Archivo de la etiqueta: HCN

Uf, menos mal que el ClCN no está en Lista 1

Con la llegada del otoño las piscinas municipales de verano echarán el cierre por final de temporada. Disminuirá notablemente, la producción de cloruro de cianógeno.

 

Los agentes cianogénicos

El cloruro de cianógeno, ClCN, también conocido como CK, es un agente químico de guerra, de la familia de los agentes cianogénicos, recogido en el anexo sobre sustancias químicas de la Convención para la prohibición de las Armas Químicas (CAQ), en la Lista 3 (3A.2, cloruro de cianógeno, CAS 506-77-4). La Lista 3 incluye sustancias químicas tóxicas y precursores, no incluidos en las Listas 1 y 2, que en algún momento se han producido, almacenado o empleado como armas químicas y que pueden producirse en grandes cantidades comerciales para fines no prohibidos por la CAQ.1

Durante la 1ª Guerra Mundial, a finales de 1915 y principios de 1916, los franceses emplearon cianuro de hidrógeno, HCN, como agente químico de guerra. De este agente cianogénico llegaron a producir más de 3600 tm, generalmente mediante reacción de una solución concentrada de cianuro potásico con ácido sulfúrico diluido. A pesar de que el HCN es bastante tóxico y no era retenido fácilmente por el carbón de las máscaras de protección de aquel entonces, su empleo desde el punto de vista táctico deja mucho que desear, pues sus vapores son menos densos que el aire, su volatilidad resulta demasiado elevada, no presenta efectos acumulativos y la cantidad que cargaban las municiones era tan pequeña, que difícilmente se alcanzaban en el campo de batalla las concentraciones necesarias para conseguir los efectos incapacitantes o letales buscados. Además los alemanes conocedores de todo ello habían dotado a sus tropas de máscaras eficaces frente al HCN.2 El HCN también está recogido en el anexo sobre sustancias químicas de la CAQ, en la Lista 3 (3A.3, cianuro de hidrógeno, CAS 74-90-8)1.

En septiembre de 1916, los franceses introdujeron en el campo de batalla otro agente cianogénico, el cloruro de cianógeno, cuyos vapores son más densos y menos volátiles que los del cianuro de hidrógeno, y presentaban un cierto efecto acumulativo sobre los afectados. El cloruro de cianógeno era producido mediante cloración de una solución saturada de cianuro potásico a 0 °C. Su toxicidad es similar a la del HCN, pero el ClCN resulta más efectivo a bajas concentraciones (irrita los ojos y los pulmones, en un efecto tóxico retardado, similar al de los agentes sofocantes o pulmonares como el cloro y el fosgeno2. Los franceses emplearon el cloruro de cianógeno tal cual, o mezclado con tricloruro de arsénico en una composición que denominaban “Vivrite”3.

 

Preparación del cloruro de cianógeno

El primero en preparar cloruro de cianógeno fue el químico francés, Claude-Louis Berthollet, en 1787, mediante la acción del cloro sobre el ácido cianhídrico. Debido a su malentendido acerca de la naturaleza de cloro llamó al producto “ácido prúsico oxidado”, sin llegar a determinar su constitución4.

En 1815 el químico francés Joseph Louis Gay-Lussac determinó su naturaleza química, y le asignó la fórmula ClCN, la aceptada hoy en día, asignándole el nombre de “ácido clorociánico”. Para su preparación saturó con cloro una solución acuosa de ácido cianhídrico y eliminó el sobrante de cloro por agitación con mercurio. Inicialmente purificó el producto por destilación, pero luego, pensando que podría descomponerse por acción del calor, lo purificó por destilación a presión reducida. Gay-Lussac también consiguió preparar el “ácido clorociánico” mediante reacción del cloro y el ácido cianhídrico húmedo, y por la acción del cloro sobre el cianuro de mercurio seco en presencia de la luz solar4.

El francés Georges-Simon Serullas, en 1827, encontró que la presencia de humedad facilitaba enormemente la reacción entre el cloro y el cianuro de mercurio; añadía agua para humedecer, sin llegar a disolver, el cianuro mercúrico4.

En 1847 el también químico francés Charles Adolphe Wurtz trataba una solución diluida de ácido cianhídrico enfriada a 0 °C con cloro. Al cabo de algún tiempo se formaba una capa líquida en la superficie de la solución, que separada y lavada con agua, hervía a 20 °C y sus vapores ardían con una llama violeta. Llamó a este líquido “clorohidruro de cianógeno” y le asignó la fórmula 2ClCN.HCN. Este líquido, una vez enfríado y tratado con óxido de mercurio para eliminar el HCN, producía cloruro de cianógeno que se destilaba a través de de cloruro de calcio4.

Los trabajos del alemán Alexander Naumann y del suizo Emil Vogt, en 1870, demostraron que el producto que se formaba en primer lugar al pasar cloro sobre las soluciones de ácido cianhídrico no era un compuesto de cloruro de cianógeno y ácido cianhídrico, sino simplemente una mezcla, en proporciones variables, de estas dos sustancias4.

En 1850 el alemán Friedrich Wöhler preparaba cloruro de cianógeno agregando un ligero exceso de cianuro de mercurio a una solución saturada de esta sal en el agua, sobre la que pasaba luego cloro hasta saturar la solución y llenar de cloro el espacio sobre la misma. El frasco cerrado, coloca en un cuarto oscuro y se agita frecuentemente hasta que todo el cianuro se haya disuelto o todo el cloro se haya consumido. Cualquier exceso de cloro es eliminado por el mercurio, y el cloruro de cianógeno se destila luego a través de cloruro de calcio y se condensa en un tubo en forma de U refrigerado4.

En 1854, los franceses Auguste André Thomas Cahours y François Stanislas Cloez describieron un método que se diferenciaba del método de Wohler en que utilizaba una solución diluida de cianuro de mercurio (100 g en 4 litros de agua) y el cloro se eliminaba haciendo pasar los gases a través de un tubo que contenía limaduras de cobre4.

Más recientemente, en 1947, Barnett y colaboradores siguiendo una propuesta inicial de A. Held, de 1897, prepararon cloruro de cianógeno por acción del cloro, en condiciones controladas, sobre una solución de sulfato de cinc y de cianuro de sodio. Con este procedimiento conseguían cloruro de cianógeno de gran pureza y con un rendimiento cercano al 70%5.

Von Hans Schröder, en 1954, obtenía un rendimiento cercano al 100 % por reacción del cloro con una solución de K2Zn(CN)4, a temperatura ambiente6.

R. Varma y A.J. Signorelli, en 1969, obtenían cloruro de cianógeno con rendimiento cercano al 95 % por reacción a temperatura ambiente del monóxido de cloro, Cl2O, con cianuro de plata sólido7:

 

 Propiedades del cloruro de cianógeno

El cloruro de cianógeno, ClCN, es un compuesto lineal, al igual que el cianuro de hidrógeno y los otros haluros de cianógeno (FCN, BrCN, ICN), con el cloro unido al átomo de carbono mediante un enlace simple y un triple enlace entre los átomos de carbono y nitrógeno.

Es una molécula pequeña de peso molecular 61,47 con punto de fusión de -6 °C y punto de ebullición de 13,7 °C. En condiciones normales de presión y temperatura es un gas incoloro, con un olor acre, más denso que el aire (densidad relativa de los vapores 2,16). Es muy soluble en agua, con una constante de la lay de Henry de 2,48 kPa·m3/mol que sugiere una fácil volatilización8.

El cloruro de cianógeno reacciona con el amoníaco para formar cianamida y cloruro amónico9:

Las soluciones acuosas de hidróxido de sodio o de potasio provocan su descomposición, con formación de cloruros y cianatos9:

La hidrólisis producida por los iones hidroxilo produce ácido ciánico, un ácido débil de pKa=3,4810:

La acción de los hipocloritos provoca la destrucción del cloruro de cianógeno por oxidación total a nitrógeno11:

Por acción de las altas temperaturas sufre polimerización, formando triclotriazina (CAS 108-77-0), un sólido cristalino que funde a 190 °C9:

 

 La orina

La orina es un líquido acuoso transparente y amarillento, de olor característico, secretado por los riñones y eliminado al exterior por el aparato urinario. Su constitución es compleja y variable, estando constituida fundamentalmente por un 91-96% de agua y el resto sustancias orgánicas e inorgánicas en una relación aproximada de 7 a 5. La composición de la orina depende de factores tales como la dieta, la salud y la condición física.

Los componentes orgánicos más importantes son la urea (CAS 57-13-6), el ácido úrico (CAS 69-93-2) y la creatinina (CAS 60-27-5) (residuo procedente del fosfato de creatina, CAS 67-07-2, o de la propia creatina, CAS 50-00-1). La urea supone aproximadamente el 95% del nitrógeno de la orina.12

Relación entre la creatina y la creatinina13

 

La orina artificial preparada conforme a la norma DIN EN 1616:1999 tiene un pH de 6,6 ± 0,1 y es una solución acuosa preparada con agua destilada desionizada, que contiene14:

  • 25,0 g/L de urea (CAS 57-13-6),
  • 2,0 g/L de creatinina (CAS 60-27-5),
  • 9,0 g/L de cloruro sódico (CAS 7647-14-5),
  • 2,5 g/L de hidrógeno ortofosfato disódico anhidro (CAS 7558-79-4),
  • 2,5 g/L de dihidrógeno ortofosfato potásico (CAS 7778-77-0),
  • 3,0 g/L de cloruro amónico (CAS 12125-02-9) y
  • 3,0 g/L de sulfito sódico (CAS 7757-83-7)

 

 

ClCN en las piscinas15,16,17,18

Se ha comprobado mediante estudios por espectrometría de masas en muestras de agua de piscinas, que cuando se orina en una piscina, los compuestos que ésta contiene pueden reaccionar con el cloro activo del agua, y formar, entre otros compuestos orgánicos más o menos volátiles, ClCN, y tricloramina o tricloruro de nitrógeno (NCl3), que resultan tóxicos por inhalación.

Además estudios en laboratorio sobre la reacción de hipoclorito con los compuestos habitualmente presentes en la orina y en el sudor (urea, algunos aminoácidos como L-arginina, L-histidina, y glicina, creatinina, ácido úrico, etc.) también detectaron la formación de ClCN y de NCl3.

Las concentraciones típicas de ácido úrico en el sudor y en la orina son 0,012 y 4,54 mM, respectivamente, y si suponemos estas son las únicas fuentes de ácido úrico en las piscinas, entonces aproximadamente el 93% de ácido úrico presente en las piscinas procedería de la orina.

La formación y persistencia del ClCN depende de diversos factores tales como pH, temperatura, concentración de cloro, concentración de fluido orgánico, radiación ultavioleta, etc..

Sin embargo lo que verdaderamente condiciona la presencia o ausencia de ClCN en las piscinas son las prácticas de higiene de los bañistas. Si estos se duchan antes de entrar en las piscinas y no se orinan en ellas, la producción de ClCN se viene abajo.

 

 

Referencias

  1. “Convención sobre la prohibición del desarrollo, la producción, el almacenamiento y el empleo de armas químicas y sobre su destrucción”, texto completo, https://www.opcw.org/sp/convencion-sobre-las-armas-quimicas/texto-completo/
  2. “Medical Aspects of Chemical and Biological Warfare”, “Chapter 10. Cyanide Poisoning”, Medical Department of the Army, F.R. Sidell, E.T.Takafuji & D.R. Franz, 1997
  3. “The war gases”, Mario Sartori, D. Van Nostrand Company, Inc., 1939
  4. “The preparation of cyanogen chloride”, W. L. Jennings & W. B. Scott
  5. “The preparation of cyanogen chloride”, H. W. Barnett, R. G. Davis & R. P. Graham, Canadian Journal of Research, Vol. 25, Sec. B, 289-294, 1947.
  6. “Zur Darstellung von Cyanchlorid”, Hans Schröder, Z. anorg. allg. Chem., 297, 5-6, Dezember 1958, 296–299
  7. “A new synthesis of cyanogen chloride”, R. Varma & A. J. Signorelli, Inorg. Nucl. Chem. Letters, Vol. 5, pp. 1017-1019, 1969
  8. “Cyanogen Chloride in Drinking-water”, http://www.who.int/water_sanitation_health/dwq/chemicals/phe_cyanogen_background_document.pdf
  9. “An outline of organic nitrogen compounds”, F. Degering, University Lithoprinters, 1945
  10. “The hydroxide-assisted hydrolysis of cyanogen chloride in aqueous solution”, E. J. Pedersen III&B.J. Mariñas, Wat. Res. Vol. 35, No. 3, pp. 643-648, 2001
  11. “Hydrolysis and Chlorinolysis of Cyanogen Chloride”, Charles C. Price, T. E. Larson, Karl M. Beck, F. C. Harrington, L. C. Smith, Ilya Stephanoff, J. Am. Chem. Soc., 1947, 69 (7), pp 1640–1644
  12. “Synthetic Urine Composition”, http://syntheticurineworld.blogspot.com.es/2015/12/synthetic-urine-composition.html
  13. “Creatine Basics and Biochemistry”, Prabhat Bhama, http://umich.edu/~medfit/supplementation/creatinebasicsandbiochemistry101705.html
  14. “Industry Specific Artificial Urine”, http://www.pickeringtestsolutions.com/artificial-urine2/
  15. “Volatile Disinfection Byproduct Formation Resulting from Chlorination of Organic-Nitrogen Precursors in Swimming Pools”, Jing Li & Ernest R. Blatchley III, Environ. Sci. Technol. 2007, 41, 6732-6739
  16. “Volatile disinfection by-product analysis from chlorinated indoor swimming pools”, William A. Weaver, Jing Li, Yuli Wen, Jessica Johnston, Michael R. Blatchley, Ernest R. Blatchley III, Water Research, 43 (2009), 3308-3318
  17. “Ultraviolet-Induced Effects on Chloramine and Cyanogen Chloride Formation from Chlorination of Amino Acids”, ShihChi Weng & Ernest R. Blatchley III, Environ. Sci. Technol., 2013, 47, 4269−4276
  18. “Volatile Disinfection Byproducts Resulting from Chlorination of Uric Acid- Implications for Swimming Pools”, Lushi Lian, Yue E, Jing Li & Ernest R. Blatchley III, Environ. Sci. Technol., 2014, 48, 3210−3217

 

HCN para engordar

El cianuro de hidrógeno también conocido como ácido cianhídrico, ácido prúsico, metanonitrilo o formonitrilo fue descubierto en el año 1783 por el químico sueco Carl Wilhelm Scheele. Su fórmula química es HCN y su número CAS es el 74-90-8. Al ser una molécula pequeña (de peso molecular 27,03) tiene un bajo punto de fusión (- 13°C) y un bajo punto de ebullición (26°C). También por ello sus vapores tienen una densidad relativa inferior a la del aire (0,98), de modo que al ser menos densos ascienden y se disipan con facilidad, sobre todo en campo abierto. Los vapores de cianuro de hidrógeno tienen un olor característico a almendras amargas y se disuelven fácilmente en el agua, acidulando la misma por formación de ácido cianhídrico (pKa=9,25).

El cianuro de hidrógeno fue utilizado durante la Primera Guerra Mundial como agente químico de guerra, con escaso éxito, pues debido a su volatilidad y baja densidad de sus vapores, éstos se disipan con facilidad, y dificultan la consecución de concentraciones altas, suficientemente letales. Los franceses entusiastas del empleo del cianuro de mezclaban éste con otras sustancias para conseguir una mezcla de vapores más densa, que pudiera ser inhalada, para conseguir efectos letales, pero también con escaso éxito. En cambio los alemanes, durante la Segunda Guerra Mundial sí que emplearon el cianuro de hidrógeno en las cámaras de gas de los campos de concentración, con un producto denominado Zyklon B.

El cianuro de hidrógeno, los halogenuros de ciánogeno y las sales y complejos de cianuro son considerados “agentes cianogénicos”, que interfieren la utilización del oxígeno a nivel celular, siendo en muchos casos erróneamente denominados “agentes sanguíneos”. El cianuro de hidrógeno irrita los ojos y el tracto respiratorio, pudiendo producir efectos nocivos en la respiración celular que conllevan a convulsiones, pérdida del conocimiento e incluso a la muerte.

A pesar de su escaso empleo como agente químico de guerra, el cianuro de hidrógeno y las sales de cianuro tienen numerosas y muy variadas aplicaciones industriales (se utiliza para la producción de acrilonitrilo, acrilatos y metacrilatos, cianuros inorgánicos, adiponitrilo, hexametilendiamina, metionina, etc.). De hecho, el cianuro de hidrógeno está recogido por la CAQ como agente químico de Lista 3, al igual que el cloruro de cianógeno (ClCN, CAS 506-77-4). La CAQ no incluye en sus listas ninguna sal del ácido cianhídrico, pero el cianuro sódico (NaCN, CAS 143-33-9) y el cianuro potásico (KCN, CAS 151-50-8) si están recogidos en la lista de control de las exportaciones del Grupo de Australia, como precursores de armas químicas.

Recordemos que la Lista 3 incluye sustancias químicas tóxicas y precursores no incluidos en las Listas 1 y 2:

  • que se han producido, almacenado o empleado como armas químicas,
  • se producen en grandes cantidades comerciales para fines no prohibidos y
  • suponen un riesgo para el objeto y propósito de la CAQ debido a que poseen tal toxicidad letal o incapacitante y otras propiedades que podrían permitir su empleo como arma química y emplearse en la síntesis de sustancias químicas de la Lista 1 o de la Lista 2.

La CAQ establece declaraciones y inspecciones sobre las instalaciones industriales que producen, procesan o consumen ciertas sustancias químicas de doble uso por encima de unos determinados valores umbrales. En el caso del cianuro de hidrógeno, Lista 3, el valor umbral de declaración está establecido en 30 tm y el umbral de verificación en 200 tm. La capacidad promedio de las instalaciones industriales productoras de cianuro de hidrógeno (DuPont, Rohm y Haas, Novartis, Cyanco, ICI, Butachemie, Röhm y Elf-Atochem, entre otras) está entre las 5000 y las 30000 toneladas/año.

A pesar de todo lo expuesto el cianuro de hidrógeno no suele almacenarse, lo que posibilitaría su empleo como agente químico de guerra, sino que suele obtenerse “in situ” para un uso inmediatamente posterior, por ejemplo para la síntesis de la metionina, un aminoácido esencial empleado habitualmente en la composición de los piensos compuestos. Es decir, el HCN se utiliza para engordar.

 

Producción del HCN

A escala industrial el método más utilizado para obtener cianuro de hidrógeno es el método de Andrussow, y en menor medida, el método de BMA-Degussa y el método de Shawinigan.

Método de Andrussow

El método está basado en una reacción descubierta en 1927 por Leonid Andrussow, un ingeniero químico letón (soviético), que trabajaba para la IG Farben (BASF). Andrussow, desarrolló en años posteriores el proceso industrial que lleva su nombre, y lo patentó en 1931.

La reacción de Andrussow consiste en la oxidación del metano y del amoniaco en presencia de oxígeno y de un catalizador de platino, una reacción fuertemente exotérmica que produce cianuro de hidrógeno:

CH4 + NH3 + 1.5 O2 → HCN + 3 H2O

El cambio de entalpía para esta reacción es ΔH = -474 kJ/mol.

El calor proporcionado por esta reacción actúa como catalizador para diversas reacciones secundarias:

CH4 + H2O → CO + 3 H2

2 CH4 + 3 O2 → 2 CO + 4 H2O

4 NH3 + 3 O2 → 2 N2 + 6 H2O

Para reducir en lo posible estas reacciones secundarias hay que reducir enormemente el tiempo de contacto de las materias primas con el catalizador; los tiempos de contacto son del orden de 0,0003 segundos.

andrussow2c

Como muestra el diagrama, el gas natural, esencialmente metano libre de azufre, se mezcla con amoníaco y se añade aire comprimido en una proporción muy cercana a la que corresponde a la reacción teórica.

La mezcla se lleva al reactor, donde se pasa sobre una malla de platino-rodio o platino-iridio que actúa como catalizador, mientras se vigila y controla cuidadosamente la temperatura y el límite superior de inflamabilidad. La reacción tiene lugar a más de 1000 °C y a presión atmosférica, con una velocidad de paso de la mezcla gaseosa de 3 m/s en la zona del catalizador. Para evitar la descomposición de HCN, el efluente gaseoso del reactor se enfría rápidamente y el vapor de agua producido en el intercambiador de calor se emplea en otras fases del proceso.

El efluente gaseoso enfriado se lava con ácido sulfúrico diluido para eliminar el amoníaco que no ha reaccionado y evitar así la polimerización del HCN. Puesto que la solución de sulfato de amonio es un residuo de costosa eliminación se han desarrollado otros procedimientos de eliminación del amoníaco, como por ejemplo, el empleo de una solución de dihidrógeno fosfato de amonio o fosfato monoamónico (MAP de las siglas en inglés MonoAmmonium Phosphate).

El gas pasa luego a una columna de absorción donde el cianuro de hidrógeno es absorbido en contracorriente con agua fría y la solución estabilizada por adición de ácido. Finalmente en un rectificador se expulsa el ácido cianhídrico de la solución acuosa y se condensa para producir cianuro de hidrógeno de alta pureza con un contenido acuoso inferior al 0,5 %.

 

Método BMA-Degussa

El método BMA o método Degussa es un proceso químico desarrollado por la compañía química alemana Degussa para la producción de cianuro de hidrógeno a partir de metano y amoníaco, en presencia de un catalizador de platino, y en ausencia de oxígeno. Las siglas BMA corresponden a los términos alemanes Blausäure (cianuro de hidrógeno) a partir de Methan (metano) y Ammoniak (amoníaco). En el método BMA-Degussa la reacción de formación del cianuro de hidrógeno es una reacción endotérmica que requiere altas temperaturas (por encima de los 1200 °C):

CH4 + NH3 → HCN + 3 H2

El cambio de entalpía para esta reacción es ΔH = +251 kJ/mol.

Al igual que en el método Andrussow, se requiere posteriormente eliminar el amoníaco y aislar el cianuro de hidrógeno.

Si hay dificultades para el suministro de metano, el proceso puede llevarse a cabo con otros hidrocarburos licuados o incluso etanol, o en una reacción de tres etapas con metanol.

 

Método Shawinigan

El método Shawinigan desarrollado en 1960 por la empresa Shawinigan Chemicals también se conoce como método Fluohmic, y produce HCN a partir de amoníaco e hidrocarburos (metano, pero habitualmente propano y butano) en una reacción no catalítica, libre de oxígeno. El proceso, primera aplicación comercial del reactor “FLUOHMIC”, ofrece bajos costos de producción y facilidad de operación. En un reactor refractario, una mezcla de amoníaco e hidrocarburo (relación N/C ligeramente > 1) pasa a través de un lecho fluidizado de carbón calentado eléctricamente a unas temperaturas del orden de 1350-1650 °C:

La reacción podría describirse como:

C3H8 + 3 NH3 → 3 HCN + 7 H2

El cambio de entalpía para esta reacción es ΔH = +634 kJ/mol.

 

La metionina, un aminoácido esencial

 dl-metionina  l-metionina
D,L-metionina, CAS 59-51-8 L-metionina, CAS 63-68-3

La metionina es el ácido 2-amino-4-(metiltio) butírico ó ácido 2-amino-4-(metiltio) butanoico, de fórmula empírica C5H11NO2S y peso molecular 149,21. Es un polvo blanco y cristalino, que funde a 281-283 °C, con descomposición. Al tener en su molécula un átomo de carbono asimétrico presenta isomería óptica, de modo que tenemos el isómero L-metionina, el isómero D-metionina y la mezcla racémica o racemato D,L-Metionina. La L-metionina es el ácido (S)-2-amino-4-(metiltio) butanoico (CAS 63-68-3), la D-metionina es ácido (R)-2-amino-4-(metiltio) butanoico (CAS 348-67-4) y la D,L-Metionina es la mezcla racémica (CAS 59-51-8).

El término aminoácido viene a indicar que la molécula contiene un grupo amino, -NH2, y un grupo “ácido”, en principio cualquier grupo “ácido”, pero casi siempre un grupo ácido carboxílico, -COOH.

aminoacido

Tanto el carboxilo como el amino son grupos funcionales susceptibles de ionización dependiendo del valor de pH, de modo que los aminoácidos a valores bajos de pH se encuentran mayoritariamente en su forma catiónica (con carga positiva), mientras que a valores altos de pH se encuentran en su forma aniónica (con carga negativa).

En condiciones fisiológicas normales, esto es, a valores de pH neutro, el grupo carboxilo dona un protón que es aceptado por el grupo amino, de manera que se forma un “zwitterión”. Un zwitterión (del alemán “zwitter” “híbrido”, “hermafrodita”) es un compuesto químico eléctricamente neutro pero que tiene cargas formales positivas y negativas sobre átomos diferentes. Los zwitteriones son especies polares que normalmente son muy solubles en agua y poco solubles en disolventes apolares. Los zwitteriones son moléculas que contienen grupos ácidos y grupos básicos (y son, por tanto, anfóteros) existiendo como iones dipolares en ciertos intervalos de pH. El pH al cual todas las moléculas están en la forma de ion dipolar se conoce como punto isoeléctrico de la molécula.

zwitterionLos valores de pKa de metionina son pK1=2,28 (-COOH) y pK2=9,21 (-NH3+), y su punto isoeléctrico es 5,74 (pH=5,74).

Las proteínas, componentes esenciales de todas las células vivas, por hidrólisis se desdoblan liberando los aminoácidos, y en el organismo, estos mismos aminoácidos se emplean para obtener proteínas. Las proteínas contienen normalmente unos 20 aminoácidos distintos, que se diferencian en la naturaleza del radical R. Aunque hay una clasificación de los aminoácidos bastante aceptada, que los incluyen en cuatro grupos distintos en función de carácter ácido-base y de la polaridad del radical R, nosotros nos vamos a referir a una clasificación más sencilla, esenciales y no esenciales, en función de si se necesita su aporte con la alimentación o no.

Los aminoácidos “esenciales” o “imprescindibles”, que el propio organismo no puede sintetizar por sí mismo y que deben ser aportados con la alimentación varía difiere de una especie animal a otra. Así, por ejemplo, para el hombre resultan esenciales valina, leucina, isoleucina, lisina, metionina, treonina, fenilalanina y triptófano. A veces también se incluyen la histidina y la arginina. Para el cerdo se reconocen unos doce aminoácidos esenciales, que deben ser aportados en la dieta: lisina, metionina, cistina, triptofano, treonina, leucina, isoleucina, valina, histídina, arginina, fenilalanina y tirosina.

En las proteínas de origen animal los aminoácidos se presentan en la forma L (levógira) aunque las distintas especies animales disponen de diferentes sistemas enzimáticos capaces de transformar la forma D (dextrógira) en la forma L (levógira).

La metionina, su sigla es Met, se comercializa actualmente en dos formas: la DL-metionina y el análogo hidroxilado de la metionina, el ácido 2-hidroxi-4-metilmercapto butírico ó HMB ó ácido DL-2-hidroxi-4-metiltiobutanoico ó MHA. A partir del hidroxi análogo de la metionina se obtiene y comercializa la sal cálcica correspondiente.

La DL-Metionina se produce a escala industrial mediante síntesis química. El metanotiol reacciona con acroleína para producir 3-metiltio propionaldehído, el cual reacciona con cianuro de hidrógeno para producir 2-hidroxi 4-metiltio butironitrilo, el cual tratado con amoníaco produce en una posterior hidrólisis metionina. El producto comercial sólido tiene una riqueza en metionina superior al 99%.

metioninasint

Método Degussa para la síntesis de L-metionina

metionina2

Esquema simplificado de la producción de metionina (Rhodimet) del grupo Bluestar Adisseo.

La materia primas más críticas y que constituyen el principal valor para el proceso son, por este orden, el propileno, el metano y el azufre.

La capacidad mundial de producción de metionina ha ido durante estos últimos años en continuo crecimiento:

Capacidad mundial anual de producción de metionina

(Fuente: Fountain Agricouncil 2010)

2009 803000 tm
2010 834000 tm
2011 916000 tm
2012 1046000 tm
2013 1111000 tm
2014 1187000 tm
2015 1267000 tm

 

Los principales productores de metionina (datos del año 2015) son:

produccion-2015

En España, el grupo Bluestar Adisseo tiene en Burgos una planta de producción de metionina, con una capacidad de producción de al menos 105000 tm al año (datos del año 2005).

 

Referencias

  1. “Convención sobre la Prohibición del Desarrollo, la Producción, el Almacenamiento y el Empleo de Armas Químicas y sobre su Destrucción (CAQ)”, disponible en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.pdf y en https://www.opcw.org/fileadmin/OPCW/CWC/CWC_es.doc
  2. “The Manufacture of Hydrocyanic Acid by the Andrussow Process”, J. M. Pirie, Platinum Metals Rev., 1958, 2, (l), 7-11, http://www.technology.matthey.com/pdf/pmr-v2-i1-007-011.pdf
  3. “Cyano Compounds, Inorganic”, Ullmann’s Encyclopedia of Industrial Chemistry,7th ed., 2011
  4. “Aminoacids”, Ullmann’s Encyclopedia of Industrial Chemistry,7th ed., 2011
  5. “The complex process of manufacturing methionine”, Dick Ziggers, http://www.allaboutfeed.net/Processing/General/2011/10/The-complex-process-of-manufacturing-methionine-AAF012677W/
  6. “Synthetic methionine saves resources”, Michael Binder, http://www.allaboutfeed.net/PageFiles/10642/001_boerderij-download-AAF10450D01.pdf
  7. “Methionine production – a critical review”, Thomas Willke, http://www.thuenen.de/media/institute/at/Personen_Fotos/Wissenschaftler/Download_Methionin-Review-offprint.pdf
  8. “CCM: Adisseo methionine business boosts revenue in 2015”, http://www.cnchemicals.com/Press/84116-CCM:%20Adisseo%20methionine%20business%20boosts%20revenue%20in%202015.html
  9. “Manual de bioquímica”, P.Karlson, Ed. Marín S.A., 4ª edición, 1973