Archivo de la etiqueta: B.anthracis

La amenaza de los renos zombies

Mañana, 21 de diciembre de 2016, a las 11h 44m, hora oficial peninsular, según cálculos del Observatorio Astronómico Nacional (Instituto Geográfico Nacional – Ministerio de Fomento) comienza en España el invierno. Durará 88 días y 23 horas, y terminará el 20 de marzo de 2017 con el comienzo de la primavera1.

Llega el invierno y con él la nieve. No es el caso de España, pero en otros países, grandes zonas quedan cubiertas por una gruesa capa de nieve, nieve, en otros tiempos, casi perpetua… pero no ahora. Ahora los años son mucho más cálidos y como consecuencia de ello zonas que siempre estuvieron cubiertas de nieve, sufren el deshielo y dejan al descubierto lo que alguna vez estuvo seguro bajo esa gruesa capa de nieve perpetua.

 

 

La noticia

A finales del mes de julio, en medio de un período de intenso calor, apareció una curiosa noticia, «renos muertos hacia más de 75 años habían despertado de su letargo y habían causado diversos fallecimientos y una gran alarma social».

En realidad la noticia era que como consecuencia de las altas temperaturas habidas en la región siberiana de Yamalo Nenets, un distrito autónomo de Siberia, situado a unos 2000 km al noreste de Moscú, se había producido un brote de «peste siberiana», como allí denominan al carbunco o anthrax, consecuencia del deshielo producido en una zona donde se habían «enterrado» cadáveres de renos muertos por carbunco hacía varios años.2,3,4,5,6,7,8

En rojo el distrito de Yamalo Nenets donde se ha producido el brote

 

Este brote de ántrax ha matado a más de 2000 renos y ha infectado al menos a 20 personas, la mayoría niños, uno de los cuales ha fallecido a causa de la forma intestinal de la infección.

Las autoridades rusas han indicado que se ha procedido a tratar a la población de Yamalo Nenets en riesgo con antibióticos como medida preventiva, y se ha vacunado a veterinarios y pastores. Especialistas trabajan para descontaminar la zona y deshacerse de los cadáveres de los renos infectados mediante incineración, y se trabaja para identificar los lugares empleados en el pasado como cementerios de animales.

 

 

Las endosporas

Algunas bacterias Gram positivas (principalmente de los géneros Bacillus, Clostridium, Sporosarcina y Thermoactinomyces) cuando perciben que se avecina un largo periodo de privación de nutrientes (fuente de carbono, fuente de nitrógeno o incluso carencia de fosfato) son capaces de esporular, es decir, de formar endosporas9.

En el proceso de esporulación o esporogénesis la célula vegetativa inicia una serie de complejos cambios genéticos, metabólicos y estructurales, que conducen a la diferenciación, en el interior de la célula vegetativa original, de una célula durmiente (la endospora). La célula madre, la célula vegetativa original que generó la endospora, finalmente se autodestruye (autolisis), liberando la endospora, que es capaz de permanecer en estado durmiente (criptobiótico), varios decenios.

Ciclo vegetativo y de esporulación en el Bacillus subtilis10

 

El nombre de endospora viene a sugerir la existencia de una espora o semilla «dentro, (endo significa dentro), pero no es una verdadera espora, es decir, no es una forma de descendencia, como lo son las esporas de los Actinomicetes o de los hongos. Es una forma de supervivencia.

Las endosporas son células en estado durmiente o de letargo, con una bajísima tasa metabólica (no son formas reproductivas), que representan una etapa del ciclo de vida de determinadas bacterias, y que se caracterizan por una estructura peculiar, diferenciada respecto de las células vegetativas, por un estado metabólico prácticamente nulo, y una elevada resistencia a los agentes ambientales hostiles o desfavorables.

Las endosporas presentan11:

  • Una actividad metabólica prácticamente nula (hipometabolismo)
  • Una gran resistencia al calor
  • Una gran resistencia a las radiaciones (UV, rayos X y radiación gamma)
  • Una gran resistencia a los productos químicos

La composición química y la estructura de las endosporas juegan un papel muy importante en la resistencia de las mismas12,13,14,15.

La resistencia al calor puede ser debida a su bajo contenido en agua (~ 30 %) y alto contenido en ácido dipicolínico (acido piridin-2,6-dicarboxílico, CAS 499-83-2) (~ 15%).

La resistencia a las radiaciones se atribuye a la presencia de puentes disulfuro, debido a la cisteína de las proteínas de la cubierta externa.

La resistencia al efecto de los productos químicos se atribuye a la impermeabilidad de la gracias a su gran grosor y su peculiar composición a base de proteínas ricas en aminoácidos hidrófobos y con abundantes puentes disulfuro (cistinas).

 

 

La enfermedad

El carbunco o ánthrax es una enfermedad infecciosa producida por las bacterias de Bacillus anthacis, aunque la transmisión de la enfermedad parece ser debida a las endosporas del mismo y no a la forma vegetativa. Dependiendo de la vía de entrada en el organismo tenemos tres formas de carbunco con diferentes síntomas y letalidad, debido a la dificultad un diagnóstico temprano por la similitud de sus síntomas con los de otras enfermedades16,17.

La infección se produce cuando las endosporas penetran la piel a través de una herida (carbunco cutáneo) o la mucosa del aparato digestivo (carbunco gastrointestinal), o bien cuando se inhalan las endosporas (carbunco inhalatorio). Después de la ingestión por macrófagos en el lugar de penetración, la bacteria adopta la forma vegetativa y procede a proliferar en los espacios extracelulares y a producir la cápsula y las toxinas. Cuando se inhalan esporas, éstas se depositan en los espacios alveolares y de ahí son transportadas a los nódulos mediastínicos, donde germinan en un período de 60 días.

En el carbunco cutáneo las endosporas se introducen a través de la piel no intacta y producen una necrosis localizada con formación de escaras y edema de mucosa que puede ser generalizado. Después de 1 a 3 horas de la inoculación empieza la germinación masiva. Las endosporas son fagocitadas y llevadas a los ganglios linfáticos regionales causando linfangitis y linfoadenopatía dolorosa. Por el torrente sanguíneo se puede difundir y producir toxemia. La mayor parte de los casos de carbunco son de la forma cutánea cuya tasa de letalidad es menor de 1%.16

La forma más rara y más peligrosa de carbunco, que suele ser mortal, es la que se produce por inhalación. Debido a su pequeño tamaño, las esporas son capaces de llegar a los alvéolos y pasar a los ganglios linfáticos regionales y células epiteliales pulmonares. Si pasan a la sangre pueden producir septicemia, incluso meningitis hemorrágica, mediastinitis hemorrágica y edema pulmonar. No es frecuente la neumonía. El edema pulmonar y el shock séptico son las principales causas de muerte. Después de la inhalación de esporas la sintomatología se inicia como un síndrome gripal inespecífico, con fiebre, mialgia, dolor de cabeza y tos no productiva. De 2 a 4 días después se establece bruscamente un fallo respiratorio y en la radiografía torácica se aprecia ensanchamiento del mediastino, linfoadenopatía mediastínica y mediastinitis hemorrágica. A los 2 o 3 días del comienzo de la enfermedad se aprecian bacilos Gram positivos en cultivo de sangre.16

El carbunco gastrointestinal, sin duda el más raro, se manifiesta de dos a cinco días después de la ingestión de carnes mal cocinadas, contaminadas con endosporas, y se manifiesta con náuseas, vómitos, fiebre y dolor abdominal. Poco después se destapa un cuadro diarreico sanguinolento con dolor abdominal agudo como consecuencia de las ulceraciones en el íleo terminal o en el ciego. La mortalidad es del orden del 50%.16

 

 

Referencias:

  1. «Inicio de las estaciones», Ministerio de Fomento, http://astronomia.ign.es/inicio-de-las-estaciones
  2. «El brote de ántrax que pudo estar enterrado cientos de años y dejó un niño muerto en Rusia», http://www.bbc.com/mundo/noticias-36988092
  3. «‘Zombie’ Anthrax Outbreak in Siberia: How Does It Kill?», http://www.livescience.com/55621-zombie-anthrax-kills-in-siberia.html
  4. «Urgent evacuation of reindeer herders from Arctic anthrax outbreak zone», http://thebarentsobserver.com/en/arctic/2016/07/urgent-evacuation-reindeer-herders-arctic-anthrax-outbreak-zone
  5. «Russian officials blame thawed reindeer carcass in anthrax outbreak», http://edition.cnn.com/2016/07/28/health/anthrax-thawed-reindeer-siberia/
  6. «Siberian Heatwave Sparks Anthrax Outbreak, Killing A Child And Thousands Of Reindeer», http://www.huffingtonpost.com/entry/siberia-anthrax-reindeer_us_57a11c78e4b0693164c32de5
  7. «Alerta en Rusia por un brote de ántrax que ha causado ya un muerto», http://www.elperiodico.com/es/noticias/internacional/alerta-rusia-brote-antrax-siberia-reno-infectado-5306209
  8. «Anthrax Outbreak In Russia Thought To Be Result Of Thawing Permafrost», http://www.npr.org/sections/goatsandsoda/2016/08/03/488400947/anthrax-outbreak-in-russia-thought-to-be-result-of-thawing-permafrost
  9. «Diferenciaciones celulares», http://www.ugr.es/~eianez/Microbiologia/09esporas.htm#_Toc5703yolo9368
  10. «The Bacillus subtilis endospore: assembly and functions of the multilayered coat», Peter T. McKenney, Adam Driks and Patrick Eichenberger, Nat Rev Microbiol. 2013 Jan; 11(1): 33-44
  11. «Endosporas y formas de persistencia», http://www.biologia.edu.ar/bacterias/micro7.htm#esporulacion
  12. «Formation and Composition of the Bacillus anthracis Endospore», Hongbin Liu, Nicholas H. Bergman, Brendan Thomason, Shamira Shallom, Alyson Hazen, Joseph Crossno, David A. Rasko, Jacques Ravel, Timothy D. Read, Scott N. Peterson, John Yates III, and Philip C. Hanna, J. Bacteriol. January 2004 vol. 186 no. 1 164-178
  13. «Spores of Bacillus subtilis their resistance to and killing by radiation, heat and chemicals», P. Setlow, J Appl Microbiol. 2006 Sep;101(3):514-25.
  14. «Structure, Assembly, and Function of the Spore Surface Layers», Adriano O. Henriques and Charles P. Moran, Annu. Rev. Microbiol. 2007. 61:555–88
  15. «The Bacillus anthracis spore», Adam Driks, Molecular Aspects of Medicine, Volume 30, Issue 6, December 2009, Pages 368–373
  16. «Protocolo de vigilancia del carbunco», Murcia Salud, https://www.murciasalud.es/recursos/ficheros/287174-PROTOCOLO_DE_VIGILANCIA_DE_CARBUNCO.pdf
  17. «Medical Progress-Anthrax», Terry C. Dixon, Matthew Meselson, Jeanne Guillemin, and Philip C. Hanna, N Engl J Med 1999; 341:815-826, September 9, 1999. http://www.nejm.org/doi/pdf/10.1056/NEJM199909093411107

 

Detección e identificación biológica

Como ya sabemos detección e identificación no son sinónimos1.

Hablando de detección de agentes biológicos, detección sería «la acción y efecto de poner de manifiesto por métodos físicos o químicos la presencia de agentes biológicos». Necesitamos recurrir a métodos físicos o químicos porque los agentes biológicos son prácticamente invisibles, incoloros, inodoros e insípidos, y no podemos saber si los inhalamos, ingerimos o entramos en contacto con ellos. Además, la mayoría de ellos presenta un importante periodo de latencia, es decir, desde que entramos en contacto con ellos hasta que manifestamos sus efectos pueden transcurrir largos periodos de tiempo.

En una situación real los detectores biológicos y los síntomas reconocidos (éstos, transcurridos un cierto tiempo más o menos largo) pueden dar una primera indicación del posible uso y de la naturaleza del agente biológico.

Al igual que en el caso de los agentes químicos, para los agentes biológicos también podemos distinguir, en el proceso de detección, diferentes niveles de conocimiento o información, función de la información suministrada por el detector o detectores.

¿Cuántos niveles de detección hay?. Pues como el caso de los agentes químicos no hay unanimidad al respecto, algunas fuentes hablan de cuatro niveles (indicativo, presunto, definitivo y probatorio) que a veces se reducen a tres (indicativo, presunto y definitivo). Sin embargo en este documento se propone, igual que se ha venido haciendo desde hace muchos años para los agentes químicos2,3,4, el establecimiento de tan solo dos niveles. Estos dos niveles de detección serían:

  • detección provisional
  • detección confirmada

La detección provisional es la obtenida mediante la respuesta de un detector en combinación o no con la información sobre sus efectos.

La detección confirmada es la conseguida mediante el empleo de dos detectores con tecnologías diferentes para de este modo minimizar los posibles falsos positivos.

Si se desea saber más acerca del agente biológico hay que recurrir a la identificación biológica, para la cual, al igual que en la identificación de los agentes químicos y de las toxinas, se distinguen tres niveles en función de la información obtenida6:

  • identificación provisional
  • identificación confirmada
  • identificación inequívoca

 

Detección biológica
El objetivo de un sistema de detección biológica es simplemente poner de manifiesto (detectar) la presencia de material biológico en una muestra5. Por lo general, las tecnologías empleadas por los detectores biológicos buscan la presencia de proteínas, ácido desoxirribonucleico (ADN), ácido ribonucleico (ARN) o trifosfato de adenosina (ATP).

Las proteínas y el ADN se encuentran en todas las células, incluyendo células epiteliales, esporas y células bacterianas, mientras que el ATP es un metabolito presente sólo en las células vivas. Las toxinas biológicas (por ejemplo, ricina y toxina botulínica) están basadas en proteínas, pero las muestras de toxinas también pueden contener ADN si el material se prepara en crudo a partir de las células que producen la toxina. Por ejemplo, la presencia de toxinas botulínicas o de la ricina está indicada por la presencia del ADN de Clostridium botulinum y del Ricinus communis, respectivamente.

ATP

Molécula de trifosfato de adenosina (ATP)

Además de los ensayos indicadores de la presencia de proteínas, ADN/ARN y ATP, también se puede utilizar la espectroscopia FTIR para establecer la posible presencia o ausencia de materiales biológicos en una muestra. La espectroscopia FTIR es una técnica relativamente simple, utilizada por los primeros intervinientes en un incidente químico, que proporciona información sobre la naturaleza de la muestra comparando el espectro de la muestra en una librería que contiene los espectros de miles de compuestos.

Normalmente, si el espectro de la muestra no está en la librería, el algoritmo del software del equipo intentará clasificarlo en función de sus características espectrales (presencia o ausencia de distintas bandas o picos). Algunos espectrómetros FTIR disponen de algoritmos de análisis espectral para indicar si una muestra puede contener o no material biológico en base a la presencia de proteínas, ácidos grasos, fosfolípidos o/y carbohidratos.

A pesar de que los ensayos indicadores de material biológico son relativamente rápidos y baratos, se deben utilizar con precaución, y si es posible conjuntamente con otros sistemas más específicos. Los ensayos indicadores de material biológico tienen en general baja especificidad (es decir, pueden provocar falsos positivos) y baja sensibilidad (es decir, puede provocar falsos negativos). Los ensayos indicadores de material biológico detectan una amplia gama de materiales orgánicos y biológicos, pero no aseguran la presencia de agentes biológicos específicos.

Tenemos diferentes tipos de ensayos más o menos rápidos y específicos:

  • Ensayo de proteína
  • Ensayo de ADN
  • Ensayo de ATP
  • Espectroscopía FTIR

 

Ensayo de proteína
Los ensayos de proteína5 detectan cualquier tipo de proteína (incluidas las proteínas de la leche en la crema de café y en la leche en polvo) y pueden incluso acompañarse de un ensayo de pH (el material biológico presenta por lo general un pH neutro) o/y de un ensayo de almidón (indicativo de un ingrediente alimentario).

Son fáciles de utilizar (añadir o tomar la muestra con un hisopo, mezclar y leer; o simplemente tomar la muestra con un hisopo y leer), y el usuario visualiza manualmente el cambio de color debido al pH, las proteínas o el almidón.

El tiempo de análisis del orden de 5 minutos o menos, con un límite de detección (LOD) que se encuentra entre 10-100 millones de esporas de Bacillus anthracis (equivalentes a unas 1000-10000 dosis infecciosas, que corresponde a una cantidad apenas visible de polvo, <1 mg).

Son ejemplos de estos sistemas el BioCheck® (20/20 Gene Systems), el INDIPRO (Macherey-Nagel) y el TASKit BioScreener™ (Field Forensics), entre otros.

 

Ensayo de ADN
Los ensayos de ADN5 detectan cualquier tipo de ADN (ya sea humano, animal o vegetal) y algunos tipos de ARN.

Son fáciles de utilizar (añadir la muestra, mezclar y leer), pero requieren un lector de fluorescencia.

El tiempo de análisis es del orden de 5 minutos, con un límite de detección (LOD) que se encuentra entre 1-10 billones de esporas de Bacillus anthracis (equivalentes a alrededor de 1-10 millones de dosis infecciosas, y una cantidad fácilmente visible de polvo, aproximadamente entre 1-10 mg).

El fluorómetro o fluorímetro es un equipo que requiere ciertas atenciones y es relativamente costoso (del orden de unos 10000 euros), y además el coste de los ensayos de ADN es mayor que el de los ensayos de proteína.

Un ejemplo de este tipo de sistemas es el Prime Alert® (GenPrime®)

 

Ensayo de ATP
Los ensayos de ATP5 comprueban si está presente y vivo algún tipo de material celular.

Son moderadamente fáciles de utilizar (el procedimiento conlleva varios etapas que incluyen entre otras pipetear y filtrar). Además, para las esporas debe realizarse antes de la detección un paso previo adicional (de aproximadamente unos 15 minutos) para estimular que las esporas pasen al estado vegetativo (celular vivo), y así permitir la detección. También se requiere de un lector óptico cuyo coste es del orden de 3000-5000 euros.

El tiempo de análisis es del orden de unos 20 minutos, con un límite de detección (LOD) que se encuentra alrededor de las 10000 esporas de Bacillus anthracis (aproximadamente una dosis infecciosa; cantidad no visible por el ojo).

Son ejemplos de estos sistemas el PROFILE® 1 (New Horizons Diagnostics) y el Clean-Trace™ (3M), entre otros.

 

Espectroscopia FTIR
La espectroscopia FTIR5 (Fourier Transform InfraRed spectroscopy) se utiliza principalmente para identificar fácil y rápidamente la composición química de una muestra desconocida, orgánica o inorgánica, y en estado sólido, líquido e incluso gaseoso.

Las proteínas (contenidas en muchos materiales biológicos) dan un espectro infrarrojo característico y podrían detectarse en una muestra si el contenido de proteínas en la misma es al menos de un 10%. No obstante hay que indicar que no se han realizado muchos estudios para comprobar la presencia (detección) de material biológico (por ejemplo, esporas de Bacillus anthracis) en polvos sospechosos.

La detección de material biológico se basa en la presencia en el espectro infrarrojo de la muestra sospechosa, de bandas de absorción correspondientes a proteínas, ácidos grasos, fosfolípidos o/y carbohidratos. Para la identificación de los componentes de una muestra el equipo utiliza algoritmos de comparación de espectros empleando para ello una librería de espectros de componentes conocidos. La identificación de los componentes de una mezcla NO siempre es posible.

Los sistemas de campo son pequeños, compactos, de poco peso, totalmente estancos y de uso muy simple. La estanqueidad facilita enormemente la descontaminación, si ésta fuese necesaria. Se operan con bastante facilidad mediante un teclado táctil o mediante unos simples botones.

El tiempo de análisis es del orden de unos 5 minutos, con un límite de detección (LOD) del orden del un 10 % en peso de proteína en la muestra (no se han realizados estudios detallados para determinar la sensibilidad en términos de número de esporas de Bacillus anthracis).

El coste del equipo y de las librerías es algo elevado, por encima de los 50000 euros, pero no se requieren consumibles especiales, y por tanto el coste por ensayo es prácticamente nulo.

Son ejemplos de estos sistemas, entre otros, el HazMatID Ranger™, el HazMatID™ 360, y el HazMatID™ Elite (todos ellos de Smiths Detection) y el TruDefender™ FT/FTi, el TruDefender™ FTX/FTXi y el Analizador Gemini™ (todos ellos de Thermo Scientific).

 

Identificación biológica
Los criterios para la identificación de los agentes biológicos de guerra recogidos por OTAN vienen descritos en el documento canadiense sobre «Preparación de muestras e identificación de agentes biológicos, químicos y de espectro medio»(Sample Preparation and Identification of Biological, Chemical and Mid-Spectrum Agents)6. Cada uno de los tres niveles de identificación (provisional, confirmada e inequívoca) está perfectamente definido, tanto para los agentes químicos  y agentes de espectro medio, como para los agentes biológicos.

 

Identificación provisional
Se considera que un agente biológico ha sido identificado de manera provisional cuando se cumple uno de los siguientes criterios:

  1. La presencia de un antígeno único para el agente biológico en cuestión se pone de manifiesto por una reacción positiva con un anticuerpo específico en una prueba de inmunoensayo; o
  2. La presencia de una secuencia única de ácido nucleico para el agente biológico en cuestión se pone de manifiesto por una reacción positiva con una sonda específica de ácido nucleico (sonda genética) en un ensayo de PCR (Polymerase Chain Reaction, Reacción en Cadena de la Polimerasa); o
  3. Se obtiene una respuesta positiva por cultivo in vitro o por múltiples ensayos metabólicos

 

Identificación confirmada
Se considera que se ha conseguido la identificación confirmada de un agente biológico cuando se cumplen cualesquiera dos de los criterios descritos para la identificación provisional en presencia de patrones auténticos de referencia (controles positivos y negativos) en condiciones experimentales idénticas.

En el caso de los agentes biológicos, con los equipos portátiles sólo podría obtenerse una identificación provisional pues la identificación confirmada requeriría la utilización del agente biológico a identificar. La identificación confirmada podría llevarse a cabo en un laboratorio analítico desplegable NBQ, pero la identificación inequívoca probablemente pasaría por una adecuada toma de muestras, con una estricta cadena de custodia y un análisis completo en un Laboratorio de Referencia7.

 

Identificación inequívoca
La identificación inequívoca de un agente biológico proporciona el más alto nivel de certeza requerido para el desarrollo de posiciones estratégicas y políticas. La identificación confirmada se convierte en identificación inequívoca si se satisfacen todos los siguientes criterios para el agente biológico en cuestión en presencia de patrones auténticos de referencia (controles positivos y negativos) en condiciones experimentales idénticas:

  1. Se obtienen una respuesta positiva por un método de identificación genética; y
  2. Se obtiene una respuesta positiva por un método inmunológico; y
  3. Se obtiene una respuesta positiva por cultivo in vitro o por múltiples ensayos metabólico; y
  4. Las características de la enfermedad del agente microbiano se confirman en un modelo animal aceptado, si ese modelo existe.

Estos criterios se aplicarán a todos los microbios clásicos, con la excepción de la identificación inequívoca para:

  1. los agentes biológicos para los cuales no hay métodos de cultivo apropiados, por ejemplo, el virus de la hepatitis B no se puede cultivar en medios de cultivo celulares artificiales;
  2. los agentes biológicos que han sido manipulados genéticamente para cambiar sus características; y
  3. los nuevos agentes, por ejemplo, organismos microencapsulados, priones, ácidos nucleicos infecciosos, etc..

La evaluación de viabilidad del agente biológico es otro aspecto muy importante a tener en cuenta, puesto que para causar enfermedad en el anfitrión vivo los agentes biológicos deben ser metabólicamente activos y capaces de replicarse.6

Mientras no se consiga una identificación positiva mediante cultivo in vitro, ensayos metabólicos múltiples o ensayo en modelo animal, resulta imposible determinar si el agente biológico es metabólicamente activo. Mientras no se determine la existencia de actividad metabólica, existe la posibilidad de que el incidente investigado sea una falsa alarma en la cual se ha utilizado agentes biológicos muertos sólo para generar una situación de pánico.

Esta posibilidad debería ser tenida en cuenta al evaluar el tratamiento a las personas expuestas y las posibles connotaciones criminales, estratégicas y políticas de los resultados de la identificación. Esto pone de relieve la importancia de una adecuada recogida, transporte y almacenamiento de las muestras antes de su análisis, para que cualquier posible agente biológico presente en las mismas mantenga su viabilidad hasta la realización de los ensayos de identificación.

 

Bibliografía

  1. «Detección e identificación no son sinónimos», www.cbrn.es, 20 de febrero de 2015
  2. «To be or not to be: the need to be sure in chemical detection», Juan Domingo y René Pita, NBC International, Spring 2006, pp. 61-63
  3. «Detección de agentes químicos de guerra», René Pita y Juan Domingo, Revista Ejército, Año 2007, número 790, páginas 59-63.
  4. «What you looking at…!?», Juan Domingo y René Pita, CBRNe WORLD Summer 2009, Vol. 4, Issue 2, pp. 36-38.
  5. Biodetection Technologies for First Responders-2014 Edition, https://www.pnnl.gov/nationalsecurity/technical/chemical_biological/Biodetection_Technologies_for_First_Responders.pdf
  6. Sample Preparation and Identification of Biological, Chemical and Mid-Spectrum Agents, J.R. Hancock and D.C. Dragon, http://cradpdf.drdc-rddc.gc.ca/PDFS/unc57/p524339.pdf, o http://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.dtic.mil%2Fcgi-bin%2FGetTRDoc%3FAD%3DADA443173&ei=yk3nVMTZLYOsUb-4gIAF&usg=AFQjCNFELbSn8av2rVfksg_TJZmSw5Z6Dg
  7. «Analyse this! «, Juan Domingo y René Pita, CBRNe WORLD , Winter 2008, pp. 38-39.

 

Polvos blancos, polvos negros

El día 6 de octubre saltaba una noticia que, según qué medios, era titulada de manera más o menos acertada, pero que podemos resumir con uno de los títulos: «Alerta bacteriológica en la ciudad del Santander al recibir un sobre con polvos blancos». El tan temido polvo blanco, «White powder«, nada tienen que ver con el polvo negro, «Black powder«. El primero se refiere a las famosas esporas de Bacillus anthracis, mientras que el segundo se refiere a la pólvora negra.

 

Bacillus anthracis, carbunco y «anthrax«
El carbunco, conocido en inglés como anthrax y también conocido en español como ántrax maligno, es una enfermedad causada por la bacteria Bacillus anthracis (ántrax en castellano se refiere a la furunculosis producidad por Staphylococcus aureus).
El Bacillus anthracis pertenece a la familia Bacillaceae. Son bacilos Gram positivos, con un tamaño entre 1-3×3-10 micras, aerobios o anaerobios facultativos, inmóviles, encapsulados y formadores de esporas.

El Bacillus anthracis constituye junto con el Bacillus cereus y el Bacillus thuringiensis, el grupo Bacillus cereus. Son microbios de gran importancia económica, médica y militar y por ello sus genomas han sido objeto de secuenciación y estudio, atribuyéndose al número y tamaño de algunos plásmidos la diferente especificidad en la enfermedad y en los anfitriones. Sus cromosomas presentan una gran similitud en lo que respecta a sintenia y proteínas, con escasas diferencias en contenido genético, lo que dificulta la especiación de los miembros del grupo.

Cuando las formas vegetativas de la bacteria se encuentran en condiciones desfavorables, se forman endosporas centrales (esporas) que pueden sobrevivir durante 2 años en el agua, 10 años en la leche y durante décadas en el suelo y en productos animales como lana, hebras de seda o cuero seco o procesado.

Las esporas son muy resistentes al calor, a la desecación, a la radiación solar, y a muchos desinfectantes y descontaminantes.

Debido al elevado potencial infectivo, las esporas de B.anthracis pueden utilizarse en forma de aerosol como arma biológica, y están incluidas en la lista de agentes potenciales de bioterrorismo (categoría A, agentes de alta prioridad).

La transmisión se produce principalmente por cortes, pinchazos, o por contacto directo de la piel lesionada con suelo contaminado con las esporas, o con tejidos, pelo, lana, pieles y productos procedentes de animales infectados (principalmente herbívoros), tales como cuero o harina de hueso. También puede producirse por la picadura de insectos que se alimentan de la sangre de animales infectados o de sus cadáveres.

Otros mecanismos de transmisión son la inhalación de esporas procedentes de productos de animales infectados y la ingesta de carne cruda o poco cocinada contaminada con las esporas. La creación de un aerosol con esporas de B. anthracis infeccioso no es fácil, porque las partículas necesitan tener entre 1 y 5 μm de tamaño, y es necesaria suficiente energía para dispersarlas. La dosis infectiva 50 (DI50) por inhalación se ha estimado en 10000 esporas (ésta sería la dosis requerida para causar la enfermedad en el 50% de los expuestos por inhalación), aunque en algunos estudios con modelos animales se ha visto que la inhalación de dosis muy pequeñas es capaz de causar la infección.

No se han descrito casos de transmisión de persona a persona.

 

Año 2001, odisea del carbunco
Mencionar primero que antes del 2001 ya hubo un incidente con esporas de B. anthracis quizás menos conocido pero mucho más grave por lo menos en lo que respecta al número de víctimas. En el año 1979 se produjo una liberación accidental de esporas de B. anthracis en un laboratorio del complejo militar en la ciudad de Sverdlovsk, en la antigua Unión Soviética, que originó 64 muertes. El cultivo del agente patógeno producido en la instalación se secaba para producir un polvo fino que pudiera ser utilizado como aerosol. El lunes 2 de abril de 1979, durante su turno de trabajo, un técnico retiró un filtro atascado apagando previamente las máquinas y comunicó el incidente. Por error, el siguiente turno encendió las maquinas si dicho filtro, hasta que percatados de ello colocaron de nuevo un filtro. Durante un par de horas las máquinas de secado liberaron las esporas secas en forma de un fino aerosol que fue dispersado por el viento, afortunadamente. El mando militar fue informado del incidente, pero las autoridades locales y de la ciudad no fueron avisadas de inmediato. Durante los días siguientes enfermaron y murieron del orden de un centenar de personas, aunque el número exacto nunca se llegó a determinar. Las autoridades soviéticas declararon que el día 7 de abril de 1979 se había producido un brote epidémico por B. anthracis, en la ciudad de Sverdlovsk, posiblemente originado por el consumo de carne contaminada.

El 11 de septiembre de 2001 tenían lugar en Estados Unidos una serie de atentados terroristas suicidas (conocidos como 9/11 o como 11-S), mediante el secuestro de aviones comerciales que fueron estrellados contra varios objetivos, causando alrededor de 3000 muertos, más de 6000 heridos, y grandes daños materiales, incluida la destrucción del las Torres Gemelas (World Trade Center) de Nueva York.

En este ambiente de terror, y aproximadamente una semana después, comenzaron los ataques con esporas de B. anthracis. En el curso de varias semanas se enviaron cartas conteniendo esporas de B. anthracis, mataselladas en Trenton (Nueva Jersey) con fecha 18 de septiembre, a varios medios de comunicación: ABC News, CBS News, NBC News y el New York Post, en Nueva York; y al National Enquirer de American Media, en Boca Ratón (Florida), y también mataselladas en Trenton, pero con fecha 9 de octubre, a dos senadores demócratas: Tom Daschle, de Dakota del Sur, y Patrick Leahy, de Vermont.

El resultado fue un total de 22 personas infectadas, cinco de las cuales fallecieron. Además decenas de edificios contaminados con esporas tuvieron que ser descontaminados, proceso que supuso el cierre durante más de dos años de las instalaciones y un coste estimado de los daños totales de alrededor de 1000 millones de dólares. La investigación oficial concluyó con la culpabilidad de Bruce Edwards Ivins, un microbiólogo que trabajó en Fort Detrick, que luego se suicidó por medio de una sobredosis de paracetamol en julio de 2008.

La alarma se extendió por todo el mundo. En muchos países se instauraron diferentes medidas defensivas y de vigilancia (por ejemplo, adquisición de reservas de quimioterápicos y de vacunas) procurando en lo posible no alarmar a la población, y la Unión Europea recomendó a los países que elaboraran sus propios planes de respuesta ante un posible acto terrorista de liberación intencionada de esporas de B. anthracis.

En España el Gobierno constituyó en mayo de 2001 una comisión formada por miembros de la Secretaría General de la Presidencia del Gobierno y de los Ministerios de Interior, Defensa y Sanidad. Se llegaron a registrar más de 200 envíos de cartas que contenían polvo blanco sospechoso de esporas de B. anthracis, pero todos los casos resultaron ser falsas alarmas, tal y como declaró el 2 de noviembre de 2001 el por entonces ministro de Interior y Vicepresidente primero del Gobierno español, Mariano Rajoy.

 

Protocolo de actuación establecido
La Dirección General de Salud Pública, Calidad e Innovación, de la Secretaria General de Sanidad y Consumo editó en su momento el «Protocolo de actuación ante una liberación intencionada de esporas de Bacillus anthracis», que está actualizado a fecha 5 de mayo de 2015. Este documento ha sido elaborado por la Ponencia de Alertas de Salud Pública y Planes de Preparación y Respuesta, aprobado por la Comisión de Salud Pública, y revisado por la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica y por las unidades NRBQ del Cuerpo Nacional de Policía y de la Guardia Civil.

El documento indica que las posibles formas de exposición a esporas de carbunco liberadas intencionadamente incluyen:

  • una exposición localizada a un «polvo blanco» (como una carta o paquete contaminados enviados a través del correo postal)
  • la contaminación de un suministro de aire cerrado (como el sistema de ventilación de un edificio), en la contaminación amplia del aire exterior (como la liberación de esporas por medio de una avioneta o aparato similar) y en la contaminación de una fuente comercial de bebida o alimentación (causando enfermedad gastrointestinal u orofaríngea)

Ante la sospecha de una liberación intencionada de esporas de carbunco recomienda las siguientes acciones:

  • Aislamiento y acceso a la zona de riesgo
  • Evaluación inicial del riesgo
  • Notificación
  • Análisis de la sustancia sospechosa
  • Manejo de las personas expuestas
  • Desinfección de superficies

Se indica que las Unidades de Seguridad Ciudadana que intervengan en primera instancia adoptarán las medidas necesarias para aislar el lugar donde se encuentra el paquete sospechoso o el potencial foco de contaminación.

Asimismo, las Fuerzas y Cuerpos de Seguridad del Estado intervinientes, zonificarán la zona en base a lo establecido en sus correspondientes Instrucciones o Circulares de trabajo al efecto (Circular 50 en caso de CNP; Instrucción 5 en caso de Guardia Civil). Esta zonificación, salvo casos extraordinarios, se corresponderá con tres áreas; una de máximo riesgo o caliente; otra intermedia o templada; y una tercera denominada como zona fría.

Los encargados de realizar la evaluación inicial del riesgo (en realidad saber si hay o no peligro), para determinar si la amenaza es o no creíble, serán los cuerpos especializados de las Fuerzas y Cuerpos de Seguridad del Estado.

El documento indica que en la mayoría de los casos, la evaluación inicial determinará que se trata de una falsa alarma «amenaza no creíble», y no se activará la alerta ni se realizarán más acciones (véase algoritmo). Si la evaluación del riesgo inicial determina que hay suficientes indicios como para que se requiera completar la investigación, «amenaza creíble», será necesario llevar a cabo todas las acciones indicadas anteriormente (Notificación, Análisis de la sustancia sospechosa, Manejo de las personas expuestas y Desinfección de superficies).

esquema bacillus

Algoritmo de toma de decisiones (parcial)

Si se ha producido una amenaza no creíble pero ha habido actuación de los servicios de emergencia, las Fuerzas y Cuerpos de Seguridad del Estado informarán al Centro de Coordinación de Alertas y Emergencias (CCAES) del Ministerio de Sanidad, Servicios Sociales e Igualdad (MSSSI) de la situación y de la no activación de la alerta.

Para el análisis de la sustancia sospechosa se establece que los miembros del cuerpo especializado de las Fuerzas y Cuerpos de Seguridad del Estado serán los encargados de recoger el sobre o paquete sospechoso, tanto si está abierto como cerrado, o de la recogida de muestras de material contaminado en caso de otro tipo de objeto o indicio y que deberán comunicar con carácter urgente con la Unidad de Gestión de la Red de Laboratorios de Alerta Biológica (UG RE-LAB) para que ésta asigne el laboratorio de la red al que deberán enviarse las muestras, en este caso el Centro Nacional de Microbiología (CNM). Éstas se enviarán al CNM para su análisis en un triple embalaje de transporte apto para el envío de sustancias infecciosas de la categoría A, acompañadas de la correspondiente documentación, siguiendo las indicaciones recogidas en el documento de «Recomendaciones para la toma de muestras con sospecha de agentes biológicos y su envío al laboratorio de la RE-LAB». Se debe avisar previamente a la UG RE-LAB para que el Laboratorio pueda tener preparada la recepción de muestras.

El análisis del «polvo blanco», para descartar la presencia de B. anthracis, deberá realizarse con carácter urgente y la UG RE-LAB comunicará el resultado del análisis, también con carácter urgente, al Servicio Permanente de Alertas (SEPAL) del Departamento de Seguridad Nacional, a las Fuerzas y Cuerpos de Seguridad del Estado y al CCAES. El CCAES lo comunicará a la unidad de Alertas de la Comunidad Autónoma.

 

Los puntos grises

  • El «Protocolo de actuación ante una liberación intencionada de esporas de Bacillus anthracis» a pesar de estar disponible al público en general sin restricción alguna, no contiene recomendaciones para los posibles afectados por la recepción de un paquete o carta conteniendo unos «polvos blancos», ni tampoco para los posibles afectados por la liberación y posterior exposición a estos «polvos blancos». Podría incluir unas recomendaciones similares a las que aparecían en el «protocolo de actuación ante una emisión deliberada de esporas de Bacillus anthracis» de la Red Nacional de Vigilancia Epidemiológica, de 15 de abril de 2002. Algo parecido a lo siguiente:
    • Ante la recepción de un sobre o paquete sospechoso (por ejemplo, inesperado o de remitente desconocido, sin remitente, de peso inusual para su tamaño, marcado con Personal o Confidencial, con olores extraños o manchas raras, etc.), no lo abra.
    • Colóquelo en una zona aislada, y a ser posible introdúzcalo en una bolsa de plástico o en un recipiente hermético.
    • Sin alarmarse, y sin alarmar al resto del personal, avise a las Fuerzas y Cuerpos de Seguridad del Estado.
    • Tenga en cuenta que la probabilidad de que los «polvos blancos» sean esporas de B. anthracis es mínima, que incluso la probabilidad de contagiarse es mínima, si ha seguido las recomendaciones anteriores, y que incluso si se contagiase, un rápido y apropiado tratamiento antibiótico resulta muy eficaz.
  • Existe una tendencia, voluntaria o no, a emplear indistintamente, y a veces de manera errónea, los términos riesgo y peligro. Puesto que se presupone que se han liberado o se pueden liberar esporas de B. anthracis debería hablarse de áreas o zonas de peligro.
  • Si se han liberado «polvos blancos», el protocolo debería explicitar más qué medios de detección o de identificación pueden emplear los miembros del cuerpo especializado de las Fuerzas y Cuerpos de Seguridad del Estado para establecer lo más rápidamente posible si se trata o no de una amenaza biológica, sin necesidad de recurrir a una toma de muestras para su posterior envío al laboratorio de referencia. El primer objetivo debe ser restablecer la vida normal de los involucrados en el suceso, sin obviar por ello la toma de muestras para otros fines. Un párrafo donde sólo se dice que «Los encargados de realizar la evaluación inicial del riesgo para determinar si la amenaza es o no creíble serán los cuerpos especializados de las Fuerzas y Cuerpos de Seguridad del Estado» deja muchas dudas en el aire.
  • Los medios de detección o de identificación deben proporcionar resultados de manera rápida y sencilla, y ser susceptibles luego de descontaminación para poder sacarlos de la zona caliente.
  • Para clasificar el incidente como «Amenaza creible» debería requerirse al menos una detección confirmada, más sencilla y rápida de conseguir que una identificación provisional.

A pesar de que el protocolo ha sido revisado con fecha 5 de mayo de 2015, los hechos recientemente acaecidos han creado un clima de «terror» tal, que no estaría de más una nueva revisión que pudiera considerar los puntos aquí mencionados.

 

Referencias

  • Alerta bacteriológica en la ciudad del Santander al recibir un sobre con polvos blancos, http://www.larazon.es/local/madrid/alerta-bacteriologica-en-la-ciudad-del-santander-al-recibir-un-sobre-con-polvos-blancos-BI10902762#.Ttt1uTSRb8KcYwn
  • Desalojan la sede de Santander por amenaza bacteriológica, http://www.elmundo.es/economia/2015/10/06/561401b546163f144b8b45ce.html?intcmp=ULNOH002
  • Falsa alarma-los siete sobres sospechosos enviados a directivos del Santander no contienen ántrax, http://vozpopuli.com/actualidad/69427-falsa-alarma-los-siete-sobres-sospechosos-enviados-a-directivos-del-santander-no-contienen-antrax
  • Investigan un sobre sospechoso recibido por un ejecutivo del Santander, http://www.abc.es/madrid/20151006/abci-sobre-sospechoso-santander-201510061816.html
  • Siete sobres activan la alarma por amenaza bacteriológica en el Santander, http://www.elmundo.es/economia/2015/10/06/561401b546163f144b8b45ce.html
  • Varios sobres sospechosos activan la alerta química en la Ciudad del Santander , http://www.elconfidencial.com/empresas/2015-10-06/varios-sobres-sospechosos-activan-la-alerta-quimica-en-la-ciudad-del-santander_1049561/
  • Instituto Nacional de Higiene y Seguridad en el Trabajo, Fichas de agentes biológicos, Bacillus Anthracis, http://www.insht.es/RiesgosBiologicos/Contenidos/Fichas%20de%20agentes%20biologicos/Fichas/Bacterias/Bacillus%20anthracis.pdf
  • Genomics of the Bacillus cereus group of organisms, D.A. Rasko, M.R. Altherr, C.S. Han & J. Ravel, FEMS Microbiol Rev. 2005 Apr; 29(2):303-29, http://femsre.oxfordjournals.org/content/femsre/29/2/303.full.pdf
  • El agente etiológico del ántrax maligno como arma biológica y su posible uso en atentados terroristas-a propósito de la crisis del Amerithrax de 2001, René Pita y Rohan Gunaratna, Athena Intelligence Journal, Vol. 3, No 3, (2008), pp. 21-55, http://www.ciaonet.org/attachments/6326/uploads
  • El bacillus anthracis como agresivo, M. Domínguez Carmona y M. Domínguez de la calle, Monografía XVI, Monografías de la Real Academia Nacional de Farmacia, Agresivos químicos y microbiológicos en la guerra y el terrorismo, http://www.analesranf.com/index.php/mono/article/viewFile/554/572
  • Protocolo de actuación ante una liberación intencionada de esporas de Bacillus Anthracis, Red Nacional de Vigilancia Epidemiológica, http://www.isciii.es/ISCIII/es/contenidos/fd-servicios-cientifico-tecnicos/fd-vigilancias-alertas/protocolo-actuacion.pdf
  • Protocolo de actuación ante una liberación intencionada de esporas de Bacillus Anthracis, Dirección General de Salud Pública, Calidad e Innovación, de la Secretaria General de Sanidad y Consumo, http://www.msssi.gob.es/profesionales/saludPublica/ccayes/activPreparacionRespuesta/doc/Protocolo_Antrax_16.06.2015.pdf