Archivo de la etiqueta: fumigación

La fosfina, fosfuro de hidrógeno

La fosfina1,2,3,4

La fosfina, PH3, es el fosfuro de hidrógeno, un gas incoloro, inflamable y tóxico. La fosfina pura es inodora, pero normalmente contiene algunas impurezas, y entonces presenta un olor muy desagradable parecido al ajo o al pescado podrido, debido a la presencia de difosfina, P2H6, y de otras fosfinas sustituidas. Las fosfinas son también los compuestos organofosforados de fórmula PR3, donde R es un radical orgánico.

El primero en obtener fosfina fue Philippe Gengembre (1764-1838), un estudiante de Lavoisier, que la obtuvo en 1783 calentando fósforo en una solución acuosa de carbonato de potasio.

Inicialmente la fosfina estuvo tan asociada al fósforo elemental, que durante algún tiempo fue considerada una forma gaseosa del fósforo, hasta que, en 1789, Lavoisier indicó que era una combinación del fósforo con el hidrógeno, y la describió como fosfuro de hidrógeno.

En 1844, Paul Thénard, hijo del químico francés Louis Jacques Thénard, utilizó una trampa fría para separar la fosfina de la difosfina, que había obtenido a partir del fosfuro de calcio, y demostró con ello que la difosfina era la responsable de la inflamabilidad espontánea que normalmente presentaba la fosfina, y también del característico color naranja/marrón que se formaba en las superficies, consecuencia de su polimerización. Paul Thénard también consideró que la fórmula de la difosfina debía ser PH2 (en realidad es P2H4), intermedia entre el fósforo elemental y la fosfina.

La fosfina se emplea en la industria de los semiconductores y de los plásticos, en la producción de retardadores de llama, y como insecticida en locales cerrados, tales como silos de grano y viviendas.

 

Propiedades físico-químicas1,2,3,4,5

La fosfina, PH3, es el fosfuro de hidrógeno, también conocida como fosfuro de trihidrógeno, hidruro de fósforo, trihidruro de fósforo, Phosphorwasserstoff, etc. Su número CAS es 7803-51-2, su número EC es 232-260-8 y su número ONU es 2199. Es una molécula trigonal piramidal con simetría molecular C3V, longitud del enlace P-H de 1,42 Å, y ángulo del enlace H-P-H de 93,5°:

Es una molécula pequeña, de peso molecular 34,00 y densidad relativa de 1,18, punto de fusión de -132,8 °C, punto de ebullición de -87,7 °C, momento dipolar de 0,58 D y potencial de ionización de 9,96 eV.

Obsérvese que el fósforo es el único elemento del grupo 15 (grupo del nitrógeno) que forma más de un hidruro. Además de la fosfina, PH3, forma entre otros, la difosfina, P2H4, CAS 13445-50-6, que normalmente se forma junto con la fosfina, pudiendo ambos separarse por condensación, debido a la diferencia de los puntos de ebullición (-87,7 °C frente a 63,5 °C), quedando la difosfina en forma de líquido amarillo. La difosfina se inflama espontáneamente en contacto con el aire, y se descompone con el tiempo formando polímeros sólidos amorfos, de color amarillo, insolubles en los disolventes orgánicos y de estequiometria variable, pero cercana a P2H. El fósforo también forma otros hidruros con diferentes estequiometrias, por ejemplo, PnH2n+2, PnHn, PnHn-2, PnHn-4, etc., siendo los más conocidos el trifosfano, P3H3, el pentafosfano, P5H5, y el heptafosfano, P7H3:

   
Trifosfano, ciclotrifosfano

CAS 20656-09-1

Pentafosfano, ciclopentafosfano

CAS 6798-45-4

Heptafosfano, trihidruro de heptafósforo

CAS 51273-53-1

La pureza de la fosfina influye sobre dos aspectos importantes de la misma, el olor y la inflamabilidad. Como ya se ha indicado la fosfina pura es inodora, pero la presencia de impurezas le confiere un olor desagradable que permite su detección en concentraciones del orden de 0,14-7 mg/m3. La temperatura de autoignición de la fosfina pura es de 38 °C pero la presencia de impurezas, en particular de difosfina, provoca con frecuencia que el producto técnico se inflame espontáneamente a temperatura ambiente, y forme mezclas explosivas con el aire en concentraciones superiores a 1,8% (LEL 1,79%).

La NFPA establece para la fosfina una clasificación de peligro:

Peligro para la salud: 4 (extremo)
Peligro de inflamabilidad: 4 (extremo)
Peligro por inestabilidad: 2 (moderado)

La fosfina es escasamente soluble en agua, alrededor del 2,5 % (v/v) a 20 °C, pero es soluble entre un 2,5-15 % (v/v) en la mayor parte de los disolventes orgánicos a temperatura ambiente.

Las soluciones acuosas de fosfina no muestran propiedades ácidas ni básicas. Las investigaciones sobre el intercambio de deuterio entre el agua deuterada y la fosfina revelaron que este intercambio procede vía un ión PH4+ en soluciones ácidas y a través de un ión PH2 en soluciones básicas. A partir de los datos cinéticos y de los mecanismos de intercambio, se establecieron los siguientes valores para las constantes de equilibrio, a 27 °C:

Como muchos hidruros la fosfina es un poderoso agente reductor:

El poder reductor de la fosfina se utiliza, por ejemplo, para su detección mediante el empleo de tubos colorimétricos.

La oxidación de la fosfina produce agua y óxidos u oxiácidos de fósforo:

La fosfina en atmósfera de cloro elemental arde con formación de pentacloruro de fósforo, PCl5, y cloruro de hidrógeno, HCl. Las soluciones acuosas de cloro oxidan la fosfina a ácido fosfórico:

La fosfina reacciona casi instantáneamente con las soluciones de hipoclorito de sodio, por lo que estas se emplean para atrapar las trazas de fosfina en una corriente gaseosa:

 

Obtención de la fosfina1,6

A escala de laboratorio la fosfina se prepara fácilmente mediante la hidrólisis de alguno de sus fosfuros metálicos, por ejemplo, del fosfuro de aluminio, AlP, CAS 20859-73-8, del fosfuro de calcio, Ca3P2, CAS 1305-99-3, del fosfuro de magnesio, Mg3P2, CAS 12057-74-8, o del fosfuro de zinc, Zn3P2, CAS 1314-84-7. Para la hidrólisis, además del agua, pueden utilizarse ácidos o bases, y mezclas acuosas de ácidos o bases con solventes orgánicos (como, por ejemplo, dioxano o alcoholes). En la hidrólisis del fosfuro de calcio, además de fosfina se forman difosfina y otros hidruros de fósforo, y si el fosfuro de calcio se ha obtenido por reducción del Ca3(PO4)2 con carbón, en su hidrólisis puede aparecer hasta un 3% de acetileno. Todo indica que el mejor método de laboratorio es la hidrólisis del fosfuro de aluminio, de la mayor pureza posible, con agua fría, para así evitar la formación de difosfina y otras impurezas, responsables de la inflamabilidad espontánea.

También puede obtenerse mediante reacción del fósforo con el hidrógeno:

Los dos métodos industriales más comunes se basan en reacciones de desproporción del fósforo elemental catalizadas por álcalis o ácidos. Por ejemplo, el fósforo blanco reacciona con hidróxido sódico para producir fosfina e hipofosfito de sodio, NaH2PO2, CAS 7681-53-0:

En las plantas de producción de hipofosfito de sodio, la fosfina es un subproducto que generalmente se quema. En presencia de alcoholes, se puede controlar la reacción de modo que se produzca fosfina y fosfito de disódico Na2HPO3, CAS 13708-85-5, con un mejor rendimiento:

En la reacción de desproporción catalizada por ácidos, a 280 °C, el fósforo blanco se convierte en fosfina y ácido fosfórico, con la formación de fósforo rojo como producto intermedio. La reacción tiene un buen rendimiento pero debido a la alta temperatura y a la corrosividad del medio, requiere un reactor de grafito:

 

Detección de la fosfina7,8,9,10

Existen tubos colorimétricos para la determinación semi-cuantitativa de fosfina en diversos rangos de concentración, que van desde 0,1-4 ppm hasta 200-10000 ppm, de diferentes fabricantes, con diferentes reacciones, diferente número de emboladas y diferentes interferencias.

Algunos tubos emplean el poder reductor de la fosfina para detectar su presencia mediante la reducción del ión Au3+ con formación de oro metálico coloidal, produciéndose un cambio de color de amarillo a marrón oscuro o gris-violeta:

Otros hidruros como la arsina, AsH3, y la estibina, SbH3, también dan la misma reacción pero con diferente sensibilidad.

Otros tubos emplean la formación de un complejo con cloruro mercúrico que provoca la formación de ácido clorhídrico y un cambio de color en el indicador de pH:

También son muy empleados por su simplicidad y economía los sensores o monitores personales que emplean sensores electroquímicos. Los sensores electroquímicos pueden emplearse en sistemas detectores individuales o en sistemas de detección multi-gases, trabajan en el rango de 0,1-5 ppm, con una resolución de 0,1 ppm y un tiempo de respuesta del orden de 60 segundos.

Estos sensores, de poco peso y fácil manejo, suelen colocarse colgados del cuello o sujetos a la ropa cerca de nariz, y suelen disponer de dos alarmas; una suena cuando detecta una concentración de 0,3 ppm de fosfina y la otra suena cuando se alcanza una concentración mayor, por ejemplo, 0,6 ppm.

La fosfina con un potencial de ionización de 9,96 eV puede detectarse mediante el empleo de un detector de fotoionización (PID, PhotoIonization Detector). Según indica el fabricante es posible emplear cualquiera de las tres lámparas más habituales (de 9,8 eV, de 10,6 eV y de 11,7 eV). La más empleada es la de 10,6 eV por su buena sensibilidad y duración. En concentraciones muy altas, si existen interferencias cruzadas, puede ser útil la lámpara de 9,8 eV. La principal ventaja de los detectores de fotoionización sobre los tubos colorimétricos y los sensores electroquímicos es su mejor tiempo de respuesta, de segundos, frente a minutos. Además el sistema de bombeo de los PID permite el empleo de sondas y la comprobación de fugas en contenedores y en recipientes estancos.

No todo son ventajas, en el caso de la fosfina, los PID sufren el fenómeno de empañamiento de la lámpara, “Lamp Fogging”. La fosfina es una de las pocas sustancias que reacciona foto-químicamente y forma sustancias que empañan la superficie de la lámpara del PID. Esto ocurre con todas las lámparas, y el efecto es tanto mayor, cuanto mayor es la concentración de fosfina y mayor el tiempo de exposición a la misma. El efecto es más que evidente a concentraciones de fosfina unos cientos de ppm, pero incluso a unos 20 ppm se nota, en cuestión de minutos, una disminución sensible de la respuesta. Exposiciones cortas e intermitentes ayudan a minimizar la acumulación de dichos recubrimientos, que se quitan fácilmente limpiando el cristal de la lámpara con metanol anhidro.

La fotometría de llama, que detecta y mide la emisión característica de diferentes elementos químicos, entre ellos el fósforo, se emplea tanto en los equipos de campo como en los equipos de laboratorio para la detección y cuantificación de la fosfina. Los detectores portátiles de fotometría de llama, AP2C y AP4C permiten la detección de fósforo, y por tanto de fosfina, difosfina y otros hidruros de fósforo, con una excelente sensibilidad, pero con escasa selectividad, ya que la respuesta es de tipo “atómico”.

Detector  fotometrico de llama, AP2C, mostrando en rojo la señal de detección en la línea del fósforo, debido a la presencia de fosfina

 

 La fosfina como fumigante11,12,13,14,15,16,17

La fumigación con fosfina se realiza lleva a cabo sobre productos almacenados en cámaras, almacenes, silos, almacenes de alimentos, contenedores, vagones de tren, barcazas, buques, aviones, etc., y también se lleva a cabo como medida de desinsectación o de cuarentena contra plagas en estructuras tales como molinos de harina o fábricas de alimentos, o en contenedores vacíos y otros medios de transporte. Para conseguir una buena eliminación de las plagas, en todas las etapas de su ciclo de vida (huevo, larva, pupa, adulto), se requiere alcanzar y mantener una concentración de fosfina de 300 ppm durante siete días (con una temperatura de 25 °C) o de 200 ppm durante 10 días (con una temperatura de 15-25 °C), debiendo comprobarse la concentración mediante algún sistema de detección. Además para una fumigación eficiente y segura se requiere que la zona a fumigar sea estanca. Por ejemplo, el gobierno australiano ha establecido, en la norma Australian Standard 2628 (AS2628), la estanqueidad que deben tener los silos. La norma requiere que para considerar el silo estanco la sobrepresión debe tardar más de cinco minutos en descender de 25 mm a 12,5 mm.

Las preparaciones comerciales para fumigación contienen, en general, como ingrediente activo, alrededor de un 57% de fosfuro de aluminio, o alrededor de un 34% de difosfuro trimagnésico, que en contacto con la humedad del ambiente generan lentamente fosfina, durante su hidrólisis:

Phostoxin (contiene un 55 % de fosfuro de aluminio) es una preparación comercial sólida, en forma de pellets o bolas, que lentamente libera fosfina en contacto con la humedad en el aire. Existen muchas otras preparaciones comerciales sólidas muy similares, como por ejemplo, Celphos, Quickphos, Gastowin, Delitia, Detia gas, Magtoxin, Agtoxin, etc.. Después del tratamiento con fosfina, las zonas deben ventilarse, y comprobar que los niveles de fosfina son los permitidos para que los trabajadores puedan entrar con seguridad a los recintos fumigados.

Algunas preparaciones contienen aditivos, como por ejemplo, carbamato de amonio NH2COONH4, CAS 1111-78-0, ingrediente inerte aprobado para su uso en las formulaciones con fosfuro de aluminio, utilizado para reducir el riesgo de incendio de la fosfina. Para suprimir la inflamabilidad (autoinflamación) de la fosfina, el carbamato de amonio libera amoníaco y dióxido de carbono que diluye la fosfina formada en la reacción de hidrólisis. El amoníaco sirve también como un agente de advertencia. Reassessmen inerte-amonio carbamato EPA.

Para la fumigación se emplean diferentes métodos de aplicación entre los que se incluyen: tratamiento en superficie (Surface application), sonda (probing, sub-surface treatment, trench-in), utilización de un tubo perforado colocado en el fondo (perforated tubing laid at the bottom of spaces), y sistemas de recirculación y de inyección de gas (recirculation systems and gas-injection systems), entre otros. La periodicidad del tratamiento dependerá de la temperatura, la profundidad de la carga y el método utilizado.

Al realizar la fumigación se deberán colocar señales de advertencia en todas las entradas a los lugares fumigados y en aquellos espacios que se consideren peligrosos durante la fumigación. En las señales se incluirán los datos de la fumigación y la fecha y hora en que se llevó a cabo.

Se debe garantizar que todos los desechos y residuos de activos que pudieran generar fosfina, se eliminan del modo apropiado, ya que suponen un peligro para las personas que pudieran entrar en contacto con ellos.

 

Toxicidad de la fosfina18,19,20,21,22,23,24,25

La fosfina es muy tóxica. La máxima concentración de fosfina en el ambiente no debe exceder de 0,3 ppm para una jornada laboral de 8 horas y una semana laboral de 40 horas (el TLV como TWA es 0,3 ppm ó 0,4 mg/m3).

Para la fosfina, el valor TLV-TWA (Threshold Limit Value – Time Weighted Average), valor límite umbral para un valor medio de exposición de una jornada laboral de ocho horas y una semana laboral de 40 horas, es de 0,3 ppm.

Para la fosfina, el valor TLV-STEL (Threshold Limit Value – Short Term Exposure Limit), valor límite umbral para una exposición a corto plazo, o concentración máxima para un límite de exposición continua de 15 minutos (con un máximo de cuatro periodos por día con al menos 60 minutos entre periodos de exposición) es de 1ppm.

En decir, los trabajadores no deben ser expuestos más de cuatro veces por día a más de 1ppm durante más de 15 minutos, con al menos una hora entre cada exposición. Y los trabajadores no deben estar expuestos a más de 0,3 ppm durante más de ocho horas diarias o 40 horas a la semana.

El olor de la fosfina es perceptible cuando su concentración alcanza o excede las 2 ppm, un valor mucho mayor que su TLV. Esto significa que cuando el trabajador percibe el olor a fosfina la concentración de ésta supera los límites de exposición segura.

Una concentración de 50-100 ppm puede ser soportada sin daño sólo por un tiempo muy corto, y una concentración de 400 ppm conduce rápidamente a la muerte. Los síntomas observados para los envenenamientos moderados y graves por fosfina son: sensación de ansiedad, sensación de presión en el pecho, falta de aire, dolor detrás del esternón, tos seca ocasional, incremento del ruido al respirar, confusión, vértigo y desvanecimiento. Como primeros auxilios, aparte a la víctima a una zona de aire limpio y si es posible suminístrele oxígeno.

El valor revisado para el IDLH de la fosfina es 50 ppm, aunque este valor puede ser un valor conservador debido a la falta de datos relevantes de toxicidad aguda para los trabajadores expuestos a concentraciones superiores a 35 ppm. https://www.cdc.gov/niosh/idlh/7803512.html

En caso de un accidente con fosfina, la “Guía de Respuesta en caso de Emergencia”, GRE2016, aconseja el empleo de la Guía nº 119, “Gases – Tóxicos – Inflamables”, cuyo contenido se reproduce a continuación:

 

PELIGROS POTENCIALES

A LA SALUD

  • TÓXICO; puede ser fatal si se inhala o se absorbe por la piel.
  • El contacto con gas o gas licuado puede causar quemaduras, lesiones severas y/o quemaduras por congelación.
  • El fuego producirá gases irritantes, corrosivos y/o tóxicos.
  • Las fugas resultantes del control del incendio pueden causar contaminación.

                                                                                                                                                                          

INCENDIO O EXPLOSION

  • Inflamable; puede encenderse por calor, chispas o llamas.
  • Puede formar mezclas explosivas con el aire.
  • Aquellas sustancias designadas con una (P) pueden polimerizar explosivamente cuando se calientan o están involucradas en un incendio.
  • Los vapores de gas licuado son inicialmente más pesados que el aire y se esparcen a través del piso.
  • Los vapores pueden viajar a una fuente de encendido y regresar en llamas.
  • Algunos de estos materiales pueden reaccionar violentamente con agua.
  • Los cilindros expuestos al fuego pueden ventear y liberar gases tóxicos e inflamables a través de los dispositivos de alivio de presión.
  • Los contenedores pueden explotar cuando se calientan.
  • Los cilindros con rupturas pueden proyectarse.
  • La fuga resultante del control puede crear incendio o peligro de explosión.

SEGURIDAD PUBLICA

  • LLAMAR primero al número de teléfono de respuesta en caso de emergencia en el documento de embarque. Si el documento de embarque no está disponible o no hay respuesta, diríjase a los números telefónicos enlistados en el forro de la contraportada.
  • Cómo acción inmediata de precaución, aisle el área del derrame o escape como mínimo 100 metros (330 pies) en todas las direcciones.
  • Mantener alejado al personal no autorizado.
  • Manténgase con viento a favor, en zonas altas y/o corriente arriba.
  • Muchos de los gases son más pesados que el aire y se dispersan a lo largo del suelo y se juntan en las áreas bajas o confinadas (alcantarillas, sótanos, tanques).
  • Ventile los espacios cerrados antes de entrar.

                                                                                                                                                                          

ROPA PROTECTORA

  • Use el equipo de aire autónomo de presión positiva (SCBA).
  • Use ropa protectora contra los productos químicos, la cual esté específicamente recomendada por el fabricante. Esta puede proporcionar poca o ninguna protección térmica.
  • El traje de protección estructural de los bomberos provee protección limitada ÚNICAMENTE en situaciones de incendio; no es efectivo en derrames con posible contacto directo con la sustancia.

                                                                                                                                                                          

EVACUACIÓN

Derrame

  • Vea la Tabla 1 – Distancias de Aislamiento Inicial y Acción Protectora para los materiales resaltados. Para los otros materiales, aumente como sea necesario en la dirección del viento, la distancia de aislamiento mostrada en “SEGURIDAD PUBLICA”.

Incendio

  • Si un tanque, carro de ferrocarril o autotanque está involucrado en un incendio, AISLE a la redonda a 1600 metros (1 milla) también, considere la evacuación inicial a la redonda a 1600 metros (1 milla).

 

En Canadá, puede requerirse para este producto un Plan de Asistencia en Respuesta a Emergencias (ERAP). Por favor consulte los documentos de embarque y/o la sección Programa ERAP.

RESPUESTA DE EMERGENCIA

FUEGO

  • NO EXTINGA UN INCENDIO DE FUGA DE GAS A MENOS QUE LA FUGA PUEDA SER DETENIDA.

Incendio Pequeño

  • Polvos químicos secos, CO2, rocío de agua o espuma resistente al alcohol.

Incendio Grande

  • Use rocío de agua, niebla o espuma resistente al alcohol.
  • PARA CLOROSILANOS, NO USE AGUA, use espuma AFFF resistente al alcohol como medio de expansión.
  • Mueva los contenedores del área de fuego si lo puede hacer sin ningún riesgo.
  • Los cilindros dañados, deberán ser manejados solamente por especialistas.

Incendio que involucra Tanques

  • Combata el incendio desde una distancia máxima o utilice soportes fijos para mangueras o chiflones reguladores.
  • Enfríe los contenedores con chorros de agua hasta mucho después de que el fuego se haya extinguido.
  • No ponga agua directamente a la fuente de la fuga o mecanismos de seguridad; puede ocurrir congelamiento.
  • Retírese inmediatamente si sale un sonido creciente de los mecanismos de seguridad de las ventilas, o si el tanque se empieza a decolorar.
  • SIEMPRE manténgase alejado de tanques envueltos en fuego.

                                                                                                                                                                          

DERRAME O FUGA

  • ELIMINAR todas las fuentes de ignición (no fumar, no usar bengalas, chispas o llamas en el área de peligro).
  • Todo el equipo que se use durante el manejo del producto, deberá estar conectado eléctricamente a tierra.
  • Deberán usarse trajes protectores de encapsulamiento total contra el vapor, en derrames y fugas sin fuego.
  • No tocar ni caminar sobre el material derramado.
  • Detenga la fuga, en caso de poder hacerlo sin riesgo.
  • No ponga agua directamente al derrame o fuente de la fuga.
  • Use rocío de agua para reducir los vapores; o desviar la nube de vapor a la deriva. Evite que flujos de agua entren en contacto con el material derramado.
  • PARA CLOROSILANOS, use espuma AFFF resistente al alcohol como medio de expansión para reducir los vapores.
  • Si es posible, voltee los contenedores que presenten fugas para que escapen los gases en lugar del líquido.
  • Prevenga la entrada hacia vías navegables, alcantarillas, sótanos o áreas confinadas.
  • Aisle el área hasta que el gas se haya dispersado.

                                                                                                                                                                          

PRIMEROS AUXILIOS

  • Asegúrese que el personal médico tenga conocimiento de los materiales involucrados, y tomar las precauciones para protegerse a sí mismos.
  • Mueva a la víctima a donde se respire aire fresco.
  • Llamar a los servicios médicos de emergencia.
  • Aplicar respiración artificial si la víctima no respira.
  • No usar el método de respiración de boca a boca si la víctima ingirió o inhaló la sustancia: proporcione la respiración artificial con la ayuda de una máscara de bolsillo con una válvula de una sola vía u otro dispositivo médico de respiración.
  • Suministrar oxígeno si respira con dificultad.
  • Quitar y aislar la ropa y el calzado contaminados.
  • En caso de contacto con la sustancia, enjuagar inmediatamente la piel o los ojos con agua corriente por lo menos durante 20 minutos.
  • En caso de contacto con gas licuado, descongelar las partes con agua tibia.
  • En caso de quemaduras, inmediatamente enfríe la piel afectada todo el tiempo que pueda con agua fría. No remueva la ropa que está adherida a la piel.
  • Mantenga a la víctima calmada y abrigada.
  • Mantener a la víctima bajo observación.

De acuerdo al GRE2016, las distancias de aislamiento y de protección para la fosfina y algunos fosfuros (en el caso de que estos últimos entren en contacto con el agua) son las siguientes:

Nº Guía Nº ONU Nombre Derrames pequeños Derrames grandes
Daislam Dprotec Daislam Dprotec
Día Noche Día Noche
119 2199 Fosfina 60 m 200 m 1000 m 300 m 1,3 km 3,8 km
139 1397 Fosfuro de aluminio (cuando es derramado en el agua) 60 m 200 m 900 m 500 m 2 km 7,1 km
139 1360 Fosfuro de calcio (cuando es derramado en el agua) 30 m 200 m 600 m 300 m 1 km 3,7 km
139 2011 Fosfuro de magnesio (cuando es derramado en el agua) 60 m 200 m 800 m 400 m 1,7 km 5,7 km
157 3048 Plaguicida a base de fosfuro de aluminio (cuando es derramado en el agua) 60 m 200 m 900 m 500 m 2 km 7 km

Es muy importante respetar todas las indicaciones, recomendaciones, consejos y advertencias que se incluyen en las etiquetas y documentos informativos de los productos utilizados para fumigación, a fin de evitar cualquier tipo de incidente mortal como los que por desgracia se producen todos los años.26,27,28,29,30,31

 

Referencias

  1. “Phosphine” , https://en.wikipedia.org/wiki/Phosphine
  2. “Phosphine”, INCHEM, http://www.inchem.org/documents/pims/chemical/pim865.htm
  3. “The chemistry of phosphine”, Ekkehard Fluck, https://www.thevespiary.org/rhodium/Rhodium/Vespiary/talk/files/2494-The-Chemistry-of-Phosphine807f.pdf
  4. “Phosphine and selected metal phosphides”, Environmental Health Criteria 73, International Programme on Chemical Safety, http://www.inchem.org/documents/ehc/ehc/ehc73.htm
  5. “Atlas d´équilibres électrochimiques à 25 °C”, Marcel Pourbaix, Gauthier-Villars & Cie, 1963
  6. “Ullmann’s Encyclopedia of Industrial Chemistry”, “Phosphorus Compounds, Inorganic”, 7th Ed.
  7. “Measurement of fumigants in the food storage industry”, RAE Systems, Application Note 218, http://www.raesystems.com/sites/default/files/content/resources/Application-Note-218_Measurement-Of-Fumigants-In-The-Food-Storage-Industry_08-05.pdf
  8. “Dräger-Tubes & CMS-Handbook”, Dräger, 2011, 16th., https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjiitnVnJ3UAhUFSRoKHTa8DpwQFggsMAA&url=https%3A%2F%2Fwww.draeger.com%2FLibrary%2FContent%2Ftubeshandbook_br_9092086_en.pdf&usg=AFQjCNF3QlaZZEy40nmdZjJE2AErhabXCA
  9. “Gas Detection Tubes and Sampling Handbook”, RAE, 2ªEd., 2013, http://www.raesystems.com/sites/default/files/content/resources/eBook-gas-detection-tube-and-sampling-handbook.pdf
  10. “The PID handbook”, RAE, 3ªEd., 2013, http://www.raesystems.com/sites/default/files/content/resources/pid_handbook_1002-02.pdf
  11. “Fumigation in the 21st century”, C.H. Bell, Crop Protection 19 (2000) 563-569
  12. “Fumigating with phosphine, other fumigants and controlled atmospheres”, Grains Research & Development Corporation, http://storedgrain.com.au/wp-content/uploads/2016/10/GRDC-PHOSP-Booklet_2016_R2_Reduced.pdf
  13. “Phostoxin-Mg Placas”, Detia Freyberg GmbH, http://www.grupoavisur.com/docs/MADERA/04_AVISUR_MADERA_PHOSTOXIN_FICHA_SEGURIDAD.pdf
  14. “Fosfuro de aluminio-KILLPHOS”, FAX, http://www.faxsa.com.mx/Fosf_MT/KillPhMT.pdf
  15. “Quickphos Fumigation Tablets and Pellets”, http://www.fumigationservice.com/pdf/MSDS_ALP.pdf
  16. “Inert Reassessment-Ammonium Carbamate”, EPA, https://www.epa.gov/sites/production/files/2015-04/documents/carbamate.pdf
  17. “Carga y estiba en buques BULK CARRIER”, A. Barrera Acosta & M. Carbonell Casadesús, Universidad de La Laguna, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiyrry8za7UAhXHLFAKHb-DBkAQFggpMAA&url=https%3A%2F%2Friull.ull.es%2Fxmlui%2Fbitstream%2Fhandle%2F915%2F4365%2FCARGA%2520Y%2520ESTIBA%2520EN%2520BUQUES%2520BULK%2520CARRIER.pdf%3Fsequence%3D1&usg=AFQjCNFRSB1_l57ek_9rUiNTZBqcstLgwg
  18. “Phosphine”, CDC, https://www.cdc.gov/niosh/idlh/7803512.html
  19. “Phosphine”, NIOSH, https://www.cdc.gov/niosh/docs/2003-154/pdfs/6002.pdf
  20. “Code of practice phosphine”, Asia Industrial Gases Association, IGC Doc 162/10/E, http://eiga.web1.apollo-com.be/fileadmin/docs_pubs/Doc_162_10_E.pdf
  21. “FISQ Fosfuro de aluminio”, INSHT, http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Ficheros/401a500/nspn0472.pdf
  22. “FISQ Fosfuro de calcio”, INSHT, http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Ficheros/1101a1200/nspn1126.pdf
  23. “FISQ Fosfuro de magnesio”, INSHT, http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Ficheros/701a800/nspn0744.pdf
  24. “FISQ Fosfuro de zinc”, INSHT, http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Ficheros/601a700/nspn0602.pdf
  25. “Guía de Respuesta en caso de Emergencia”, GRE2016, https://www.tc.gc.ca/media/documents/tmd-fra/SpanishERGPDF.pdf
  26. “Cuatro menores mueren en Texas tras inhalar el gas tóxico de un pesticida que su familia utilizó para matar ratas”, http://www.univision.com/dallas/kuvn/noticias/muertes/cuatro-menores-mueren-en-texas-tras-inhalar-el-gas-toxico-de-un-pesticida-que-su-familia-utilizo-para-matar-ratas
  27. “Muere un matrimonio en Burgos por una intoxicación con fitosanitarios contra polillas”, http://www.abc.es/espana/castilla-leon/abci-fallece-matrimonio-burgos-intoxicacion-fitosanitarios-contra-polillas-201705161859_noticia.html
  28. “Texas pesticide deaths-Chemical may have sickened, but cleanup was fatal”, http://edition.cnn.com/2017/01/03/health/texas-pesticide-deaths/
  29. “The Phosphine Accident – A Tragic Chemistry Lesson”, http://www.acsh.org/news/2017/01/05/phosphine-accident-%E2%80%93-tragic-chemistry-lesson-10680
  30. “Un matrimonio burgalés, última víctima del fosfuro de aluminio”, http://www.elespanol.com/ciencia/salud/20170516/216478876_0.html
  31. “Beware The Fiery Fumigator”, http://maritimeaccident.org/2015/04/beware-the-fiery-fumigator/#more-21548

 

 

 

Zyklon, ni héroe, ni planeta

El término “zyklon” no se refiere a ningún héroe, griego o dotado de superpoderes, ni es el nombre de un planeta, ni tampoco tiene que ver con el término ciclón (en meteorología, huracán o borrasca, en tecnología, centrífuga).

El término “zyklon” hace referencia a una marca comercial alemana, otorgada el 8 de abril de 1920, para varias formulaciones de sustancias tóxicas, utilizadas inicialmente como desinfectantes, fumigantes y rodenticidas, pero utilizadas posteriormente para matar a seres humanos en las “cámaras de gas” durante la II Guerra Mundial.1

El término “zyklon” o “cyklon” parece ser un acrónimo procedente de “Zyankohlensäure- und Chlorkohlensäure-metylesters” o “Cyankohlensäure- und Chlorkohlensäure-metylesters”, componentes de la primera formulación pesticida desarrollada con estas sustancias.2

Aunque se sabe que ninguna formulación de “zyklon” se llegó a emplear en combate como arma química, el desarrollo de las diferentes fórmulas de “zyklon” fue consecuencia directa del programa de armas químicas alemán durante la I Guerra Mundial. Todo apunta a que el continuo desarrollo de formulaciones de “zyklon” en la década de 1920 y 1930 fue el resultado del esfuerzo de Alemania para soslayar las prohibiciones sobre armas químicas impuestas por el Tratado de Paz de Versalles.1

Durante mucho tiempo la marca “ZYKLON” hizo referencia a los productos para la eliminación de plagas y roedores, y representó en cierta medida cómo producir de manera segura una sustancia tan tóxica como el cianuro de hidrógeno”.3

 

El cianuro de hidrógeno o ácido cianhídrico

El cianuro de hidrógeno, también denominado ácido cianhídrico, HCN (CAS 74-90-8), fue descubierto en 1782 por el químico sueco Carl Wilhelm Scheele (1742-1786). El HCN es una molécula pequeña (peso molecular de 27,3) con un punto de ebullición bastante bajo (26 °C) y densidades relativas menores que la unidad (densidad relativa del líquido 0,69 y densidad relativa de sus vapores 0,98) por lo que sus vapores flotan en el aire y se disipan con facilidad4. En condiciones normales de presión y temperatura es un líquido incoloro que se evapora rápida y fácilmente en contacto con el aire.

La ruta más rápida de intoxicación para el cianuro de hidrógeno es la inhalación, aunque el cianuro de hidrógeno líquido y gaseoso, así como también las sales de cianuro en solución, también pueden ser absorbidos por la piel o ingeridos5.

La siguiente tabla muestra la toxicidad del cianuro de hidrógeno por inhalación5:

Concentración en mg/m3 Efectos
300 Letal en segundos
200 Letal después de 10 minutos
150 Letal después de 30 minutos
120-150 Muy peligroso (fatal) después de 30-60 minutos
50-60 Soportable entre 20-60 minutos, sin efectos
20-40 Mínimos síntomas después de varias horas

El cianuro de hidrógeno en concentración superior a 2 g/m3 posee un característico olor a almendras amargas, pero la alerta por el olor es insuficiente.

El cianuro de hidrógeno y las sales de cianuro tienen numerosas y muy variadas aplicaciones industriales (se utiliza para la producción de acrilonitrilo, acrilatos y metacrilatos, cianuros inorgánicos, adiponitrilo, hexametilendiamina, metionina, etc.). También se utiliza en minería y en galvanoplastia, y durante mucho tiempo se ha utilizado como insecticida y raticida, generalmente mediante fumigación6.

El HCN se ha utilizado de manera extensiva desde 1866 para el control de insectos en los árboles de cítricos y posteriormente para la fumigación de infraestructuras industriales y tecnológicas. También se ha empleado el HCN para la fumigación de graneros empleando para ello diversas formulaciones  sólidas de cianuro cálcico, Ca(CN)2 (CAS 592-01-8), que se mezclaban con el grano (por ejemplo, Cyanogas G, o Cyanogas A en polvo)7.

El cianuro de hidrógeno fue utilizado durante la Primera Guerra Mundial como agente químico de guerra, con escaso éxito, pues debido a su volatilidad y a la baja densidad de sus vapores, éstos se disipan con facilidad y dificultan la consecución de concentraciones altas, suficientemente letales. Los franceses fueron los primeros en considerar su empleo utilizando en la batalla de Somme, en 1916, proyectiles cargados con cianuro de hidrógeno8. Los franceses entusiastas del empleo del cianuro de hidrógeno mezclaban éste con otras sustancias para conseguir una mezcla de vapores más densa que pudiera ser inhalada para conseguir los efectos letales, pero también con escaso éxito6.

El cianuro de hidrógeno, cloruro de cianógeno y otras muchas sustancias que contienen grupos ciano, se incluyen en la familia de agentes químicos de guerra “sanguíneos” o cianogénicos. El término “sanguíneo” en un nombre poco apropiado porque estas sustancias no “envenenan la sangre” sino que ejercen su efecto tóxico a nivel celular, donde el ión cianuro se une a la enzima citocromo c oxidasa e impide la respiración celular8.

En 1917 médicos militares alemanes y austro-húngaros expertos en desinfección autorizaron programas de investigación experimental sobre el empleo de cianuro de hidrógeno  para eliminar los piojos y controlar las plagas. Se llevaron a cabo experimentos con diferentes concentraciones de gas y diferentes tiempos y temperaturas sobre diferentes tipos de insectos, y el HCN resultó eficaz no sólo contra los piojos sino también contra los huevos de piojo (liendres) y los chinches, lo que hacía especialmente útil su empleo en cuarteles y hospitales militares. Entre las ventajas de cianhídrico estaban que era barato, que no dañaba los tejidos, ni el cuero, ni los metales de los uniformes, y que penetraba en todos los pliegues y bolsillos, así como en la ropa de cama y en las grietas. Sin embargo, tenía dos grandes inconvenientes, puesto que el gas no era tóxico para las bacterias resultaba ineficaz como desinfectante, y la aplicación del gas requería importantes medidas de seguridad9.

El ácido cianhídrico fue puesto rápidamente en servicio en 1917. Entre abril de 1917 y marzo de 1919 una organización patrocinada por el estado, entonces conocida como Täsch “Technische Ausschuss für Schädlingsbekämpfung”, (Comité técnico para el control de plagas), utilizó HCN para la desinfección de un volumen de edificios de más 3 millones de metros cúbicos, y en 1920 ya habían gaseado con HCN, 21 millones de metros cúbicos9.

Una compañía química DEGUSSA, acrónimo de Deutsche Gold- und Silber-Scheide-Anstalt, (Instituto Alemán de Separación de Oro y Plata), adquirió a partir de 1917 una gran importancia en la investigación y producción de HCN. En 1920 DEGUSSA trasladó sus operaciones a la zona de Francfort (un lugar con importante industria química). La organización Täsch se convirtió en la subsidiaria comercial DEGESCH, “Deutsche Gesellschaft für Schädlingsbekämpfung”, (Compañía Alemana de control de plagas). La IG Farben adquirió después una participación del 42% de DEGESCH9.

El Tratado de Paz de Versalles10, firmado el 28 de junio de 1919 entre los Países Aliados y Alemania, que puso fin oficialmente a la Primera Guerra Mundial y que entró en vigor el 10 de enero de 1920, indicaba en su artículo 171:

“Estando vedado el empleo de gases asfixiantes, tóxicos o similares, así como los líquidos, materias o procedimientos análogos, quedará rigurosamente prohibida en Alemania su fabricación o importación.

Lo mismo ocurrirá respecto del material destinado expresamente a la fabricación, conservación o empleo de dichos productos o procedimientos.

También estará igualmente prohibida la fabricación e importación en Alemania de carros blindados, tanques u otros artefactos similares que puedan servir para fines de guerra.”

Las actividades de investigación sobre el empleo del HCN para el control de plagas resultaron de especial importancia para el programa de armas químicas alemán. Los científicos del Instituto Kaiser Wilhelm en Berlín desarrollaron una forma comercial del HCN como resultado de los trabajos derivados del programa defensivo y ofensivo con gases tóxicos llevado bajo la dirección de Fritz Haber. Además, en el Instituto de Bioquímica del Instituto Kaiser Wilhelm, el fisiólogo Otto Heinrich Warburg (1883-1970) descubrió la naturaleza y el modo de acción de la enzima respiratoria y descifró los efectos bioquímicos del ácido cianhídrico en el metabolismo celular9.

El “zyklon” fue introducido como una variante del ácido cianhídrico, de fácil utilización, extremadamente letal y muy eficaz en espacios cerrados, que se empleó con gran éxito en la erradicación de los piojos (vector del tifus) en espacios cerrados, tales como cuarteles, viviendas, barcos y trenes9.

 

Zyklon A

La mayor contribución al desarrollo de una aplicación segura y económicamente viable del ácido cianhídrico provino del químico y farmacólogo alemán Ferdinand Flury (1877-1947) y del entomólogo y parasitólogo alemán Arndt Michael Albrecht Hase (1882-1962), en los institutos del Kaiser Wilhelm para la Química Física y Electroquímica. Flury observó que el gran defecto de ácido cianhídrico era que su falta de un olor no permitía que fuera detectado por los seres humanos y los animales antes de que éstos sufrieran sus efectos letales. En 1920 sugirió añadir un indicador de peligro que advirtiera mediante sus efectos irritantes y lacrimógenos de la presencia del ácido cianhídrico. Esta medida de seguridad marcó un punto de inflexión en el programa de guerra química alemán. Flury y Hase eligieron el cianoformiato de metilo  (Zyankohlensäure-methylester) que era por sí mismo tóxico e irritante, y servía por ello también como indicador de peligro. La abreviatura elegida para el nuevo compuesto fue “zyklon”, y los experimentos realizados con el mismo demostraron que sobre insectos era tan tóxico como el ácido cianhídrico, pero no alteraba lo más mínimo la calidad del grano y de otros productos alimenticios, y además era fácilmente transportable y fácil de usar9.

La primera formulación de “zyklon” conocida corresponde al “zyklon A”. El “zyklon A” sería según indican la mayoría de los autores, una mezcla constituida por un 90% de cianoformiato de metilo (CAS 17640-15-2) y un 10% de cloroformiato de metilo (CAS 79-22-1).3,11,12,13,14,15,16. Algunos autores, indican (probablemente de manera errónea) que se trataba de una mezcla de cianoformiato de metilo (CAS 17640-15-2) y de metilcloroformo (CAS 71-55-6)1.

Los derivados de los ésteres del ácido fórmico constituyen un importante grupo de agentes químicos de guerra, que se emplearon de manera individual o mezclados con otros agentes. Los cloroformiatos de metilo y de etilo muestran un característico olor penetrante y una gran capacidad tanto lacrimógena como asfixiante. Los cianoformiatos de metilo y de etilo agentes lacrimógenos muy poderosos, pero se descomponen con facilidad por acción del agua.

El cloroformiato de metilo puede obtenerse fácilmente por cloración del formiato de metilo, pero usualmente se prepara por reacción del fosgeno con metanol:

Durante la reacción es necesario mantener la temperatura baja y mantener siempre un cuidadoso exceso de fosgeno para evitar la formación de carbonato de metilo (CH3)2CO3.

El cloroformiato de metilo es un líquido claro, de punto de ebullición 70-72 °C, gravedad específica  1,223 mg/ml (a 25 °C), y densidad relativa del vapor de 3,26 (aire = 1)17. Es bastante estable en agua fría, pero se descompone en agua caliente formando metanol, ácido clorhídrico y dióxido de carbono:

El cloroformiato de metilo, cuando se disuelve en metanol y se trata en caliente con potasio o con cianuro de sodio, forma cianoformiato de metilo:

Este es un líquido incoloro, de olor etéreo, que tiene una gravedad específica de 1,072  g/ml  (a 25 °C), hierve a 100-101 °C a presión normal, y es soluble en alcohol, éter y otros solventes orgánicos.18

Por acción del agua y de los álcalis el cianoformiato de metilo se descompone formando cianuro de hidrógeno (ácido cianhídrico), dióxido de carbono y metanol:

El “zyklon A” se utilizaba para generar cianuro de hidrógeno en presencia de humedad, merced a la presencia del cianoformiato de metilo, mientras que el cloroformiato de metilo se utilizaba para advertir de la presencia de una sustancia tóxica como el cianuro de hidrógeno.

El artículo 171 del Tratado de Paz de Versalles prohibió en Alemania ” el empleo de gases asfixiantes, tóxicos o similares, así como los líquidos, materias o procedimientos análogos”. En consecuencia, con la entrada en vigor del Tratado los productos químicos empleados en el “zyklon A” quedaban prohibidos9,10.

 

Zyklon B

En 1923, en DEGESCH, y gracias a los esfuerzos del químico alemán Bruno Emil Tesch (1890-1946) en colaboración con los también químicos alemanes Gerhard Friedrich Peters (1900-1974) y Carl Balthasar Walter Heerdt (1888-1957), se desarrolló una nueva formulación fungicida con cianuro de hidrógeno a la que se denominó “zyklon B”. La formulación también incluía una sustancia irritante o/y lacrimógena, como indicador del peligro y una sustancia estabilizadora para prevenir la polimerización, y la mezcla de todas estas sustancias químicas quedaba retenida en un material adsorbente. El indicador de peligro en su acción irritante estimulaba la respiración de los insectos, mejorando así la eficacia general de la formulación9.

A Walter Heerdt se le considera oficialmente el inventor del “zyklon B” ya que su nombre es el que figura en la solicitud de patente de Degesch de fecha 20 de junio de 1922. El “zyklon B”, que supuso un cambio sustancial en las formulaciones del HCN,  consistía en ácido cianhídrico líquido adsorbido en un adsorbente muy poroso. El ácido cianhídrico fijado por adsorción resultaba muy seguro en su almacenamiento y manipulación, y se suministraba en latas herméticas de diferentes tamaños, que requerían un dispositivo especial para su apertura. 7

Varios sustratos fueron seleccionados por su capacidad para retener el cianuro de hidrógeno durante un breve tiempo una vez que las latas eran abiertas. Aunque el cianuro de hidrógeno es líquido a temperaturas inferiores a 26 ºC, tiene una presión de vapor muy alta, y por tanto se evapora rápidamente incluso a bajas temperaturas. La selección del adsorbente adecuado para cada aplicación particular hace posible controlar la velocidad de evaporación del HCN19.

Como material adsorbente se utilizó inicialmente tierra de diatomeas (Celite, kieselguhr, kieselgur, Diagriess) y más tarde un granulado de yeso, anhidrita o sulfato de calcio anhidro, de gran porosidad (en forma de pellets) y discos de cartón (rollos de cartón)7,19,20.

Los diferentes materiales adsorbentes utilizados han dado lugar a especulación por parte de quienes niegan el Holocausto, que buscan la más pequeña diferencia en la descripción de estos materiales negar el empleo del “zyklon B” por parte de régimen Nazi en las cámaras de gas19.

Con respecto a las sustancias irritantes y lacrimógenas empleadas como indicadores de peligro no hay información clara y concluyente, aunque parece que estas sustancias formaban parte de la patente del “zyklon B”. Parece que la cloropicrina era utilizada en una proporción del 5 %21,22. Sin embargo algunos autores citan el cloroformiato de metilo, también utilizado en el “zyklon A”23, o el bromoacetato de metilo20.

Para estabilizar el ácido cianhídrico suele añadirse una pequeña cantidad de ácido, por ejemplo, un 0,05-0,1 % en peso de ácido fosfórico o de ácido sulfúrico, o un 1-5% de ácido fórmico o de ácido acético, o incluso otros ácidos como el ácido oxálico. En el caso del “zyklon B” parece que también se utilizó como estabilizante el cloroformiato de metilo.

En Alemania, el zyklon B fue fabricado por dos empresas, ” Dessauer Werke für Zucker und Chemische Industrie AG”, en Dessau, y ” Kali-Werke A.G.”, en la localidad checa de Kolin, para DEGESCH, propietaria de la patente y de la licencia de fabricación, y por tanto productor real del zyklon B24.

DEGESCH no vendía directamente el zyklon B sino que lo hacía a través de dos distribuidores: la compañía “Heerdt und Lingler GmbH” (Heli) con sede en Francfort, y la compañía “Tesch und Stabenow, Internationale Gesellschaft für Schädlingsbekämpfung m.b.h.” (Testa), con sede en Hamburgo, que se habían dividido el mercado entre ellas24.

Hasta no hace mucho la formulación de HCN en latas para la fumigación de control de plagas sólo se producía en la República Checa por la empresa Lucebni zavody Draslovka a.s. Kolin bajo el nombre comercial de URAGAN D2. La formulación URAGAN D2  estaba constituida por cianuro de hidrógeno líquido, estabilizado con un 0,1 % de ácido fosfórico y un  0,9 – 1,1% de dióxido de azufre, absorbida la mezcla en una bobina de papel y empaquetado el producto en botes herméticos de 1,5 kg7.

 

Zyklon C

El cloroformiato de metilo no resultaba lo suficientemente estable como para servir de indicador de peligro en la fumigación con cianuro de hidrógeno, de modo que se experimentaron diversas formulaciones, que contenían diferente sustancias lacrimógenas o irritantes, sobre todo cloropicrina (CCl3NO2, CAS 76-06-2) que además se emplea como nematicida, fumigante y desinfectante.25,26,27 Por ejemplo, para la desinfección de viviendas se recomendaba una formulación que contenía 100 partes en peso de cianuro de hidrógeno, 10 partes en peso de cloropicrina y 3 partes en peso de bromoacetato de etilo (otro agente lacrimógeno, CAS 105-36-2)26.

El zyklon C hace referencia a una formulación de zyklon B (es decir, cianuro de hidrógeno adsorbido en un soporte) al cual se le añadía un 10 % de cloropicrina, que le confería un extraordinario poder irritante que advertía del peligro existente.28

El “zyklon C” parece que era de especial aplicación contra las cucarachas y para la fumigación de edificios de madera. Parece que existían otros “zyklones”, el “zyklon D” de aplicación contra los piojos, ratones y ratas, y los “zyklones”, “zyklon E” y “zyklon F” para hacer seguras las viviendas de las personas, como el “zyklon B”. Pese a todas estas variantes la diferencia esencial está entre el “zyklon A” y los “zyklones” que le siguieron9.

 
 Referencias

  1. “Zyklon, The A to Z of Nuclear, Biological and Chemical Warfare”, Benjamin C. Garrett & John Hart, Scarecrow Press, 2009
  2. “Degussa in der NS-Zeit”, Das Evonik Geschichtsportal, Die Geschichte von Evonik Industries, http://geschichte.evonik.de/sites/geschichte/de/gesellschaften/degussa-ns/Pages/default.aspx
  3. “L’argent sans mémoire: Degussa-Degesch”, Jacques Brillot, https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi4oYK4hLHSAhXKJcAKHTmdDZoQFggdMAA&url=http%3A%2F%2Fwww.memorialdelashoah.org%2Fwp-content%2Fuploads%2F2016%2F05%2Ftexte-reference-memorial-shoah-brillot.pdf&usg=AFQjCNH90R__YhzJb2dHHuperlr7yywLPQ&bvm=bv.148073327,d.ZGg
  4. “Ficha Internacional de Seguridad Química del HCN”, INHST, http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Ficheros/401a500/nspn0492.pdf.
  5. “Cyanide As A Chemical Weapon: A review”, Charles Stewart, http://www.firesmoke.org/wp-content/uploads/2010/10/Cyanide_As_A_Weapon.pdf
  6. “HCN para engordar”, J.Domingo, http://cbrn.es/?p=750
  7. “Hydrogen cyanide for insecticide phytoquarantine treatment of package wood”, V. Stejskal, J. Liskova, P. Ptacek, Z. Kucerova & R. Aulicky, http://ftic.co.il/2012AntalyaPDF/SESSION%2008%20PAPER%2004.pdf
  8. “Chemical warfare agents”, K. Ganesan, S. K. Raza, & R. Vijayaraghavan, J Pharm Bioallied Sci. 2010 Jul-Sep; 2(3): 166–178, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148621/
  9. “The uses and abuses of biological technologies-Zyklon B and gas dinfestation between the first world war and the holocaust”, Paul Weindling, History and Technology, 1994, Vol. 11, pp. 291-298
  10. “El Tratado de Versalles de 1919 y sus antecedentes”, Instituto Iberoamericano de Derecho Comparado, 1920, http://fama2.us.es/fde/ocr/2006/tratadoDeVersalles.pdf
  11. “The war gases-chemistry and analysis”, Mario Sartori, Van Nostrand Co., 1939.
  12. “Therapeutische chemie”, Theodor Wagner-Jauregg, http://digisrv-1.biblio.etc.tu-bs.de:8080/docportal/servlets/MCRFileNodeServlet/DocPortal_derivate_00016613/gesamtwerk.pdf
  13. “Vergiftungen durch Schädlingsbekämpfungsmittel”, Hans Joachim Kiebig
  14. “Schädliche Gase-Dämpfe, Nebel, Rauch- und Staubarten”, F. Flury & F. Zernik
  15. “Chemisches Zentralblatt- 1921 Band II, Nr. 17, 27 April, VII. Düngemittel, Boden”
  16. “Some Considerations on the Use of Hydrogen Cyanide”, P. G. Stock, Proc. R. Soc. Med. 1924; 17 (Sect. Epidemiol. State Med.) 9-31
  17. “FDS del cloroformiato de metilo”, Sigma-Aldrich, http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=ES&language=es&productNumber=M35304&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2Fm35304%3Flang%3Des
  18. “FDS del cianoformiato de metilo”, Sigma-Aldrich, http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=ES&language=es&productNumber=319813&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F319813%3Flang%3Des
  19. “Zyklon-B-A Brief Report on the Physical Structure and Composition”, Harry W. Mazal, http://phdn.org/archives/holocaust-history.org/auschwitz/zyklonb/
  20. “Zyklon B – Die Produktion in Dessau und der Missbrauch durch die deutschen Faschisten”, http://www.zyklon-b.info/?cat=8
  21. “The Last Gasp: The Rise and Fall of the American Gas Chamber”, Scott Christianson, University of California Press, 2010
  22. “Some Aspects of Ship Fumigation”, R. Ridlon, U.S. Public Health Reports, Vol. 46, No. 27, July 3, 1931, http://codoh.com/library/document/875/
  23. “Fritz Haber und die Erfindung des Gaskrieges”, http://rhoenblick.blogspot.com.es/2013/09/fritz-haber-und-die-erfindung-des_16.html
  24. “Concentration camp Majdanek-A Historical and Technical Study”,Jürgen Graf & Carlo Mattogno, Castle Hill Publishers, June 2003
  25. “Bibliography of chloropicrin, 1848-1932”, R.C. Roark, U.S. Deparment of Agriculture, Miscellaneous publication nº176, February 1934
  26. “Admixture of irritants in hydrocyanic gas disinfection with especial reference to the use of chloropicrin as a danger indicator in zyklon C”, T. Pohl & B. Tesch, Desinfektion 11: 88-90. 1926.
  27. “Experiments with certain fumigants used for the destruction of cockroaches”, J. R. Ridlon, U.S. Public Health Reports, Vol. 46, No. 28, July 10, 1931. http://codoh.com/library/document/875/
  28. “Blausäuredurchgasungen zur Schädlingsbekämpfung”, Von Otto Hecht, Die Naturwissenschaften, Volume 16, Issue 2, pp.17-23. 1928