geográfica de estos fármacos a un menor coste, facilitando su suministro a países en desarrollo. Sin embargo, como contrapartida también abre la puerta a la síntesis de compuestos susceptibles de ser empleados como armas químicas141.

En el artículo citado «3D printing risks: not just plastic guns, but military parts, drugs and chemical weapons»14, esto es, «Los riesgos de la impresión 3D: no solo armas de plástico, sino componentes militares, drogas y armas químicas», su autora Roxanne Palmer, periodista sobre ciencia para el International Business Times («Bachelor of Arts» con un «Master of Science», de dos años), sin cortarse un pelo escribe: «Hoy en día, podemos imprimir orejas, como divulga Popular Science; en un futuro cercano, un terrorista podría ser capaz de imprimir ricina»14.

La ricina es una de las toxinas más potentes conocidas, que se extrae de las semillas del ricino (Ricinus communis) y que tiene dos cadenas polipeptídicas, una capaz de inhibir la síntesis de proteínas y otra con propiedades de lectina, es decir, capaz de unirse a hidratos de carbono. La cadena A (RTA), de 267 aminoácidos y 30-32 kDa, unida por un puente disulfuro a una cadena B (RTB), de 262 aminoácidos y 32-34 kDa. El puente disulfuro entre ambas cadenas se establece mediante los restos de cisteína en la posición 259 de la RTA y 4 de la RTB15.

No creo que con una impresora 3D se pueda sintetizar ricina, aunque quizás se pueda depositar ricina en un soporte, utilizando una disolución de ricina como tinta. Incluso la dificultad de extraer ricina de las propias de semillas del ricino fue publicada en un artículo de la revista Medicina Militar16.

En el artículo de Palmer, citando los trabajos del químico Leroy Cronin de la Universidad de Glasgow, la periodista escribe: «… Pero la capacidad de imprimir drogas según se necesiten plantea necesariamente la posibilidad de que la gente pueda imprimir drogas o cosa peores. La fórmula de la cocaína no es precisamente un secreto comercial. Tampoco lo es la fórmula del cloro gaseoso, una tosca arma química utilizada por los alemanes en la I Guerra Mundial y por los insurgentes iraquíes a mediados de la década de 2000”14.

Cuando habla de imprimir drogas se está refiriendo en realidad a dosificar drogas, es decir, que disponiendo del principio activo, se deposita la dosis personalizada. Las tecnologías de impresión tridimensional (3DP) permiten la creación de formas farmacéuticas de dosificación altamente reproducibles con un control preciso del tamaño de la gota y perfiles complejos de liberación de drogas17.

El grupo de Cronin trabaja fundamentalmente en cuatro áreas principales de investigación: fundamentos moleculares, biología inorgánica, sistemas sintéticos y dispositivos híbridos. Para el grupo, una aplicación atractiva y poco explorada, es la utilización de una impresora 3D para llevar a cabo reacciones químicas en las que los reactivos imprimen (se dosifican) directamente en un recipiente de reacción «3D reactionware», donde el diseño del recipiente de reacción, la construcción y la operación están bajo control digital18.

Obviamente, las estructuras de prácticamente todos los agentes químicos de guerra son conocidas (por ejemplo, iperita, sarín, somán, tabún, y VX, entre otros), y se conocen métodos de síntesis siguiendo rutas más o menos complejas. Pero se requieren recipientes de reacción apropiados y sobre todo los precursores necesarios para la síntesis, y no creo que en este punto las impresoras 3D solucionen o faciliten la resolución de los problemas.

No me imagino a un terrorista empleando una impresora 3D (y no digamos una HP Deskjet 930C “tuneada”) para mezclar el DF (Difluoruro de metilfosfonilo), el alcohol isopropílico y la isopropilamina, componentes necesarios para la síntesis binaria del sarín, cuando podría hacerlo mediante el empleo de micro-reactores de flujo o de reactores convencionales químicamente resistentes, o incluso con medios caseros, con el peligro que ello entraña.

 

Proliferación Biológica

Por último, respecto a la proliferación de las armas biológicas, el documento del IEEE señala:

«En el terreno de la biología, las posibilidades que ofrecen las impresoras 3D conocidas como ˈbioimpresorasˈ son casi infinitas. En la actualidad, ya se ha conseguido la creación de tejidos como piel humana, partes de intestino, huesos y corazón, abriendo un futuro muy esperanzador en el trasplante de órganos y la curación de enfermedades13. A esta posibilidad se une la de generar vacunas de una forma más barata y accesible, lo que supone un gran avance para frenar las enfermedades de los países en desarrollo. Sin embargo, frente a estos beneficios incuestionables se une la posibilidad de que este mismo proceso pueda ser empleado de forma malintencionada ya que la biología sintética abre la puerta a la creación de nuevos patógenos o modificar los existentes haciéndolos más resistentes a los medicamentos14 ….BioCurious es una organización integrada por científicos, definida por ellos mismos como el primer “espacio del hacker” del mundo en el terreno de la biología. Su filosofía se basa en la premisa de que los avances en el terreno de la biología tienen que ser accesibles para todo el mundo. Uno de los hitos más relevantes que han conseguido este grupo es transformar una impresora de tinta HP 5150 en una bioimpresora capaz de lograr células vivas17 «1.

Pues bien, imprimir con células vivas no se equivale con obtener células vivas. El término «bioprinting» se refiere a la impresión con materiales biológicos. La primera definición de «bioprinting» fue propuesta en la primera Conferencia Internacional de «bioprinting» en el Instituto de Ciencia y Tecnología de la Universidad de Manchester  en septiembre de 200410. «Bioprinting» se define como «el uso de procesos de transferencia de material para diseño y ensamblado de materiales relevantes desde el punto de vista biológico – moléculas, células, tejidos y biomateriales biodegradables – con una organización prescrita para llevar a cabo una o varias funciones biológicas»10.

Es cierto que «la biología sintética abre, efectivamente, la puerta a la creación de nuevos patógenos o a modificar los existentes haciéndolos más resistentes a los medicamentos»1, pero las impresoras 3D no juegan en ello papel alguno.

En el artículo que se cita en el documento del IEEE, titulado «DIY-Bioprinter» («Hágalo usted mismo-Bioimpresora»)19, la comunidad BioCurious explica cómo transformó una impresora de tinta HP 5150 en una bioimpresora capaz de imprimir con una solución de arabinosa en papel de filtro, para luego cortarlo y ponerlo en una placa de agarosa previamente sembrada con Escherichia coli que incorporaba el plásmido pGLO. Este plásmido lleva la proteína fluorescente verde (GFP), bajo control de un promotor sensible a la arabinosa. Pero en ningún momento la bioimpresora HP 5150 fue capaz de «crear» células vivas.

 

Conclusión:

El análisis del documento del IEEE me permite concluir que está redactado de manera confusa y que carece de base científica. Lo que resulta más sorprendente es que las referencias bibliográficas que emplea la analista para justificar su texto no se corresponden con lo expresado en dichas referencias.

Es imprescindible que cualquier documento relacionado con las armas NBQ sea revisado antes de su publicación por algún experto en la materia, máxime cuando esta publicación se realiza en la página web de un organismo oficial perteneciente al Ministerio de Defensa.

 

Referencias:

  1. «Las impresoras 3D: Un desafío en la lucha de la proliferación de armas de destrucción masiva», María del Mar Hidalgo García, 2016, http://www.ieee.es/Galerias/fichero/docs_analisis/2016/DIEEEA17-2016_Impresoras_3D_MMHG.pdf
  2. «Defensa alerta que las impresoras 3D pueden servir para crear ˈarmas de destrucción masivaˈ», http://www.lavanguardia.com/politica/20160326/40683743363/armas-destruccion-masiva-defensa-impresoras-3d.html
  3. «Advierten que las impresoras 3D pueden servir para crear ˈarmas de destrucción masivaˈ», http://www.clarin.com/mundo/Advierten-impresoras-servir-destruccion-masiva_0_1548445334.html
  4. «Las impresoras 3D son también un desafío para la seguridad global», http://www.expansion.com/actualidadeconomica/analisis/2016/03/28/56efe2b8268e3ebc248b45da.html#comentarios
  5. «Defensa alerta sobre las impresoras 3D: pueden servir para crear armas de destrucción masiva», http://vozpopuli.com/actualidad/78682-defensa-alerta-sobre-las-impresoras-3d-pueden-servir-para-crear-armas-de-destruccion-masiva
  6. «El Instituto de Estudios Estratégicos alerta de que con las impresoras 3D se pueden crear armas de destrucción masiva», http://www.lasexta.com/programas/mas-vale-tarde/noticias/instituto-estudios-estrategicos-alerta-que-impresoras-pueden-crear-armas-destruccion-masiva_2016032801031.html
  7. ASTM F2792-12A «Standard terminology for additive manufacturing technologies», http://web.mit.edu/2.810/www/files/readings/AdditiveManufacturingTerminology.pdf
  8. «Additive manufacturing technologies-3D printing, rapid prototyping, and direct digital manufacturing», I. Gibson, D. Rosen, B. Stucker
  9. «Laser additive manufacturing of high-performance materials», Dongdong Gu
  10. «Bioprinting-principles and applications», Chua Chee Kai, Yeong Wai Yee
  11. «3D printing WMD proliferation and terrorism risks», Francisco Galamas, http://www.academia.edu/11289295/3D_Printing_WMD_Proliferation_and_Terrorism_Risks
  12. «Proliferation of cheap 3-D printers raises security concerns», Stew Magnuson, http://www.nationaldefensemagazine.org/archive/2013/November/pages/ProliferationofCheap3-DPrintersRaisesSecurityConcerns.aspx
  13. «De la impresión 3D a la fabricación digital», https://caminstech.upc.edu/es/blog/impressio3D
  14. «3D printing risks: not just plastic guns, but military parts, drugs and chemical weapons», Roxane Palmer, http://www.ibtimes.com/3d-printing-risks-not-just-plastic-guns-military-parts-drugs-chemical-weapons-1275591
  15. «Ricina: una fitotoxina de uso potencial como arma», René Pita Pita, María Rosa Martínez-Larrañaga, Arturo Anadón, Rev. Toxicol. 2004, 21: 51-63.
  16. «Extracción de ricina por procedimientos incluidos en publicaciones paramilitares y manuales relacionados con la red terrorista Al Qaeda», Pita R., Domingo J., Aizpurua C., Gonzalez S., Cique A., Sopesen JL., Gil M., Jimenez MV., Ybarra C., Cabria JC. y Anadon A. Med Mil (Esp) 2004, 60: 172-175.
  17. «Medical applications for 3D printing: current and projected uses», C. Lee Ventola, Pharmacy & Therapeutics 2014, 39: 704-711, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189697/pdf/ptj4910704.pdf
  18. «Integrated 3D-printed reactionware for chemical synthesis and analysis», Leroy Cronin et al., Nature Chemistry, 2012, 4: 349-354, http://www.chem.gla.ac.uk/cronin/files/papers/2012/222.SymesNatureChem2012.pdf
  19. «DIY-Bioprinter», http://www.instructables.com/id/DIY-BioPrinter/

Iperita después de Saddam Hussein

La OPAQ (Organización para la Prohibición de las Armas Químicas) tiene pruebas de que se ha empleado iperita, también conocida como gas mostaza, contra las tropas Peshmerga que combaten contra el Estado Islámico en el norte de Iraq. Al menos eso dicen diversos medios de comunicación que citan a fuentes anónimas de la OPAQ, y que de confirmarse sería el primer empleo conocido de armas químicas en Iraq, desde la caída de Saddam Hussein, capturado el 13 de diciembre de 2003 y ahorcado, después de juzgado, el 5 de noviembre de 2006.1,2,3,4,5

Recordemos que no hace mucho la OPAQ confirmaba el empleo de iperita en la localidad de Marea, República Árabe Siria, en los combates entre fuerzas rebeldes y miembros del Estado Islámico los días 21 de agosto, y 1 y 4 de septiembre de 2015. La misión para la determinación de los hechos de la OPAQ en Siria confirmaba con la máxima certeza que como mínimo dos personas resultaron expuestas a mostaza de azufre (iperita), y que muy probablemente los efectos de la mostaza de azufre causaran la muerte de un lactante.6

 

El presunto empleo de armas químicas en territorio iraquí
A finales del verano de 2015, la Autoridad Nacional Iraquí de Monitorización (INMA) recibió información sobre varios posibles ataques químicos contra las fuerzas Peshmerga en la región del Kurdistán. La INMA inició, en cooperación con el Cuerpo de Defensa Química, las fuerzas Peshmerga y un equipo de especialistas, una investigación en la zona del incidente, situada a 60 kilómetros de la ciudad de Erbil. El equipo recabó información sobre el incidente, recogió muestras de suelo y de fragmentos de munición y entrevistó a algunos de los afectados.

Iraq, en virtud de los artículos IV, «ARMAS QUÍMICAS», y IX, «CONSULTAS, COOPERACION Y DETERMINACION DE LOS HECHOS» de la CAQ, envió a la Secretaría Técnica de la OPAQ, el 15 de septiembre de 2015, su informe inicial, con coordenadas del incidente, mapas, y fotos de las lesiones y de los fragmentos de las municiones. Las autoridades iraquíes pedían la asistencia de la Secretaría Técnica (TS) para una investigación sobre el presunto empleo de armas químicas en su territorio.

El 16 de septiembre de 2015, el Ministerio de Asuntos Exteriores de Iraq recibió una carta del Director General de la OPAQ, ofrecía la asistencia de la Secretaría Técnica para la investigación que llevaban a cabo las autoridades iraquíes. El gobierno iraquí agradeció y aceptó este ofrecimiento el 11 de octubre de 2015.

Los resultados de las muestras que la INMA envió al laboratorio para su análisis indicaban el posible empleo de gas mostaza en dicho ataque. El informe técnico, que incluía la metodología de los análisis y el resultado de los mismos, fue enviado a la Secretaría Técnica en noviembre de 2015. Además, la INMA proporcionó información adicional sobre una serie de incidentes sobre los que existían sospechas de ser ataques con armas químicas, incluyendo la información obtenida de los informes de las fuerzas de la coalición internacional.

En virtud del apartado 38(e) del artículo VIII de la Convención:»La Secretaría Técnica: … Proporcionará asistencia y evaluación técnicas a los Estados Partes en el cumplimiento de las disposiciones de la presente Convención, incluida la evaluación de las sustancias químicas enumeradas y no enumeradas en las Listas.», la Secretaría Técnica organizó un equipo técnico para la realización de una visita de asistencia técnica (TAV) a Iraq.

De este modo, del 27 al 30 de octubre de 2015, un equipo de la Secretaría Técnica de la OPAQ llevó a cabo en Iraq una primera visita de asistencia técnica (TAV). Durante la visita, se celebraron reuniones con las autoridades iraquíes y se acordó la realización de dos visitas posteriores. En la primera de estas visitas, en la primera semana de noviembre, al lugar donde tuvo lugar en mencionado incidente se recolectaron muestras adicionales a fin de que éstas fueran analizadas en algunos de los Laboratorios Acreditados de la OPAQ.

La segunda de estas visitas también a la zona del incidente, durante la última semana de noviembre, fue para obtener muestras biológicas de los afectados, así como para entrevistar a los mismos y al personal médico que los atendió.

En febrero de 2016, la INMA recibió el informe del TAV en relación con las actividades llevadas a cabo durante las tres visitas ya mencionadas a Iraq. El informe del TAV confirmó los resultados del análisis de las autoridades iraquíes, es decir, el empleo de iperita o gas mostaza, pero sin atribuir a parte alguna el empleo de la misma.

 

El incidente de Erbil
El 11 de agosto de 2015, aproximadamente a las 18:30, fue atacada una base Peshmerga, que se encuentra a unos 60 km de Erbil y unos 65 km de Mosul. El punto de impacto era un edificio dentro de la base utilizado por las fuerzas Peshmerga como zona de descanso.

El incidente afectó aproximadamente a unas 50 personas, la mayoría de los cuales presentó síntomas leves tales como dificultad para respirar y vómitos. De los 50 afectados, 11 de ellos fueron tratados en un hospital de Erbil de lesiones parecidas a quemaduras químicas. En las fotografías mostradas por los representantes iraquíes se apreciaba que los afectados sufrían eritema de piel y ampollas grandes y difusas que parecían contener un líquido amarillento; incluso alguno mostraba una gran zona ulcerada.

El Ministerio de Defensa iraquí fue informado sobre un ataque químico en una base Peshmerga en el que 50 personas resultaron heridas, 11 de los cuales con lesiones en piel. Se envió al lugar del incidente un equipo de inspección del Cuerpo de Defensa Química para que llevase a cabo una investigación y recolectase muestras para su análisis. A su llegada al lugar del incidente el equipo de inspección, equipado con ropa de protección y sistemas de detección (LCD, ICAM y papeles detectores), accedió al edificio afectado, que había sido tapiado por los Peshmerga después del ataque, pero ninguno de los detectores portátiles dio señal de alarma.

El equipo de inspección tomó muestras de tierra y muestras por impregnación de los fragmentos de munición (incluida la cola de un proyectil de mortero de 81 mm) para su análisis, y en ningún momento los sistemas de detección dieron señal de alarma, hecho que se atribuye a las operaciones de descontaminación llevadas a cabo después del ataque, antes de la llegada del equipo de inspección.

La INMA recopiló fotografías de los fragmentos de mortero, así como fotografías tomadas en el hospital uno o dos días después de la exposición, que mostraban las quemaduras químicas sufridas por algunos de los afectados.

Además de los hechos denunciados, parece ser que hubo en las proximidades otros cinco ataque químicos (posiblemente con cloro), no denunciados, ni incluidos en el informe presentado ante la Secretaria Técnica debido a que el equipo de inspección del Cuerpo de Defensa Química no pudo acceder a ellos por su proximidad a la línea de fuego, pero que sí habrían sido visitados por un equipo de las fuerzas internacionales en Iraq, que llevaron a cabo tareas de muestreo y entrevistas. Una copia del informe del equipo de las fuerzas internacionales se entregaría posteriormente al equipo técnico que llevó a cabo la visita de asistencia técnica (TAV).

 

Toma de muestras medioambientales en la segunda visita de asistencia técnica
Durante su segunda visita, del 10-12 de noviembre de 2015, el equipo técnico de la OPAQ tomó un total de12 muestras a partir de 7 elementos recogidos por el equipo de inspección del Cuerpo de Defensa Química iraquí en tres ubicaciones diferentes, a saber:

  • una muestra de líquido procedente de una supuesta munición química encontrada en la ubicación 1,
  • el cuerpo de un cohete con su cabeza de guerra, recogidos en la ubicación 1, que contenía un polvo gris,
  • un fragmento de mortero, recogido de ubicación 2, que contenía un polvo gris,
  • un fragmento de proyectil de mortero, recogido en la ubicación 3, procedente del ataque del 11 de agosto de 2015, sospechoso de contener iperita
  • un fragmento de proyectil de mortero, recogido en la ubicación 3, procedente del ataque del 11 de agosto de 2015, sospechoso de contener iperita
  • una muestra de tierra, recogida en la ubicación 3, en el punto de impacto del proyectil
  • una muestra de tierra recogida en la ubicación 3, en el punto de impacto del proyectil

Las muestras tomadas por el equipo TAV fueron recogidas y embaladas de acuerdo con los procedimientos de la OPAQ para el manejo de productos químicos tóxicos (QDOC/LAB/WI/CSO1 y QDOC/LAB/WI/CSO3). Las actividades se realizaron en un laboratorio adecuadamente equipado y seguro. Una vez envasados, las muestras se trasladaron al Laboratorio de la OPAQ de conformidad con las normas IATA para el transporte de mercancías peligrosas.

Las muestras se analizaron posteriormente en el Laboratorio de la OPAQ, según los procedimientos operativos estándar y las instrucciones de trabajo para el análisis de muestras auténticas mediante cromatografía de gases-espectrometría de masas (GC-MS) y espectroscopía Raman (QDOC/LAB/WI/SP2 y QDOC/LAB/WI/SP3).

Sólo cuatro muestras, correspondientes a la ubicación 3, dieron positivo, dos de ellas con iperita y productos de degradación de la iperita, y las otras dos con productos de degradación de la iperita.

 

Toma de muestras biomédicas en la tercera visita de asistencia técnica
La tercera visita del equipo TAV se llevó a cabo en el periodo del 28 de noviembre al 3 de diciembre de 2015, y tenía como finalidad entrevistar a los afectados y realizar una toma de muestras biomédicas y realizar un estudio epidemiológico en base a tres puntos:

  • necesariamente debe haber un vínculo biológicamente plausible entre la exposición y sus consecuencias;
  • necesariamente debe haber una relación temporal entre la exposición y sus consecuencias; y
  • no debe existir ninguna otra explicación probable para los síntomas.

Según informaron las autoridades Peshmerga 35 combatientes resultaron afectados por el ataque químico, y el equipo TAV entrevistó y tomo muestras biomédicas a 14 de estos combatientes, los más seriamente afectados. Las muestras de sangre de estos 14 afectados entrevistados, se dividieron en tres alícuotas y se separó el plasma de las mismas, para su transporte al Laboratorio de la OPAQ. En el Laboratorio de la OPAQ las muestras desempacadas y almacenadas inicialmente en un lugar seguro fueron después re-empacadas y enviadas a dos laboratorios, vigiladas por personal de la OPAQ, para asegurar así la cadena de custodia.

Los resultados de las muestras biomédicas aún no se han dado a conocer.

 

Referencias

  1. » Samples confirm IS used mustard agent in Iraq attack», http://www.bbc.com/news/world-middle-east-35582861
  2. «IS allegedly used mustard gas in Iraq», http://www.middleeasteye.net/news/allegedly-used-mustard-gas-iraq-1792058542
  3. «Islamic State suspected in August mustard gas attack in Iraq», http://www.japantimes.co.jp/news/2016/02/16/world/islamic-state-suspected-in-august-mustard-gas-attack-in-iraq/#.Vu1zjuZ5Y1Z
  4. «Mustard gas «used in Iraq» in August», http://news.yahoo.com/mustard-gas-used-iraq-august-sources-close-chemical-162038513.html
  5. «New Horror Confirmed-ISIS Using Banned Chemical Weapons Against Troops», http://www.christianpost.com/news/isis-chemical-weapons-sulfur-mustard-gas-iraq-kurds-troops-opcw-diplomat-157813/
  6. S/1320/2015, «Informe de la misión para la determinación de los hechos de la OPAQ en Siria en relación con los presuntos incidentes de Marea, República Árabe Siria», 29 de octubre de 2015, en http://www.the-trench.org/wp-content/uploads/2016/01/OPCW-FFM-20151029-Marea.pdf, y en http://www.securitycouncilreport.org/atf/cf/%7B65BFCF9B-6D27-4E9C-8CD3-CF6E4FF96FF9%7D/s_2015_908.pdf

Gerhard Schrader

Un día como hoy, hace 113 años nació Gerhard Schrader, considerado el padre de los pesticidas modernos y de los agentes neurotóxicos de guerra.

El 25 de febrero de 1903 nacía en Bortfeld, una pequeña localidad de la Baja Sajonia, situada a unos 60 km al este de Hannover, Paul Gerhard (Heinrich) Schrader.

Schrader creció en una familia religiosa protestante y disfrutó de una infancia agradable. Comenzó trabajando en un gimnasio en la localidad de Brunswick para después estudiar química en la Universidad Técnica de esa misma localidad. En octubre de 1928, después de completar su doctorado en ingeniería química en la Universidad de Brunswick, y con tan solo 25 años, comenzó a trabajar en un laboratorio de las fábricas de la Bayer AG en Elberfeld (estas fábricas formaban parte del gran combinado químico de la I.G. Farben que también incluía a otras cinco grandes empresas, Agfa, Chemische Fabrik Griesheim-Elektron, Chemische Fabrik vorm. Weiler Ter Meer, BASF y Hoechst que incluía a su vez Cassella y Chemische Fabrik Kalle).

En las navidades de 1928 se comprometía con Gertrud Ahlers, con la que se casaría en 1929. Un año más tarde, en 1930 nacería su primera hija Wiebke, y en abril de 1935 nacería su segunda hija Kristin.

Schrader se había especializado en química inorgánica, pero en 1930, después de pasar dos años en Elberfeld, fue transferido al principal laboratorio de investigación de la Bayer sobre tintes de naftaleno, en Leverkusen.

Cuando Otto Bayer (químico industrial, que desarrolló la primera síntesis de un poliuretano a partir de diisocianato de 1,6-hexametileno y de 1,4-butanodiol) asumió dirección de las investigaciones en 1934, le asignó la tarea de sintetizar nuevos pesticidas. En aquel momento, el Reich alemán quería liberarse de su dependencia de las importaciones extranjeras en el sector de la alimentación. Para poder lograr esto, después de la transferencia de grandes áreas en el este al terminar la I Guerra Mundial, había que aumentar los rendimientos de las cosechas. A principios de 1930, el Reich alemán había gastado 30 millones de marcos alemanes en pesticidas basados en extractos de plantas (principalmente nicotina), pero esperaba el apoyo de la industria alemana para ser independientes. Al principio, habían obtenido algunos éxitos con algunos fluoruros orgánicos, que resultaron eficaces contra el escarabajo y la polilla, pero no era suficiente.

En Leverkusen, Schrader se aplicó con energía y entusiasmo al nuevo campo de los pesticidas sintéticos. Otto Bayer encargó a Schrader la tarea de desarrollar un fumigante no inflamable que permitiera acabar con los gorgojos en los silos con grano, así como con las pulgas en los buques y salas de estar. Existía un enorme mercado potencial para un producto de ese tipo, pues por entonces los fumigantes más empleados, el formiato de etilo y el óxido de etileno, provocaban algunas veces explosiones en los silos y en otros espacios cerrados.

Los compuestos de flúor habían comenzado a atraer el interés de los químicos. Se habían sintetizado nuevos tintes que contenían flúor, los «freones» eran famosos, el fluoracetato se recomendaba para proteger la lana y ya se habían patentado algunos fluoruros inorgánicos como insecticidas. Por otra parte, a través del Departamento de química Inorgánica de la I. G. Farben se disponía de fluoruro de hidrógeno a escala industrial.

Así pues Schrader consciente de que los compuestos orgánicos que contenían flúor resultaban ser generalmente tóxicos, pensó que podrían ser buenos candidatos para nuevos insecticidas. En 1934, Schrader y su equipo comenzaron a introducir flúor en una amplia variedad de moléculas orgánicas que posteriormente Hans Kükental, biólogo de Leverkusen ensayaba para ver su actividad insecticida. Los primeros compuestos organofluorados que sintetizaron tenían un fuerte poder irritante sobre los ojos y los pulmones, lo que hacía impracticable su empleo como insecticidas. En 1935 sintetizó el 2-fluoroetanol (FCH2CH2OH) y el 2-fluoro-2´-hidroxidietil éter (FCH2CH2OCH2CH2OH) y a pesar de su toxicidad para los mamíferos, el 2-fluoroetanol fue patentado como rodenticida.

Decidió por ello enfocar la investigación sobre los compuestos orgánicos que contenían flúor y azufre. Algunas de las sustancias sintetizadas parecían ser fumigantes efectivos contra diversas plagas de insectos, pero ensayos adicionales demostraron que eran absorbidas por el grano tratado, y éste resultaba entonces inapropiado para el consumo humano. Cuando Schrader trató de aprovechar este inconveniente para desarrollar cereales tóxicos como un veneno para ratas, se encontró que las sustancias absorbidas se evaporaban gradualmente, y se reducía con el tiempo la toxicidad de los granos. Sin desanimarse por estos reveses, Schrader y sus colaboradores continuaron la síntesis sistemática de nuevos compuestos de carbono que contenían azufre como átomo central.

Aunque muchos de estos productos químicos fueron tóxicos para los insectos, ninguno cumplió con los requisitos de seguridad y estabilidad necesarios para un insecticida comercial. En 1935 Gerhard Schrader, Otto Bayer y Hans Kükenthal patentaban los alquil fluosulfonates como insecticidas, afirmando que resultaban más efectivos que sus análogos los aril fluorosulfonatos propuestos anteriormente por Willy Lange en 1930.

Sin embargo, Otto Bayer, director de investigación de I. G. Farben, estaba decepcionado por los resultados y decidió que Schrader trabajase en otros campos.

 

Tabún y Sarín
En el curso de un trabajo sistemático con ésteres y amidas del ácido fosfórico relacionado con el caucho sintético (también conocido como «buna») Schrader preparó varios compuestos organofosforados y envió muestras de los mismos a su colega Hans Kükenthal para que comprobase su actividad insecticida y asegurarse con ello que no se le escapaba ninguna propiedad útil de los mismos. Resultaba que algunos de estos compuestos eran altamente tóxicos, especialmente los que tenían dos grupos OH del ácido fosfórico sustituidos por sustituyentes orgánicos (tipo éster), y el otro OH sustituido un grupo ácido, por ejemplo, Cl, F, SCN, CON, etc., mientras que el doble enlace del oxígeno se mantenía o se sustituía por un átomo de azufre.

Muy probablemente Schrader debió pensar que si el fósforo, siguiente elemento al azufre en la tabla periódica presentaba propiedades químicas similares al azufre, sería de esperar que los compuestos de fósforo también fuesen como los del azufre tóxicos para los insectos. Además los trabajos realizados años antes por Willy Lange y su estudiante Gerda von Krüger cuando ésta trabajaba sobre los fluorofosfatos como parte de su tesis doctoral apoyaban este razonamiento. En 1932, en la Universidad de Berlín, Willy Lange y Gerda von Krueger sintetizaban los primeros miembros de la familia de los fosforofluoridatos de dialquilo, el fosforofluoridato de dimetilo, FP(O)(OCH3)2 y el fosforofluoridato de dietilo, FP(O)(OCH2CH3)2, y ellos mismos experimentaban sus efectos tóxicos:

«resulta interesante el fuerte efecto de los ésteres alquílicos del ácido monofluorofosfórico sobre el organismo humano. Los vapores de estos compuestos tienen un agradable olor fuertemente aromático. Pero unos minutos después de la inhalación, se siente una gran presión en la laringe, asociada con disnea. Luego se sufre una disminución de la consciencia y una hipersensibilidad dolorosa del ojo frente a la luz. Estos síntomas tardan varias horas en disminuir. Al parecer no son causados por productos ácidos de la descomposición de los ésteres y son probablemente atribuibles a los propios fosforofluoridatos de dialquilo.»

Prepararon otros homólogos, el fosforofluoridato de dipropilo y el fosforofluoridato de dibutilo y comprobaron que actuaban de igual manera, en cantidades también muy pequeñas. Lange pensó que estos compuestos podrían ser útiles para el control de plagas y se los ofreció a la I. G. Farben para su evaluación, pero la empresa en aquel momento no parecía tener mucho interés en estos temas.

Schrader y su equipo procedieron a la síntesis de diferentes compuestos de fósforo pentavalente, con sus cuatro enlaces (uno de ellos un doble enlace) unidos a diferentes átomos o grupos de átomos. Algunos de estos compuestos mostraron una buena actividad como insecticidas de contacto, por ejemplo una solución acuosa de los mismos al 0,2 % rociada sobre los pulgones de una planta acababa con todos ellos. En 1935 Gerhard Schrader and Otto Bayer presentaban en Alemania, Estados Unidos, Inglaterra y Suiza una patente sobre los difluoruros dialquilamidofosfóricos para ser utilizados como insecticidas («Dialkylaminophosphorous fluorides and a process for preparing the same«):

F2PONR2Estructura de los difluoruros dialquilamidofosfóricos, donde X corresponde a oxígeno o azufre, y R corresponde a un radical alquílico con 1-3 átomos de carbono.

Schrader y su equipo emplearon mucho tiempo en la búsqueda de estructuras similares que aportasen mejores resultados, descartando los candidatos con bajo poder insecticida, mala estabilidad, bajo rendimiento sintético o dificultades de suministro en las materias primas.

Puesto que el ácido ciannhídrico tenía en su molécula el grupo ciano (-CN) y era tóxico, la incorporación de este grupo a una molécula, debería conferir a la misma las propiedades tóxicas del grupo ciano. Schrader decidió incorporar el grupo ciano a la estructura de los compuestos de fósforo con los que trabajaba.

Para ello trataba el dicloruro dimetilamidofosfórico (dimethylamidophosphoric dicloride) con cianuro sódico en etanol en un intento de obtener el correspondiente dicianuro dimetilamidofosfórico:

Tabunsin2Después de realizar una primera síntesis en noviembre de 1936, él mismo comenzó a experimentar algunos efectos fisiológicos altamente desagradables, como dolor de cabeza, falta de concentración y dificultad para respirar. También notó una marcada atenuación de su campo de visión y dificultad de acomodación visual. Mirándose al espejo descubrió que sus pupilas no se dilatan como deberían en respuesta a condiciones de escasa luz. Durante los días siguientes, su estado de salud empeoró y tuvo que pasar dos semanas en el hospital antes de que su visión se recuperara completamente. Después de recibir el alta médica Schrader pasó unos días en casa de sus padres para recuperarse totalmente, y volver a su laboratorio poco antes de Navidad, para continuar la investigación de los compuestos de fósforo con cianuro.

El 23 de diciembre de 1936, trataba el dicloruro dimetilamidofosfórico (dimethylamidophosphoric dicloride) con cianuro sódico en etanol en un intento de obtener el correspondiente dicianuro dimetilamidofosfórico. Sin embargo, el compuesto obtenido fue el N,N-dimetil fosforamidocianidato de O-etilo, más conocido como Tabun:

Tabunsin1Terminada la síntesis, la destilación del producto final producía un líquido claro, descolorido, con un olor débil de manzanas, que Schrader denominó preparación 9/91. Dio una pequeña muestra de la sustancia a Kükenthal, que encontró que una solución de la misma, extremadamente diluida (1:200000), era capaz de acabar por contacto con la totalidad de los pulgones. La preparación 9/91 era cien veces más potente que el compuesto original, y mucho más eficaz que cualquier otra sustancia que el grupo de investigación de Schrader hubiera desarrollado. También quedó claro que los síntomas desagradables que Schrader había experimentado en noviembre habían sido causados por la exposición a esa nueva sustancia. Schrader y Kükenthal solicitaron la patente de este nuevo tipo de insecticida.

A pesar de su olor suave y afrutado que inducía a pensar en que era algo inocuo, en enero de 1937, una pequeña gota derramada producía de nuevo en Schrader, y en su ayudante Karl Küpper, miosis y dificultades respiratorias. Schrader decidió enviar una muestra a Eberhard Gross director de higiene industrial de IG Elberfeld para la realización de estudios in vivo en animales para comprobar su toxicidad. El informe de Eberhard Gross sobre la sustancia Le-100 como así había renombrado a la preparación 9/91 (Le provenía de Leverkusen) indicaba una elevada toxicidad en humanos, que para decepción de Schrader la descartaba como insecticida.

Un decreto nazi de 1935 requería que se informase de todo descubrimiento de interés militar, y así lo hizo la IG Farben. A instancias de Leopold von Sicherer y Wolfgang Wirth de la División 9 del Departamento de Ensayo y Desarrollo de Armas se solicitaba un informe detallado de la sustancia Le-100. Schrader describió la síntesis y propiedades del Le-100 a Leopold von Sicherer, al coronel Ernst Rüdiger von Brüning de la División 9 y a Hermann Van der Linde jefe del Laboratorio de Protección de Gas del Ejército. Estos quedaron impresionados por las propiedades del Le-100, que se convertía en el primer agente neurotóxico de guerra con el nombre de Tabun, palabra inventada sin significado alguno. No obstante para ocultar la identidad del Tabún se emplearon otros nombres en clave, como Gelan, Trilon 83 o T-83 (los trilones eran detergentes) o Stoff 100, y más tarde recibiría por los aliados el acrónimo de GA.

A Schrader el descubrimiento del tabún le valió el reconocimiento de la IG Farben. En noviembre de 1937, a petición del Heinrich Hörlein, fue transferido de Leverkusen a un nuevo laboratorio en Elberfeld, donde continuó su investigación en el más estricto secreto. Aunque el ejército alemán ofreció dar Schrader un contrato para el desarrollo de un proceso de producción a escala industrial del tabun, Hörlein rechazó la oferta, pues la administración de la IG Farben era reacia a involucrarse en la guerra química por diversas razones (escaso beneficio económico y mala imagen). Por consiguiente, a Schrader le encomendaron se concentrase en el desarrollo de insecticidas agrícolas.

En el curso de experimentos para el intercambiar el cloro del dicloruro dimetilamidofosfórico por flúor, en presencia de alcohol con fluoruro de sodio, Schrader observó para su sorpresa que no se había obtenido el correspondiente difluoruro dimetilamidofosfórico, sino el éster dietílico del ácido fluorofosfórico, pero con un rendimiento mucho mejor que el obtenido en una síntesis diferente por Lange y Krueger. De manera que se lanzó a la tarea de sintetizar diferentes ésteres del ácido fluorofosfórico, por ejemplo, homólogos del tipo de compuestos que Lange y Krueger habían descrito en 1932-33 (entre ellos el fosfofluoridato de diisopropilo, más conocido como DFP). En agosto de 1938 Schrader y Kükenthal presentaban su patente, mantenida en secreto hasta septiembre de 1951, que a pesar de lo que algunos pudieran pensar, no se refería al sarín o compuestos similares al sarín, sino a insecticidas de ésteres del ácido fluorofosfórico.

Mientras tanto, trabajando en su laboratorio en Elberfeld, Schrader desarrolló una nueva familia de insecticidas reemplazando el grupo cianuro en Tabun con un átomo de flúor y añadiendo un enlace fósforo-carbono, donde el carbono correspondía a un grupo metilo.

A finales de 1938, Schrader sintetizó uno de estos compuestos organofosforados con fluór y un enlace P-C, que resultó ser sorprendentemente tóxico para los insectos. Las pruebas de toxicidad posteriores que Gross realizó sobre mamíferos demostraron que la nueva sustancia era de cinco a diez veces más tóxica que el tabun en perros, y dos veces más tóxica en los monos, descartándose por ello su uso como insecticida comercial. Schrader asignó a esta sustancia el código 146, y a comienzos de 1939 Gross envió su informe toxicológico a la Oficina de Guerra Alemana. Schrader tuvo que describir la síntesis y propiedades de la sustancia 146 al personal del Laboratorio de Protección de Gas del Ejército, que inmediatamente asignó un nutrido grupo de químicos para su estudio y desarrollo de un proceso de fabricación industrial.

Sarinsin1

Los oficiales del Laboratorio de Protección de Gas del Ejército denominaron a la sustancia 146 como SARIN, acrónimo derivado de las letras de los nombres de las cuatro personas claves implicadas en su desarrollo: los químicos Gerhard Schrader y Otto Ambros de la IG Farben y el coronel Ernst Rüdiger von Brüning y Hermann Van der Linde de la Oficina de Artillería del Ejército. Al igual que ocurrió con el tabún, al sarín se le asignarían diversos nombres en clave para ocultar su identidad, como Trilon 46, T144 o Gelan III, y más tarde recibiría por los aliados el acrónimo de GB.

Finalizada la II Guerra Mundial Schrader fue interrogado para ver si había estado involucrado en crímenes de guerra, quedando rápidamente absuelto. Schrader fue uno de los que más colaboró en estos interrogatorios, hasta el punto que se le ofrecería seguir trabajando en sus estudios sobre compuestos organofosforados en el Reino Unido. Schrader ya libre declinaría la oferta y seguiría trabajando en la empresa Bayer en la búsqueda de nuevos insecticidas.

Schrader siempre dedicó su talento y esfuerzos a la búsqueda de nuevos y más eficaces insecticidas, y a lo largo de su vida presentó numerosas patentes sobre pesticidas, cuyos nombres todo el mundo ha oido alguna vez, por ejemplo, el Schradan u OMPA, el pirofosfato de tetraetilo, el Bladan o TEPP, el paration, el dimefox, el paraoxon, el potasan, el cumafós, el metasystox, el disulfoton, etc.

Schrader fallecía el 10 de abril de 1990 en la localidad alemana de Cronenberg en Wuppertal, en la Renania del Norte-Westfalia.

Durante toda su vida Schrader confió en que sus investigaciones permitirían avanzar en la lucha contra el hambre en el mundo, descubrió y patentó muchos pesticidas que contribuyeron, y aún hoy contribuyen, a ello, pero por desgracia, Schrader es más conocido por su descubrimiento accidental de los agentes neurotóxicos de guerra.

 

Referencias

  1. Armas químicas: La ciencia en manos del mal, René Pita Pita, Plaza y Valdés Editores, 2008
  2. War of Nerves: Chemical Warfare from World War I to al-Qaeda, Jonathan Tucker, Pantheon Books, 2006
  3. Bayer AG: Corporate Crimes https://corporatewatch.org/company-profiles/bayer-ag-corporate-crimes
  4. Monofluorophosphate History, http://www.fluoride-history.de/p-mfp.htm
  5. Chemical warfare agents: chemistry, pharmacology, toxicology, and therapeutics, James A. Romano Jr., James A. Romano, Harry Salem, Brian J Lukey, Brian J. Lukey, Harry Salem, CRC Press, 2007
  6. A higher form of killing-The Secret History of Chemical and Biological Warfare, Robert Harris & Jeremy Paxman, Random House Trade Paperbacks, 1982
  7. Best Synthetic Methods: Organorganophosphorus (V) chemistry, Christopher M. Timperley, Elservier Ltd., 2015
  8. Fluorine chemistry at the millenium-Fascinated by fluorine, R.E. Banks, Elsevier Science Ltd., 2000
  9. The Chemistry of Organophosphorus Pesticides, C. Fest & KJ. Schmidt, Springer-Verlag, 1982

¿Qué quiero y qué puedo?

El conseguir un determinado nivel de detección o de identificación es, en gran medida, dependiente de lo que se quiere y de lo que se puede. Por ejemplo, si se quiere detección confirmada se deben tener al menos dos detectores con tecnologías diferentes y la adecuada selectividad. No se puede conseguir una detección confirmada si tan sólo se dispone de un detector o si los dos detectores de los que se dispone tienen la misma tecnología; en estas condiciones sólo conseguiremos una detección provisional.

La OTAN tiene claramente establecidos tres niveles de identificación, provisional, confirmada e inequívoca, para agentes químicos de guerra, para agentes biológicos y para toxinas y bio-reguladores. La consecución de uno u otro nivel viene condicionada por la disponibilidad de los medios necesarios para satisfacer los criterios de identificación de cada nivel, y si se desea llegar a un determinado nivel se requieren los medios necesarios para ello.

Empecemos haciendo hincapié en que dos sistemas de detección con tecnologías diferentes podrían conseguir una detección confirmada, pero no una identificación. Casi seguro que las tecnologías empleadas para poner de manifiesto la presencia o ausencia de un agente químico no permitirían obtener información estructural sobre el mismo, que permitieran, ni siquiera, una identificación provisional.

 

Identificación provisional
Recordemos que para los agentes químicos la identificación provisional supone que se cumple al menos una de las siguientes condiciones:

  • En dos condiciones experimentales diferentes, el tiempo de retención cromatográfico del agente desconocido coincide con el tiempo de retención del agente en cuestión.
  • Trabajando con un sistema detección específica (FPD, TID, AED, etc.), el tiempo de retención cromatográfico del agente desconocido coincide con el tiempo de retención del agente en cuestión.

Un sistema de movilidad iónica difícilmente podría diferenciar el sarín de sus cuatro isómeros, que tienen la misma fórmula empírica (C4H10FPO2), el mismo peso molecular (140,09), tienen todos ellos una importante actividad inhibitoria de la acetilcolinesterasa, y tan sólo se diferencian en la distinta ubicación de los radicales que tuviesen, metilo, etilo, propilo e isopropilo:

  • Metilfosfonofluoridato de O-isopropilo (sarín) CAS 107-44-8
  • Metilfosfonofluoridato de O-n-propilo CAS 763-14-4
  • Etilfosfonofluoridato de O-etilo CAS 650-20-4
  •  Isopropilfosfonofluoridato de O-metilo CAS 648-59-9
  • n-propilfosfonofluoridato de O-metilo CAS 333416-14-1

metFPisopr   metFPnprop   etFPet   isoprFPmet   npropFPmet

Es decir NO podría identificar, SOLO podría detectar, quizás y no siempre, hasta el nivel de detección confirmada.

 

Identificación confirmada
Si se dispone de los medios necesarios, y se satisfacen los criterios, es posible una identificación confirmada, si tener que pasar previamente por una identificación provisional.

Por ejemplo, aún sin disponer de sistemas cromatográficos, se puede obtener el espectro de un agente desconocido mediante una técnica espectrométrica (infrarrojos, Raman, masas, resonancia magnética nuclear, etc.), y si el grado de coincidencia con el espectro almacenado en la base de datos es suficientemente alto, podríamos hablar de identificación confirmada.

Si se empleasen dos técnicas espectrométricas diferentes y los espectros coincidiesen suficientemente, también tendríamos una identificación confirmada, pero con un mayor grado de confianza.

La combinación de un sistema de detección con un sistema de identificación también puede conducir a una identificación confirmada (función del sistema de identificación), con un mayor o menor grado de confianza (función del sistema de detección).

La identificación confirmada supone que se cumple al menos una de las siguientes condiciones:

  • El espectro completo del agente desconocido, adquirido mediante una técnica espectrométrica coincide con el correspondiente al del agente en cuestión, almacenado en una base de datos.
  • El tiempo de retención cromatográfico del agente desconocido coincide con el tiempo de retención del agente en cuestión, cuando se trabaja con espectrometría de masas, en modo SIM, con un mínimo de tres iones.

Existen sistemas portátiles de espectrofotometría infrarroja, espectrometría Raman y espectrometría de masas, que podrían conseguir una identificación confirmada. La coincidencia de los espectros no es algo simple que se pueda evaluar sin unos mínimos conocimientos técnicos, y las librerías de espectros y los algoritmos de búsqueda también tienen su importancia y complejidad.

 

Evalúe los resultados de la búsqueda en librería y su propio espectro
Para empezar la coincidencia de espectros tiene que ser bastante elevada, por encima del 80%, y no basta con elegir el primer candidato que propone el algoritmo de búsqueda.

Una librería de espectros pequeña induce a elegir un candidato de la misma, incluso con valores de similitud no muy altos, con lo que aumenta la probabilidad de falsos positivos. Por el contrario las grandes librerías permiten obtener resultados de búsqueda con índices de similitud más altos y reducen la probabilidad de falsos negativos.

Las librerías son tanto más costosas y difíciles de manejar cuanto mayores son, pero procure que sean lo más amplias posibles, abiertas, y con los espectros adquiridos en similares condiciones a como los obtiene su sistema.

No bastan sólo los índices de similitud, hay que evaluar el proceso de identificación en su conjunto, empezando por nuestro propio espectro.

Para una buena identificación nuestro espectro debe tener la mejor calidad posible, por ejemplo si es un espectro infrarrojo, debería tener poco ruido, mínimo o nulo desplazamiento de la línea base, línea base plana, picos dentro de la y ausencia de artefactos espectrales. Procure evitar las mezclas y si es posible obtenga espectros de sustancias puras. Considere todo lo que sabe sobre la muestra, de dónde viene, cómo se tomó, si sufrió o no tratamiento, su estado físico, textura, color, propiedades físico-químicas, etc.. Tenga también presente cómo obtuvo el espectro, su resolución, método de muestreo utilizado, y si se aplicó algún tratamiento espectral (substracción, aplanado, corrección de línea base, etc.). Trate de identificar primero la presencia de artefactos espectrales, para tratar de reconocer después los picos de aquellos componentes que sepa están presentes en la muestra. Inspeccione el espectro de izquierda a derecha, tratando de asignar primero los picos más intensos, y luego los más pequeños, que no tienen que ser por ello los menos importantes. Asigne los picos secundarios correspondientes a los picos principales para comprobar que las asignaciones hechas son correctas.

Como puede ver la tarea no es fácil, y requiere de unos «ciertos conocimientos técnicos». No basta con mirar la pantalla y cantar en voz alta el nombre del primer candidato propuesto por el software.

 

Identificación inequívoca
Con la identificación inequívoca no sucede como en la identificación confirmada donde no es necesaria una identificación provisional previa.

El laboratorio en el proceso de obtención de la identificación inequívoca va realizando una serie de operaciones que le conducen primeramente a una identificación provisional y luego a una identificación confirmada.

identinequivoca

 

Referencias

  1. «Detección e identificación no son sinónimos», www.cbrn.es, 20 de febrero de 2015
  2. «To be or not to be: the need to be sure in chemical detection», Juan Domingo y René Pita, NBC International, Spring 2006, pp. 61-63
  3. «Detección de agentes químicos de guerra», René Pita y Juan Domingo, Revista Ejército, Año 2007, número 790, páginas 59-63.
  4. «What you looking at…!?», Juan Domingo y René Pita, CBRNe WORLD Summer 2009, Vol. 4, Issue 2, pp. 36-38.
  5. «Sample Preparation and Identification of Biological, Chemical and Mid-Spectrum Agents», J.R. Hancock and D.C. Dragon, http://cradpdf.drdc-rddc.gc.ca/PDFS/unc57/p524339.pdf, o http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.dtic.mil%2Fcgi-bin%2FGetTRDoc%3FAD%3DADA443173&ei=yk3nVMTZLYOsUb-4gIAF&usg=AFQjCNFELbSn8av2rVfksg_TJZmSw5Z6Dg
  6. «Analyse this!», Juan Domingo y René Pita, CBRNe WORLD , Winter 2008, pp. 38-39.
  7. «A Process for Successful Infrared Spectral Interpretation», Brian C. Smith, Spectroscopy 31(1), páginas 14-21, January 2016

Peligro y riesgo, diferentes pero relacionados

Peligro y riesgo

Hasta unos años, determinadas actividades industriales, comerciales y de ocio conllevaban mayor o menor peligro pues podían ocasionar en algunos casos daños a las instalaciones, personas y/o medio ambiente. Sin embargo ahora la gente habla de riesgo en vez de peligro sin saber en muchos casos cual es la diferencia entre ambos términos.

Si buscamos en el Diccionario de la Lengua Española, encontramos las siguientes definiciones1:

Peligro (del lat. pericŭlum). m.

  • riesgo o contingencia inminente de que suceda algún mal.
  • lugar, paso, obstáculo o situación en que aumenta la inminencia del daño.
  • correr peligro=estar expuesto a él.

Riesgo (del it. risico o rischio, y este del ár. clás. rizq, lo que depara la providencia). m.

  • contingencia o proximidad de un daño.
  • cada una de las contingencias que pueden ser objeto de un contrato de seguro.

No parece haber mucha diferencia entre ambas, salvo el comentario en riesgo, de «lo que depara la providencia», que viene a indicar que existe una cierta probabilidad de que suceda.

Si buscamos en otras fuentes podemos encontrar definiciones mucho más ilustrativas2,3,4,5,6,7, por ejemplo, peligro (HAZARD) como la característica inherente a un material, condición o actividad que tiene la capacidad de causar daño a las personas, propiedades o medio ambiente, y riesgo (RISK) como la combinación de la probabilidad y las consecuencias de la presencia de un peligro. El riesgo es una medida de los daños o pérdidas asociados a una actividad (Las circunstancias y la severidad de los daños son factores claves).

Así, por ejemplo, en un laboratorio de química podemos encontrar un frasco de dicromato potásico, K2Cr2O7, con diversas etiquetas de peligro, pues es una sustancia oxidante y carcinógena, peligrosa por inhalación o ingestión. Ese mismo dicromato también está presente en algunos dispositivos empleados para la detección de alcohol en sangre a través del alcohol en el aliento8.

simbolos de peligro dicromato

En el supermercado encontramos envases de diferentes harinas, y ninguno de ellos lleva etiquetas de peligro, sin embargo la harina puede por inhalación o por contacto producir dermatitis, conjuntivitis, rinitis, asma, e incluso en determinadas condiciones, como polvo fino en suspensión, provocar una explosión con daños importantes.

Limpiar los cristales de una ventana puede resultar una actividad más o menos peligrosa en función de si se limpian desde el interior o desde el exterior, con o sin escalera, en un piso bajo o en piso 25 de un rascacielos.

La percepción del peligro no siempre es evidente y la evaluación del riesgo no siempre es acertada, pero nos parece más seguro realizar una actividad deportiva «de riesgo» o realizar una inversión económica de «riesgo», que realizar la misma actividad deportiva «peligrosa» o realizar una inversión económica «peligrosa», simple y erróneamente porque consideramos que el término «de riesgo» implica que no hay peligro. En realidad el peligro siempre existe, tan sólo tratamos de disminuir la probabilidad y las consecuencias del peligro para así disminuir el riesgo.

Peligro × Probabilidad = Riesgo (bajo)
Peligro × Probabilidad = Riesgo (medio)
Peligro × Probabilidad = Riesgo (medio)
Peligro × Probabilidad = Riesgo (alto)

Es importante pues diferenciar «peligro» de «riesgo«, siendo el «peligro, hazard» el posible suceso adverso identificado y el «riesgo, risk» la probabilidad de que este ocurra y la magnitud de las consecuencias.

El Real Decreto 1196/2003, de 19 de septiembre9, por el que se aprueba la Directriz básica de protección civil para el control y planificación ante el riesgo de accidentes graves en los que intervienen sustancias peligrosas, en su apartado Definiciones, indica que a los efectos de dicha directriz básica, se entenderá por:

  • Peligro la capacidad intrínseca de una sustancia o la potencialidad de una situación física para ocasionar daños a las personas, los bienes y el medio ambiente.
  • Riesgo la probabilidad de que se produzca un efecto dañino específico en un período de tiempo determinado o en circunstancias determinadas.
  • Daño la pérdida de vidas humanas, las lesiones corporales, los perjuicios materiales y el deterioro grave del medio ambiente, como resultado directo o indirecto, inmediato o diferido, de las propiedades tóxicas, inflamables, explosivas, oxidantes o de otra naturaleza, de las sustancias peligrosas y a otros efectos físicos o fisicoquímicos consecuencia del desarrollo de las actividades industriales.

 

El riesgo en terrorismo
A la hora de establecer el riesgo cuando se habla de terrorismo, se suele hablar de tres componentes, estos son:

  • la amenaza terrorista contra un objetivo concreto,
  • la vulnerabilidad de ese objetivo frente a esa amenaza y
  • las consecuencias que tendría esa acción si los terroristas tuvieran éxito10.

Las amenazas a un objetivo pueden medirse como la probabilidad de que un objetivo concreto resulte atacado de un determinado modo durante un determinado período de tiempo.

La vulnerabilidad puede medirse como la probabilidad que se produzcan daños como consecuencia de una amenaza. Los daños pueden ser muy diversos, muertes y lesiones en la población y en los animales, parada e inutilización de instalaciones, daños económicos, daños al medio ambiente, etc., y cada elemento considerado tendría su propia evaluación de vulnerabilidad. Ante el éxito de una acción terrorista, las consecuencias vienen determinadas por el tipo de daños y su magnitud, siendo la población el elemento más valioso.

El riesgo sería una función de estos tres componentes: amenaza, vulnerabilidad y consecuencias:

Riesgo = Amenaza × Vulnerabilidad × Consecuencia
Riesgo = P (ocurra un ataque) × P (ocurran daños si ocurre el ataque) × E (daños ante el ataque)

En otras palabras, el riesgo en terrorismo representa las consecuencias esperadas de los ataques teniendo en cuenta la probabilidad de que los ataques se produzcan y que éstos tengan éxito cuando se intentan.

Por supuesto podemos reducir el riesgo reduciendo las amenazas, reduciendo las vulnerabilidades y reduciendo las consecuencias.

La gestión del riesgo a través de vulnerabilidad requiere aumentar la vigilancia y la detección, proteger los objetivos y actuar sobre otras capacidades que pudieran reducir el éxito de los ataques.

El riesgo también puede gestionarse a través de consecuencias, mejorando la preparación y la respuesta, de modo que se reduzcan o mitiguen los efectos del daño.

 

Referencias:

  1. Diccionario de la Lengua Española, Real Academia Española, vigésima primera edición, 1992.
  2. Definiciones en U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA), http://www.phmsa.dot.gov/hazmat/risk/definitions.
  3. Hazard and Risk, Health, Environment & Work, http://www.agius.com/hew/index.htm
  4. Risk & hazard – How they differ, http://www.eurochlor.org/index.asp?page=259
  5. Hazard and Risk, http://www.ccohs.ca/oshanswers/hsprograms/hazard_risk.html
  6. Risk Assessment Terminology, John H. Duffus, Chemistry International, Vol. 23, No. 2, March 2001, http://www.iupac.org/publications/ci/2001/march/risk_assessment.html
  7. The concept of risk versus hazard, http://www.heraproject.com/Risk.c, Human and Environmental Risk Assessments
  8. Ficha de datos de seguridad del dicromato potásico, Sigma-Aldrich®, http://www.sigmaaldrich.com/catalog/product/sial/207802?lang=es&region=ES
  9. Real Decreto 1196/2003 (BOE núm. 242 de 9 de octubre de 2003), por el que se aprueba la Directriz básica de protección civil para el control y planificación ante el riesgo de accidentes graves en los que intervienen sustancias peligrosas.
  10. Estimating Terrorism Risk-Henry H. Willis & others, RAND Corporation, http://www.rand.org/content/dam/rand/pubs/monographs/2005/RAND_MG388.pdf

¿Completada la destrucción de las armas químicas sirias?

El lunes 4 de enero de 2016, la Organización para la Prohibición de las Armas Químicas (OPAQ) anunciaba en su página web que se había completado la destrucción de las armas químicas sirias1.

Recordemos que a pesar de la múltiples denuncias de empleo de armas químicas por parte de todos los bandos durante el conflicto armado en Siria, no fue hasta el 19 de marzo de 2013, cuando el Gobierno sirio denunció ante la ONU el empleo de armas químicas por parte de la oposición en la localidad de Khan Al Asal, cuando se puso en marcha el Mecanismo del Secretario General (MSG) para la investigación del supuesto empleo de armas químicas y biológicas2.

El 21 de agosto de 2013 tuvo lugar el famoso incidente de Ghouta, en el cual quedó confirmado el empleo de sarín sin que se pudiese atribuir su empleo a ninguna de las partes involucradas en el conflicto3.

Recordemos que el 14 de septiembre de 2013 el Secretario General de la ONU comunicaba haber recibido de Siria, conforme estipula el artículo XXIII de la CAQ, su solicitud de adhesión a la Convención de Armas Químicas (CAQ) y que también ese día, EE.UU. y Rusia hacían público un acuerdo para destruir el arsenal químico sirio y evitar así una acción de castigo solicitada insistentemente tras los incidentes de Ghouta, el 21 de agosto de 2013. En este acuerdo, EE.UU. y Rusia se comprometían a preparar y remitir al Consejo Ejecutivo de la OPAQ un borrador con «procedimientos especiales» para la destrucción rápida del programa sirio de armas químicas y su rigurosa verificación. Este acuerdo incluía la destrucción de toda la capacidad química siria antes de la primera mitad del año 2014, es decir, antes del 30 de junio de 20144.

El 15 de noviembre de 2013 el Consejo Ejecutivo de la OPAQ aprobó el plan detallado de destrucción para eliminar el arsenal sirio de armas químicas de la «manera más rápida y segura», que tenía como objetivo más importante completar la destrucción antes de la primera mitad de 2014, según lo que había establecido en la decisión del Consejo Ejecutivo de la OPAQ y en la resolución del Consejo de Seguridad de la ONU 2118 (2013), ambas de 27 de septiembre de 20135.

Las primeras noticias sobre el arsenal químico sirio hablaban de unas 1.300 toneladas de iperita, sarín y VX6,7,8,9,11,12,13,14, sin detallar más, pero con un texto ambiguo donde se daba a entender que las 1.300 toneladas se referían a sustancias de lista 1A de la CAQ. Esto es, 1.300 toneladas de agentes químicos de guerra extremadamente tóxicos, sin ningún tipo de aplicación a nivel industrial. Poco a poco la confidencialidad de la declaración siria a la OPAQ se fue diluyendo, y se empezó a hablar de 1.300 toneladas de sustancias químicas, de las cuales una gran parte consistiría en precursores de agentes neurotóxicos almacenados en contenedores, es decir, en una fase previa a la síntesis, así como municiones vacías.

En realidad como quedaría demostrado posteriormente, el arsenal se reducía a 20,25 toneladas de iperita, 540 toneladas de metilfosfonildifluoruro (DF), precursor de Lista 1, 290 toneladas de sustancias de Lista 2, 110 toneladas de sustancias de Lista 3, 398 toneladas de sustancias no incluidas en las Listas de la OPAQ, algunas ni siquiera incluídas en el Grupo Australia, y una cantidad no detallada de alcohol isopropílico, que aunque no forma parte de lista alguna forma parte del sistema binario del sarín6.

Como se recordará ningún Estado Parte de la Convención de Armas Químicas (CAQ) se ofreció para la destrucción en su propio territorio de las armas químicas sirias, así que finalmente se acordó su destrucción fuera de Siria. Una parte sería destruida directamente por las empresas EKOKEM (Finlandia), VEOLIA (Estados Unidos y Reino Unido) y MEXICHEM (Reino Unido), mientras que otra parte sería trasvasada al buque norteamericano MV Cape Ray para su hidrólisis en alta mar, en aguas internacionales, y luego los hidrolizados serían entregados para su destrucción a las empresas GEKA MBH (Alemania) y EKOKEM (Finlandia)6.

Sobrepasada la fecha incumplida del 30 de junio de 2014, el Cape Ray con la iperita y el DF en sus bodegas, abandonaba el 3 de julio de 2014 el puerto italiano de Gioia Tauro, con destino a aguas internacionales no conocidas para neutralizar por hidrólisis la iperita y el DF. Finalizada la hidrólisis, el 19 de agosto de 2014, puso rumbo al puerto finlandés de Hamina Kotka, para entregar a la empresa EKOKEM (Finlandia) 5463 toneladas de hidrolizado de DF (procedentes de 540 toneladas de DF), para su destrucción por incineración, y luego, rumbo al puerto alemán de Bremen, para entregar a la empresa GEKA MHB (Alemania) 335,5 toneladas de hidrolizado de iperita (procedentes de 20,25 toneladas de iperita), para su destrucción también por incineración14.

El 30 de abril de 2015, la empresa alemana GEKA MBH encargada de la incineración del hidrolizado de iperita, finalizaba la destrucción del mismo15.

El 11 de junio de 2015, la empresa finlandesa EKOKEM anunciaba que había concluido la destrucción del hidrolizado del DF en sus instalaciones de eliminación de residuos de Riihimäki14.

El miércoles 17 de junio de 2015, la Organización para la Prohibición de las Armas Químicas (OPAQ) publicaba en su página web la noticia de que se había completado la destrucción de los hidrolizados procedentes de las armas químicas sirias14.

A fecha 22 de diciembre de 2015 faltaba muy poco para la destrucción de todas las sustancias químicas declaradas por la República Árabe Siria que se retiraron de su territorio en 2014. Tan sólo faltaba por finalizar la destrucción del fluoruro de hidrógeno sustancia química no recogida en el anexo de verificación de la CAQ, pero si en el Grupo Australia. Por el momento se había destruido un total del 84,3% puesto que en VEOLIA ES TECHNICAL SOLUTIONS, S.R.L., en los Estados Unidos de América, proseguían las actividades de destrucción16.

El lunes 4 de enero de 2016 se anunciaba que VEOLIA, la compañía estadounidense contratada por la OPAQ para deshacerse de parte del arsenal de armas químicas sirio, había completado, en sus instalaciones en Texas, la destrucción de los 75 cilindros de fluoruro del hidrógeno1,17.

Con esto finalizaba la destrucción de todas las armas químicas declaradas por la República Árabe Siria. La necesidad de diseñar una solución técnica para la destrucción de estos cilindros que se encontraban deteriorados y resultaban un peligro, había retrasado el proceso de destrucción1.

En relación con este desarrollo, el Director General de la OPAQ, el Embajador Ahmet Üzümcü, indicó que «Este proceso cierra un capítulo importante en la eliminación del programa de armas químicas sirias, y así continuar los esfuerzos para aclarar la declaración siria y abordar el uso constante de sustancias químicas tóxicas como armas en ese país1.

Sin embargo a fecha 22 de diciembre de 2015 la Secretaría había verificado la destrucción de 11 de las 12 instalaciones de producción de armas químicas (IPAQ) de la República Árabe Siria, a saber: cinco estructuras subterráneas y siete hangares de aeronaves. Aún no era posible acceder al hangar restante que falta por destruir16.

Así pues, parece que a fecha de hoy no podemos hablar aún de destrucción de todas las armas químicas sirias.

Además, en relación con el empleo de sustancias químicas tóxicas como armas, que resaltaba el Director General de la OPAQ, la cosa se complica pues los últimos informes de la Misión de Determinación de los Hechos (Fact-Finding Mission, FFM) indican que se ha empleado cloro, iperita y sarín o algo parecido al sarin (¿clorosarin?)18.

El Viceministro de Relaciones Exteriores sirio, Faisal Mekdad recalcó recientemente en una reunión en la OPAQ, «Deseamos manifestar aquí categóricamente que nunca hemos empleado cloro o cualquier otra sustancia química tóxica durante cualquier incidente o cualquier otra operación en la República Árabe Siria desde el comienzo de la crisis y hasta el día de hoy». Además, para mayor complejidad, se mencionan otros posibles autores que ya no son las fuerzas del Gobierno sirio19,20.

 

Referencias

  1. «Destruction of Syrian chemical weapons completed», https://www.opcw.org/news/article/destruction-of-syrian-chemical-weapons-completed/
  2. «La investigación de empleo de armas químicas tras el acuerdo entre la ONU y Siria», http://www.onemagazine.es/noticia/14304/opinion/la-investigacion-de-empleo-de-armas-quimicas-tras-el-acuerdo-entre-la-onu-y-siria.html.
  3. «Report on the Alleged Use of Chemical Weapons in the Ghouta Area of Damascus on 21 August 2013», United Nations Mission to Investigate Allegations of the Use of Chemical Weapons in the Syrian Arab Republic, http://www.un.org/disarmament/content/slideshow/Secretary_General_Report_of_CW_Investigation.pdf
  4. «Joint national paper by the Russian Federation and the United States of America framework for elimination of syrian chemical weapons», https://www.opcw.org/fileadmin/OPCW/EC/M-33/ecm33nat01_e_.pdf
  5. «Detailed requirements for the destruction of syrian chemical weapons and syrian chemical weapons production facilities», http://www.opcw.org/fileadmin/OPCW/EC/M-34/ecm34dec01_e_.pdf
  6. «La destrucción de las armas químicas sirias: la guerra de los números y las letras», Juan Domingo y René Pita, Documento de Opinión del Instituto Español de Estudios Estratégicos, 8/2014, 16 de enero de 2014, http://www.ieee.es/Galerias/fichero/docs_opinion/2014/DIEEEO08-2014_GuerraQuimica_NumsLetras_JDomingo-RenePita.pdf
  7. «Not so deadlines”, The Trench, 24 de noviembre de 2013, disponible en http://www.the-trench.org/not-so-dead-lines/
  8. «Not so deadlines, – some updates and corrections», The Trench, 6 de diciembre de 2013, disponible en http://www.the-trench.org/not-so-dead-lines-%e2%80%92-some-updates-and-corrections/
  9. «Syria: inspectors find 1,300 tons of chemical weapons», http://www.telegraph.co.uk/news/worldnews/middleeast/syria/10411375/Syria-inspectors-find-1300-tons-of-chemical-weapons.html
  10. «Everything you need to know about Syria’s chemical weapons», https://www.washingtonpost.com/news/wonk/wp/2013/09/05/everything-you-need-to-know-about-syrias-chemical-weapons/
  11. «Syria’s chemical weapons stockpile», http://www.bbc.com/news/world-middle-east-22307705
  12. «Syria’s Arsenal Includes Tons of Sarin, VX and Mustard Gas», http://abcnews.go.com/International/syrias-arsenal-includes-tons-sarin-vx-mustard-gas/story?id=20218666
  13. «America and Russia agree plan to ‘eliminate’ Syria’s chemical weapons», http://www.telegraph.co.uk/news/worldnews/middleeast/syria/10309493/America-and-Russia-agree-plan-to-eliminate-Syrias-chemical-weapons.html
  14. «Disposal of effluents from neutralised Syrian chemical weapons completed», http://www.opcw.org/news/article/disposal-of-effluents-from-neutralised-syrian-chemical-weapons-completed/
  15. «Germany destroys Syria’s toxic chemicals», http://aa.com.tr/en/politics/germany-destroys-syria-s-toxic-chemicals/50574
  16. «Avances logrados en la eliminación del programa de armas químicas sirias a 22 de diciembre de 2015», EC-81/DG.3 disponible en https://www.opcw.org/fileadmin/OPCW/EC/81/en/ec81dg03_e_.pdf
  17. «Destruction of Syria’s chemical weapons complete», http://www.rsc.org/chemistryworld/2016/01/syria-chemical-weapons-destruction-completed
  18. «Report of the OPCW Fact-Finding Mission in Syria regarding the incidents described in communications from the Deputy Minister for Foreign Affairs and Expatriates and Head of the National Authority of the Syrian Arab Republic», S/1318/2015/Rev.1, 17 December 2015, disponible en http://www.the-trench.org/wp-content/uploads/2016/01/OPCW-FFM-20151217-Syria-request-Rev1.pdf y en http://docplayer.net/11334139-Note-by-the-technical-secretariat.html
  19. «UN watchdog finds traces of Syria sarin gas exposure», «http://www.dw.com/en/un-watchdog-finds-traces-of-syria-sarin-gas-exposure/a-18958487
  20. «UN chemical weapons watchdog finds traces of sarin gas exposure in Syria», http://www.theguardian.com/world/2016/jan/05/un-chemical-weapons-watchdog-finds-traces-of-sarin-gas-exposure-in-syria