Archivo de la etiqueta: terrorismo

Sulfuro de hidrógeno, para vivir y morir

El maloliente sulfuro de hidrógeno está de moda, esta vez por su posible uso terrorista mediante un dispositivo químico improvisado (IQD)1,2,3. La última vez que objeto de interés fue en el año 2008 cuando en Japón hubo una oleada de suicidios empleando sulfuro de hidrógeno de fabricación casera4. A pesar de su toxicidad y de sus posible usos con fines terroristas o suicidas, el sulfuro de hidrógeno y sus derivados forman un importante papel para la vida.

 

El sulfuro de hidrógeno5,6,7,8,9

El sulfuro de hidrógeno, también conocido como ácido sulfhídrico, con número CAS 7783-06-4, es una molécula pequeña, de fórmula empírica, H2S, y estructura angular:

Tiene un peso molecular de 34,08, con punto de fusión -85 °C y punto de ebullición -60 °C. Es un gas, de densidad relativa 1,19, es decir, es algo más denso que el aire, incoloro, y con un característico olor a huevos podridos.

Es un gas extremadamente inflamable y sus mezclas con aire son explosivas (límite inferior de inflamabilidad 4,3 % v/v, y límite superior de inflamabilidad del 46 % v/v).

El sulfuro de hidrógeno es bastante soluble en agua (a 20 °C se disuelve 1 g en 242 ml de agua) y la disolución acuosa tiene propiedades ligeramente ácidas debido a formación de ácido sulfhídrico, un ácido débil, dibásico con constantes de disociación pKa1= 7,0 y pKa2= 13,9.

El sulfuro de hidrógeno se comporta como reductor, tanto en forma gaseosa, como en disolución acuosa, oxidándose lentamente en presencia del oxígeno del aire. Los potenciales redox estándar del sulfuro de hidrógeno a 25 °C son8:

H2S ⇔ S + 2 H+ + 2 e     E0 = 0,142 – 0,0591 pH – 0,0295 log(H2S)

HS ⇔ S + H+ + 2 e         E0 = -0,065 – 0,0295 pH – 0,0295 log(HS)

S2- ⇔ S + 2 e                    E0 = -0,476 – 0,0295 log(S2-)

Sulfuro de hidrógeno se libera como gas en los volcanes, manantiales de azufre, pantanos, masas de agua estancada, petróleo crudo, gas natural y pozos de carbón o estiércol. También es liberado por las bacterias, hongos y actinomicetos durante la descomposición de las proteínas que contienen azufre y por reducción directa del sulfato. En la desulfuración de las fracciones de destilado de gasoil y coque en presencia de hidrógeno, también se produce sulfuro de hidrógeno

Por otro lado se puede producir el sulfuro de hidrógeno en la boca y en el tracto intestinal por el metabolismo bacteriano de los aminoácidos que contienen grupos SH y el sulfuro de hidrógeno endógeno juega un importante papel en algunos procesos neurológicos y fisiológicos.

Sulfuro de hidrógeno se utiliza en la producción de ácido sulfúrico y azufre elemental, en la preparación de sulfuros inorgánicos que se utilizan en la fabricación de numerosos productos, en la purificación de ciertos elementos y compuestos químicos, como desinfectante agrícola, y como fuente de hidrógeno. Se utiliza también en metalurgia, en la producción de agua pesada para la industria nuclear y como reactivo analítico.

 

Sulfuro de hidrógeno para vivir10,11,12

A pesar de ser un gas tóxico y maloliente, el sulfuro de hidrógeno desempeña en nuestro organismo funciones esenciales sobre diversos procesos fisiológicos, entre ellos, la reducción de la tensión arterial y la regulación del metabolismo10.

En 1987, se descubrió que el óxido nítrico (NO) actuaba como una molécula endógena capaz de actuar como gas neurotransmisor. Más tarde en la década de los 90 se descubrió un segundo gas neurotransmisor, el monóxido de carbono (CO), y tan sólo hace unos años se descubrió un tercer gas neurotransmisor, el sulfuro de hidrógeno (H2S)11.

Nuestro organismo produce sulfuro de hidrógeno (H2S), aunque en muy pequeñas cantidades, en los vasos sanguíneos a través de la L-cisteina y la enzima cistationina-gamma-liasa (CSE), y en el sistema nervioso por acción de la enzima cistationina-beta-sintetasa (CBS) 10.

También se ha descubierto que se produce sulfuro de hidrógeno en el cerebro y en el endotelio vascular, por acción sobre la cisteína de la 3-mercaptopiruvato sulfotransferasa (3MST) junto con la cisteína aminotransferasa (CAT)12.

El sulfuro de hidrógeno contribuye a nuestra salud actuando sobre las células, tejidos, órganos y sistemas fisiológicos, con diversos efectos10:

  • En el cerebro estimula la respuesta de los circuitos neuronales lo que podría facilitar el aprendizaje y potenciar la memoria, y promueve la producción de un antioxidante, el glutatión, que parece proteger a las neuronas de las agresiones.
  • En el sistema circulatorio dilata los vasos sanguíneos y reduce la tensión arterial, protegiendo el corazón, y podría servir para prevenir o tratar la hipertensión, el infarto de miocardio y el accidente cerebrovascular.
  • En los pulmones parece que ayuda a regular la contractilidad de células de la musculatura lisa, aumentando la luz de las vías aéreas
  • En los intestinos relaja células de la musculatura lisa del intestino delgado y regula así el movimiento de materiales por su interior
  • En el pene relaja el tejido peniano; facilita el aflujo de sangre y la erección

 

Efecto dilatador producido por el H2S en los vasos sanguíneos, tomado de “La función dual del sulfuro de hidrogeno”, Rui Wang, Investigación y Ciencia, Mayo 2010

 

Sin embargo, no todos sus efectos son beneficiosos, por ejemplo, el exceso de H2S puede mermar la síntesis de insulina y, según ciertos datos, agravar las inflamaciones.

 

Sulfuro de hidrógeno para morir5,13,14,15,16,17,18

En muchos campos industriales, como por ejemplo, en la agricultura, en el tratamiento de las aguas residuales y en la industria del petróleo los trabajadores pueden estar expuestos al sulfuro de hidrógeno, del orden de un tercio de los trabajadores del petróleo experimentan algún síntoma de exposición al sulfuro de hidrógeno por vía inhalatoria y un 8% de ellos llega a sufrir pérdida del conocimiento13.

Además el sulfuro de hidrógeno puede generarse con cierta facilidad a partir de algunos productos químicos simples, por lo que ha utilizado bastante en los suicidios13,14,15.

El gobierno estadounidense considera que el H2S es una amenaza química de alta prioridad tanto por su uso industrial como por su posible uso terrorista; su olor característico a huevos podridos es un arma de doble filo pues en concentraciones moderadas produce la parálisis de los nervios olfativos, engañando a la gente sobre su presencia13.

Después de su absorción, la detoxificación en nuestro organismo del H2S se realiza por oxidación enzimática y no enzimática de los sulfuros y del azufre a tiosulfato y polisulfuros. Esta reacción es catalizada por la oxihemoglobina. Según estudios recientes, el sulfuro de hidrógeno se metaboliza por oxidación a sulfato, por metilación con formación de metanotiol y sulfuro de dimetilo, y por reacción con las metaloproteínas (responsable de los efectos tóxicos más graves16,17.

Al igual que el cianuro, el H2S es un veneno celular que inhibe la citocromo C oxidasa interrumpiendo el transporte de electrones. De hecho se dice que es un inhibidor de la citocromo C oxidasa más potente que el cianuro. El resultado de la inhibición de la fosforilación oxidativa produce hipoxia celular y metabolismo anaerobio. El metabolismo anaerobio provoca una acidosis láctica. El H2S es un fuerte irritante respiratorio y reacciona con la humedad en la superficie de las membranas mucosas, formando sulfuro sódico16,17.

El olor característico, a huevos podridos, del sulfuro de hidrógeno permite su detección en concentraciones muy bajas, del orden de 0,008-0,1 ppm. Incluso a concentraciones del orden de 0,1 ppm se empieza a producir una cierta anosmia (pérdida del sentido del olfato) y a concentraciones superiores a 100 ppm no se puede percibir su olor, pues afecta al nervio olfativo. El valor del umbral de olor varía mucho según las personas y la pérdida del sentido del olfato a concentraciones elevadas puede crear en los afectados una falsa sensación de seguridad, cuando en realidad están en grave peligro.

La tabla que se muestra a continuación resume algunos de los efectos producidos por diferentes concentraciones de sulfuro de hidrógeno14,15,18:

Concentración (ppm) Síntomas/Efectos
0,01-1,5 Umbral de olor (olor característico a huevos podridos).
2-5 La exposición prolongada puede provocar náuseas, lagrimeo de los ojos, dolores de cabeza o pérdida del sueño. En los pacientes con asma pueden aparecer problemas en las vías respiratorias (constricción bronquial).
20 Posible fatiga, pérdida de apetito, dolor de cabeza, irritabilidad, mala memoria o mareos.
50-100 Leve conjuntivitis e irritación de las vías respiratorias al cabo de 1 hora. Puede aparecer pérdida de apetito y malestar digestivo.
100 Tos, irritación de los ojos, pérdida del olfato (anosmia) al cabo de 2-15 minutos (fatiga olfativa). Alteración respiratoria, somnolencia al cabo de 15-30 minutos. Irritación de garganta al cabo de 1 hora. Agravamiento gradual de los síntomas al cabo de varias horas. La muerte puede ocurrir después de 48 horas.
100-150 Pérdida del olfato (fatiga olfativa o parálisis).
200-300 Después de 1 hora marcada conjuntivitis e irritación de las vías respiratorias. Puede aparecer edema pulmonar tras una exposición prolongada.
500-700 Tambaleo, colapso al cabo de 5 minutos. Daños graves en los ojos al cabo de 30 minutos. Muerte después de 30-60 minutos.
700-1000 Pérdida rápida del conocimiento, desmayo o colapso inmediato con tan solo 1 ó 2 inhalaciones, parada respiratoria, muerte al cabo de unos minutos.
1000-2000 Muerte casi instantánea.

 

La exposición al sulfuro de hidrógeno por vía inhalatoria produce generalmente dolor de cabeza, náuseas, vértigo, mareos, debilidad, desorientación, hipotensión e irritación respiratoria. La lesión pulmonar puede progresar a lo largo de algunas horas. La intoxicación grave con sulfuro de hidrógeno puede causar inconsciencia, fallo respiratorio y cardiovascular. Es característico en exposiciones elevadas la pérdida rápida de la consciencia o “desmayo”. Los pacientes que vuelven a despertarse pueden experimentar un síndrome confusional agudo, con agitación y confusión5.

La exposición de los ojos a bajas concentraciones de sulfuro de hidrógeno gas causa molestias por quemadura, parpadeo espasmódico o cierre involuntario de los párpados, enrojecimiento y lagrimeo. A altas concentraciones o exposiciones repetidas pueden aparecer opacidades en la córnea5.

Si la piel está mojada o húmeda el contacto con la piel del sulfuro de hidrógeno gas puede causar irritación y el contacto de la piel con sulfuro de hidrógeno líquido (licuado por presión) puede dar lugar a congelaciones5.

Si el paciente sobrevive las primeras 48 horas después de la exposición, es probable la recuperación. Después de una exposición aguda, la función pulmonar vuelve a su estado normal en 7-14 días. Es habitual la recuperación completa; sin embargo, los síntomas y deficiencias pulmonares pueden mantenerse. La hiperreactividad de las vías respiratorias a irritantes no específicos pueden persistir, resultando en broncospasmos e inflamación crónica de los bronquios. El síndrome de disfunción de las vías respiratorias reactivas puede persistir durante años. Las secuelas de cicatrices y destrucción en el tejido pulmonar pueden conducir a una dilatación crónica de los bronquios y a una gran susceptibilidad de infección. Pueden producirse secuelas neurológicas como resultado de la insuficiencia respiratoria5.

 

Referencias

  1. “Australian police charge two men over plane bomb plot”, http://www.aljazeera.com/news/2017/08/australian-police-charge-men-plane-bomb-plot-170804003917635.html
  2. “Australia terror plot: Brother likely ‘had no idea’ bomb was in luggage, police say”, http://www.foxnews.com/world/2017/08/04/australia-terror-plot-brother-likely-had-no-idea-bomb-was-in-luggage-police-say.html
  3. “Foiled plot to blow up plane, unleash gas revealed in Australia”, http://edition.cnn.com/2017/08/03/asia/australia-plane-terror-plot-isis/index.html
  4. “Japanese experience of hydrogen sulfide: the suicide craze in 2008”, D. Morii, Y. Miyagatani, N. Nakamae, M. Murao & K. Taniyama, Journal of Occupational Medicine and Toxicology 2010, 5:28
  5. “FDS sulfuro de hidrógeno”, Murcia Salud, 2007, http://www.murciasalud.es/recursos/ficheros/114700-sulfuro_de_hidrogeno.pdf
  6. “FDS sulfuro de hidrógeno”, Praxair, 2014, http://www.praxair.com.mx/-/media/documents/safety-data-sheets/sulfuro-de-hidrogeno-hds-p4611g-2009.pdf
  7. “FDS sulfuro de hidrógeno”, NJHealth, 2012, http://nj.gov/health/eoh/rtkweb/documents/fs/1017sp.pdf
  8. “Atlas d´équilibres électrochimiques à 25 °C”, Marcel Pourbaix, GV, 1963
  9. “Hydrogen sulfide-human health aspects”, WHO, 2003
  10. “La función dual del sulfuro de hidrogeno”, Rui Wang, Investigación y Ciencia, Mayo 2010
  11. “Hydrogen Sulfide-The Third Gasotransmitter in Biology and Medicine”, Rui Wang, Antioxidants & redox signaling, Volume 12, Number 9, 2010
  12. “H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects”, Caleb Weihao Huang and Philip Keith Moore, en “Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide”, Philip K. Moore & Matt Whiteman, Springer, 2015
  13. “Hydrogen Sulfide-Mechanisms of Toxicity and Development of an Antidote”, J. Jiang & Others, Scientific Reports 6, Article number: 20831 (2016), https://www.nature.com/articles/srep20831.pdf
  14. “Japanese experience of hydrogen sulfide: the suicide craze in 2008”, D. Morii, Y. Miyagatani, N. Nakamae, M. Murao & K. Taniyama, Journal of Occupational Medicine and Toxicology 2010, 5:28
  15. “Suicide by Hydrogen Sulfide Inhalation”, Eleanor Bott & Malcolm Dodd, Am J Forensic Med Pathol, Volume 34, Number 1, March 2013
  16. “Modern Medical Toxicology”,V.V. Pillay, Jaypee Brothers Medical Publishers, 4th Ed., 2013
  17. “A critical review of the literature on hydrogen sulfide toxicity”, O. Beauchamp, J. S. Bus, J. A. Popp, C. J. Boreiko & D. A. Andjelkovich, Crit Rev Toxicol. 1984; 13(1):25-97
  18. “Hydrogen Sulfide (H2S) Code of Practice”, Cenovus, 2015, http://www.cenovus.com/contractor/docs/health-safety-practices/hydrogen-sulfide-code-of-practice.pdf

!Qué sucias las bombas sucias¡

En términos coloquiales, una bomba sucia (Dirty Bomb), es un dispositivo explosivo de dispersión radiológica, un artefacto explosivo que combina un explosivo con material radioactivo en forma de polvo o gránulos. El objetivo es diseminar material radioactivo en la zona alrededor de la explosión, para contaminar con material radiactivo el personal y las instalaciones, consiguiendo con ello su exposición a las “radiaciones”. Aunque el número de víctimas mortales sea muy reducido, se consigue aterrorizar a la población, inutilizando durante un largo período de tiempo las instalaciones y el terreno, lo que supone un elevado coste económico al que habría que añadir además el elevado coste que conllevaría la descontaminación.

Además, no todos los dispositivos de dispersión radiológica son bombas sucias, y no todas las bombas sucias son dispositivos de dispersión radiológica.

Sólo se consideran bombas sucias los dispositivos de dispersión radiológica, que dispersan el material radiactivo mediante un explosivo, pero también hay bombas sucias que dispersan una sustancia química tóxica mediante un explosivo.

 

Empleo terrorista de material radiactivo

Los terroristas, en función del tipo de material radiactivo disponible y del objetivo buscado pueden emplear el material radiactivo para la preparación de diferentes dispositivos radiológicos con fines delictivos:

  • Dispositivos Explosivos de Dispersión Radiológica.
  • Dispositivos No Explosivos de Dispersión Radiológica.
  • Dispositivos de Exposición Radiológica

Los Dispositivos Explosivos de Dispersión Radiológica son los que se conocen como Bombas Sucias (Dirty Bombs), aunque es un error bastante común el pensar que todos los dispositivos de dispersión radiológica (RDDs, Radiological Dispersion Devices) son bom­bas sucias. Para una buena dispersión del material radiológico por efecto de la explosión, conviene que éste se encuentre en forma líquida o en forma de polvo, para conseguir tamaños de partícula suficientemente pequeños, del orden de 5-10 µm, de modo que el material radiactivo quede en suspensión y pueda ser inhalado, o/y cubra eficientemente una gran superficie. Además puede resultar interesante el empleo de materiales inflamables capaces de provocar un incendio tal, que los gases calientes alcancen alturas elevadas facilitando con ello el arrastre y dispersión más amplia del material radiactivo. El empleo de un material radiactivo sóli­do, de tipo metálico, con cierta dureza, supondría la dispersión de fragmentos de tamaño considerable lo que disminuiría notablemente los efectos buscados.

Los Dispositivos No Explosivos emplean medios mecánicos para dispersar el material radiactivo, aprovechando las condiciones atmosféricas locales generadas por las corrientes de aire e ins­talaciones de ventilación. Aquí, al no existir efecto explosivo, resulta de vital importancia que el material radiactivo se encuentre en forma líquida o de polvo muy fino para conseguir con ello una buena dispersión.

Los Dispositivos de Exposición Radiológica conocidos por sus siglas en inglés RED (Radiological Exposure Device) tienen una aplicación muy limitada. El procedimiento consiste en situar el material radiactivo encapsulado o no, en un punto tal que las radiaciones afecten a las personas. El material radiactivo debería ser preferiblemente un emisor de radiación gamma, de rayos X o de neutrones, ya que si fuera un emisor de partículas alfa o beta, el material radiactivo debería estar muy próximo al objetivo, a ser posible en contacto íntimo con el mismo para conseguir además un mayor tiempo de exposición.

 

Materiales radiactivos

Recordemos que los materiales radiactivos son aquellos que presentan radiactividad o radioactividad, fenómeno físico por el cual los núcleos de algunos elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas radiográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como por ejemplo, las partículas alfa (4He2+), las partículas beta (electrones, e, o positrones, e+), los protones o los neutrones. La radiactividad ioniza el medio que atraviesa. Los neutrones no producen una ionización directa, pero ionizan la materia en forma indirecta.

Un aspecto importante del material radiactivo, es decir de los radionucleidos, es su velocidad de desintegración o actividad radiactiva que se mide en Bq. Un becquerelio es 1 desintegración por segundo y un curio, Ci, equivale a 3,7·1010 desintegraciones por segundo (unidad basada en la actividad de 1 g de 226Ra que es cercana a esa cantidad).

La desintegración radiactiva se comporta conforme a la ley de decaimiento exponencial:

Nt = N0 × e -λt

Donde, Nt es el número de radionúclidos existentes en un instante de tiempo t, N0 es el número de radionúclidos existentes en el instante inicial, y λ es la constante de desintegración radiactiva, esto es, la probabilidad de desintegración por unidad de tiempo.

La actividad A, o sea la emisión de radiación por unidad de tiempo, es proporcional al número de radionúclidos N presente en cada instante, esto es, A = λ × N. Se llama tiempo de vida o tiempo de vida media de un radioisótopo, τ, al tiempo promedio de vida de un átomo radiactivo antes de desintegrarse, y es igual a la inversa de la constante de desintegración radiactiva, λ, de modo que τ = 1/λ. También τ es igual al tiempo necesario para que el número de átomos se reduzca en un factor de 2,718281828 (número e). Véase la tabla 1

t ½ = τ ⋅ ln ⁡ 2  = ln 2/λ

Al tiempo que transcurre hasta que la cantidad de núcleos radiactivos de un isótopo radiactivo se reduzca a la mitad de la cantidad inicial se le conoce como periodo de semidesintegración, período, semiperiodo, semivida o vida media (no confundir con el mencionado tiempo de vida). Al final de cada período, la radiactividad se reduce a la mitad de la radiactividad inicial. Cada radioisótopo tiene un período de semidesintegración característico, diferente del de otros radioisótopos. Véase la tabla 1.

 

Radionucleido Radiación principal Período de semidesintegración Peso de 1000 curios

1 Ci ≡ 3,7·1010 Bq

192Ir Beta / gamma 73,827 días 0,11 gramos
60Co Gamma 5,2714 años 0,91 gramos
252Cf Alfa 2,645 años 1,88 gramos
90Sr Beta 28,9 años 7,17 gramos
137Cs Beta / gamma 30,17 años 11,8 gramos
241Am Alfa 432,2 años 300 gramos
226Ra Alfa 1600 años 1040 gramos
240Pu Alfa 6500 años 4540 gramos
239Pu Alfa 24100 años 16800 gramos
235U (al 5%) Alfa 7,04 × 108 años 420000 gramos
238U (DU) Alfa 4,468 × 109 años 3060000 gramos

Tabla 1. Para diferentes radionucleidos se muestra su tipo principal de radiación, su periodo de semidesintegración y peso requerido del mismo para conseguir una actividad de 1000 curios

Además, cada radionucleido decae de manera específica. El estroncio-90 decae emitiendo partículas beta pero sin emitir radiación gamma, mientras que el cobalto-60 emite fundamentalmente radiación gamma y algo de radiación beta. El americio-241 decae emitiendo fundamentalmente partículas alfa y también emite algo de radiación gamma de baja energía.

 

Elección de los componentes de una bomba sucia

Los dos componentes más importantes de una bomba sucia son obviamente el material explosivo y el material radiactivo. No vamos a tratar aquí la elección del material explosivo, tan solo vamos considerar algunos aspectos relativos al material radiactivo.

Uno de los principales puntos a considerar para preparar una bomba sucia es el cómo conseguir el material radiactivo. El tipo de radiación emitida, la actividad y el periodo de semidesintegración de los radionucleidos, son muy diferentes, y eso unido a las características físico-químicas del material radiactivo hace que los peligros inherentes y las medidas de seguridad y control establecidas para cada uno de ellos sean también muy diferentes.

La Agencia Internacional de Energía Atómica (IAEA) en su guía de seguridad No. RS-G-1.9 “Clasificación de las fuentes radiactivas” ha establecido cinco categorías de peligro aplicables a las fuentes radiactivas utilizadas en algunas prácticas comunes.

Las fuentes de la categoría 1 son las más “peligrosas” porque pueden suponer un riesgo altísimo para la salud de los seres humanos si no se manejan en condiciones de seguridad tecnológica y física. La exposición durante sólo unos cuantos minutos a una fuente de categoría 1 no blindada puede ser fatal. En el extremo inferior del sistema de clasificación, las fuentes de la categoría 5 son las menos peligrosas; ahora bien, incluso éstas pueden dar lugar a dosis superiores a las dosis límite si no se controlan correctamente y, por consiguiente, hay que mantenerlas bajo el adecuado control regulador.

Las categorías 1-“Extremadamente peligrosa para las personas”, 2-“Muy peligrosa para las personas”, y 3-“Peligrosa para las personas”, son las que están sujetas a mayores medidas de seguridad y control. Las fuentes gamma y beta están sujetas a controles más estrictos que las fuentes alfa, por lo cual cabe pensar que la sustracción de una fuente alfa sería más factible.

La radiactividad (actividad) de los diferentes radionucleidos es muy variable. La tabla 2 resume algunas características y aplicaciones de algunos de los radionucleidos más comunes. Aunque no existen datos suficientes para establecer con exactitud las dosis letales en seres humanos, si hay diferencia entre las dosis letales de los emisores alfa (de unos miles de curios) con las dosis letales de los emisores gamma (de unos cientos de curios).

 

Radionucleido Radiación principal Período de semi desintegración Uso habitual Actividad (Ci)
60Co Gamma 5,2714 años Irradiadores para alimentos y esterilización 5000-15000000
Teleterapia 1000-15000
90Sr Beta 28,9 años Generadores termoeléctricos de radioisótopos 9000-680000
137Cs Beta / gamma 30,17 años Irradiadores para sangre y tejidos 1000-12000
Teleterapia 500-1500
Indicadores de nivel 1-5
192Ir Beta / gamma 73,827 días Radiografía industrial 5–200
210Po Alfa 138,376 días Eliminadores de estática 0,03–0,11
241Am Alfa 432,2 años Testificación geofísica 0,5–23
Servicios de calibración 5–20
Eliminadores de estática 0,03–0,11
252Cf Alfa 2,645 años Testificación geofísica 0,03–0,11
Investigación científica hasta 27

Tabla 2. Para diferentes radionucleidos se muestra su tipo principal de radiación, su periodo de semidesintegración, su uso habitual y su rango de actividad.

 

Después habría que considerar el tiempo requerido de actividad para el material radiactivo y aquí habría que considerar el tiempo que transcurrirá desde la preparación de la bomba hasta su explosión, y el tiempo que se desea dure la contaminación radiactiva después de dispersado el material radiactivo. Para la preparación de una bomba sucia, los terroristas prefieren materiales radiactivos con un periodo de semidesintegración intermedio (varios años), pues si fuese muy corto, de horas o días, el material se desintegraría muy rápidamente y resultaría muy radiactivo, pero decaería muy rápidamente mientras se prepara la bomba sucia, y además si la bomba sucia dispersase el material radiactivo, bastaría casi tan solo con esperar varios días para que la radiación decayese y se produjese de este modo una “descontaminación” natural de las zonas contaminadas.

En el extremo opuesto, material radiactivo con un periodo de semidesintegración muy grande (miles o millones de años) decaen muy lentamente y producen poca radiación, requiriendo para una bomba sucia grandes cantidades. Algunos autores indican que estos materiales no son adecuados para una bomba sucia, pero recordemos que los terroristas pueden estar interesados en una bomba sucia cuyos efectos no sean producir bajas a corto o medio plazo, sino provocar miedo y aterrorizar a la población, contaminando la zona con material que puede ser inhalado o ingerido, que puede producir algunos efectos no solo por la radiación sino también por la toxicidad química. El uranio empobrecido, material de desecho de la industria nuclear, es básicamente uranio-238 (más del 99%), emisor alfa con un periodo de semidesintegración de 4,468 × 109 años, muy poco radiactivo, pero de fácil adquisición y además pirofórico (se inflama espontáneamente en contacto con el aire), hecho este último que favorecería su dispersión.

Las propiedades físico-químicas también es un factor importante, ya que las sustancias en forma de polvo se dispersarían más fácilmente. La solubilidad del material en agua facilitaría la descontaminación pero a su vez favorecería la contaminación de los cauces acuosos. Por ejemplo, el cesio-137 (uno de los radionucleidos más utilizados) se suministra como polvo cloruro de cesio-137, sustancia blanca, cristalina, muy soluble en agua, y de punto de ebullición 1297 °C. Por todo ello el cesio-137, emisor beta/gamma sería un buen material radiactivo para una bomba sucia. El americio-241 emisor alfa también se suministra, para algunas aplicaciones, en forma de polvo. El cobalto-60, un isótopo radiactivo sintético del cobalto, es fundamentalmente un emisor gamma (con una energía muy alta, del orden de 1,3 MeV), con un periodo de semidesintegración de 5,2714 años, que suele emplearse en forma metálica. El cobalto metálico, de una dureza similar a la del hierro, en forma de barras cilíndricas, se dispersaría mal por efecto de la explosión que produciría muy probablemente fragmentos de gran tamaño fáciles de localizar y retirar.

 

Efectos sobre la salud y actuación

Las radiaciones ionizantes afectan a la salud a nivel del genoma celular, actuando sobre las moléculas de ADN, produciendo una serie de efectos que se engloban en dos grandes grupos:

  • efectos estocásticos y
  • efectos deterministas.

Los efectos estocásticos son aquellos que no presentan una dosis umbral por debajo de la cual no aparecen consecuencias. Su gravedad no depende de la dosis recibida, pues son siempre graves si suceden. Hay dos tipos de efectos estocásticos conocidos. Si una célula cualquiera (células somáticas) del cuerpo sufre una mutación, puede llegar a transformarse en un tumor (cancerígeno o benigno). Si la célula mutada es un gameto (células germinales), éste puede tener como resultado un efecto hereditario. La probabilidad de que se produzca un efecto estocástico aumenta con la dosis. Los efectos estocásticos aparecen tras unos años de latencia. El periodo de latencia más corto que se conoce es el de la leucemia, que puede aparecer después de dos años.

Los efectos deterministas causan la muerte de la célula. Algunos ejemplos de dolencias por efectos deterministas son: vómitos, quemaduras por radiación, cataratas o efectos sobre el desarrollo por exposición del útero. En contraste con los efectos estocásticos, para cada efecto determinista existe una dosis umbral, por debajo de la cual los efectos no aparecen.  No se aprecian efectos deterministas si se reciben dosis inferiores a la dosis umbral. Sin embargo, una vez que el umbral se ha superado, el efecto es seguro (“determinista”) y se agrava más con el incremento de la dosis.

Como el ser humano no puede ver, oler, sentir o percibir el sabor de la radiación, el personal presente en el lugar de una explosión, no sabrá si había o no materiales radioactivos presentes. Si el personal no sufre heridas demasiado graves a causa de la explosión inicial, debería:

  • No entrar en pánico, salir de la zona de la explosión caminando y no tomar transportes públicos o privados porque si había material radioactivo presente, podrían contaminar los medios de transporte y extender la contaminación.
  • Entrar en el edificio más cercano para eliminar su posible exposición a la contaminación y por ello a la radiación.
  • Si se sospecha de una posible contaminación, debería quitarse lo antes posible la ropa, colocarla en una bolsa plástica y sellarla. Al quitarse la ropa, retirará la mayor parte de la contaminación radiactiva y al guardar la ropa contaminada evitará extender la contaminación y permitirá analizar la misma para saber la naturaleza del material radiactivo.
  • Si es posible debería ducharse o lavarse con agua y jabón, para reducir la contaminación radioactiva sobre el cuerpo y reducir de manera eficaz la exposición a la radiación.
  • Prestar atención a la información y consignas del personal de emergencias para un mejor desarrollo de las actividades.

 

 

Referencias

  1. “Bombas sucias, preguntas frecuentes”, Ministerio de salud de Dakota del Norte, https://www.ndhan.gov/data/translation/Dirty%20Bombs-Spanish.pdf
  2. “Dirty Bomb-Fact Sheet”, FEMA, 2007, https://www.fema.gov/media-library-data/20130726-1621-20490-3999/dirtybombfactsheet_final.pdf
  3. “Dirty Bomb-Fact Sheet”, U.S.NRC, 2012, https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/fs-dirty-bombs.pdf
  4. “Bomba sucia como acontecimiento de terrorismo”, South Central District Health, https://phd5.idaho.gov/factsheets/er/dirty_bomb_bt_spanish.pdf
  5. “Radiological Dispersion Device (Dirty Bomb)”, WHO/RAD Information sheet, 2003, http://www.who.int/ionizing_radiation/en/WHORAD_InfoSheet_Dirty_Bombs21Feb.pdf?ua=1
  6. “Terrorist “Dirty Bombs”-A Brief Primer”, https://fas.org/sgp/crs/nuke/RS21528.pdf
  7. “Radiological Terrorism”, P. Andrew Karam, Human and Ecological Risk Assessment, 11: 501–523, 2005http://www.andrewkaram.com/pdf/terrorism.pdf
  8. “Radiological Terrorism Fact Sheet”, http://cs.erplan.net/WMD/dirty.pdf
  9. “Proliferación de ADM y de Tecnología Avanzada. Capítulo 5. Armas radiológicas”, Julio Ortega García, Cuaderno de Estrategia nº 153, IEEE, 2011 https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0ahUKEwidnejq8vLLAhXKPRoKHQAiDpoQFgg_MAU&url=https%3A%2F%2Fdialnet.unirioja.es%2Fdescarga%2Farticulo%2F3835369.pdf&usg=AFQjCNH5ULAN6AeDeTUBkoTTVkjR5wF-9g
  10. “Clasificación de las fuentes radiactivas”, IAEA, Guía de seguridad RS-G-1.9, http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227s_web.pdf
  11. “Uranium and Dirty Bombs”, Federation of American Scientists, 2008, https://fas.org/programs/ssp/nukes/non-proliferation%20and%20arms%20control/uraniumdirtybombs.html
  12. “Beyond the Dirty Bomb: Re-thinking Radiological Terror”, James M. Acton, M. Brooke Rogers & Peter D. Zimmerman, Survival Vol. 49 , Iss. 3, 2007
  13. “Módulo 4: protección radiológica”, Consejo de Seguridad Nuclear, Vicente Gamo Pascual , Curso General de Formación de Actuantes en Emergencias Nucleares, https://www.csn.es/documents/10182/950714/Curso+General+de+Formaci%C3%B3n+de+Actuantes+en+Emergencias+Nucleares.+TEMA+04.+Protecci%C3%B3n+radiol%C3%B3gica

 

La amenaza química del Daesh

La amenaza química del Daesh

René Pita y Juan Domingo

Este artículo de análisis se escribió el 21 de noviembre de 2015. Una versión resumida fue publicada en La Voz de Galicia el 21 de febrero de 2016. El texto completo se publica ahora en cbrn.es.

 

Tras los atentados yihadistas del 13 de noviembre de 2015 en París, ha crecido la preocupación por la posibilidad de que el Daesh pudiera llevar a cabo ataques terroristas con armas químicas. Una situación parecida se produjo después de los atentados de Al Qaeda el 11 de septiembre de 2001 (11-S) en EE.UU. Pocos días después del 11-S, se realizaron varios envíos de sobres postales que contenían esporas de Bacillus anthracis, el agente biológico responsable del carbunco, una enfermedad conocida coloquialmente como ántrax. Estos envíos causaron cinco víctimas mortales, cifra que podría haber sido mayor si las autoridades sanitarias norteamericanas no hubiesen establecido el tratamiento con antibióticos de todas las personas sospechosas de haber estado expuestas a las esporas del microorganismo.

Por la proximidad en el tiempo con los atentados del 11-S, la lógica del momento hizo pensar que también era Al Qaeda la responsable del ataque biológico. Se sospechaba que durante los años que llevaba operando impunemente en territorio afgano, la organización terrorista había adquirido una importante capacidad de empleo de armas de destrucción masiva. Pero una vez finalizadas las operaciones militares en Afganistán no se encontró rastro alguno de esa capacidad, y únicamente se descubrieron tentativas para la puesta en marcha de algunos programas que no pasaron de una fase de planeamiento. Finalmente, en 2008, la investigación oficial sobre los envíos postales concluía que el responsable no fue el terrorismo yihadista sino un miembro del programa de defensa biológica del propio ejército norteamericano.

Tras los atentados en París de 2015, el primer ministro francés, Manuel Valls, alertaba sobre el riesgo de que el Daesh pudiese emplear armas químicas o biológicas. Estas declaraciones fueron entendidas como una amenaza concreta identificada por los servicios de inteligencia franceses. Sin embargo, las declaraciones de Valls se debían a que, pocos días antes, la Organización para la Prohibición de Armas Químicas (OPAQ) había hecho público un informe según el cual su Misión de Determinación de los Hechos en Siria confirmaba el empleo de iperita –también conocida como gas mostaza– en un ataque atribuido al Daesh en agosto de 2015. Con los ataques de París todavía recientes, la información de la OPAQ hacía verosímil la hipótesis de que el Daesh podía exportar este tipo de tácticas fuera de Siria.

Actualmente el Daesh ocupa territorios en Irak y Siria, si bien existen diferencias con respecto a la situación que tenía Al Qaeda en Afganistán. En primer lugar, el Daesh explota todos los recursos y riquezas de los territorios bajo su dominio. La financiación a través de la venta de petróleo es un claro ejemplo. En segundo lugar, y a diferencia de Afganistán, Irak y Siria tuvieron importantes programas de armas químicas. Por todo ello, cabe la posibilidad de que el Daesh pueda aprovechar las capacidades químicas que caigan en sus manos.

El programa químico iraquí permitió el uso masivo de armas químicas, especialmente iperita y sarín, en la guerra contra Irán en los años ochenta. Las investigaciones de la ONU y del Irak Survey Group –misión de investigación creada en el año 2003 y liderada por EE.UU.– confirmaron que el programa químico iraquí había finalizado a principios de los años noventa. No obstante, a fecha de hoy aún se siguen descubriendo restos de arsenales químicos que fueron abandonados o quedaron sin control.

El programa sirio, al igual que el iraquí, se decantó por la iperita y por los agentes neurotóxicos, como el sarín y el VX. Precisamente fue el sarín el agente químico utilizado el 21 de agosto de 2013 en las afueras de Damasco, que causó cientos de víctimas civiles. La presión de la comunidad internacional hizo que, semanas después, Siria se adhiriese a la Convención para la Prohibición de Armas Químicas (CAQ) y declarase su arsenal químico, que incluía, entre otros, unas 20 toneladas de iperita y 581 toneladas de DF, un precursor inmediato del sarín. Ante una difícil situación de guerra y de manera excepcional, se autorizó su destrucción fuera de Siria y el stock de iperita y DF fue trasladado a un buque norteamericano donde fue neutralizado, en aguas del Mediterráneo, bajo supervisión de la OPAQ.

Aun así, existen dudas de que Siria haya declarado toda su capacidad química. Durante las primeras inspecciones realizadas por la OPAQ en territorio sirio se encontraron discrepancias con las cantidades declaradas de agentes químicos e instalaciones de producción. Asimismo, tal y como ocurrió en Irak, es probable que, debido a la situación de guerra, algunos stocks de armas químicas pudieran haber quedado abandonados y fuera del control del gobierno sirio.

Con este escenario, existen distintas posibilidades que permitirían al Daesh acceder al arma química. La primera y más obvia sería a través de un arsenal abandonado en territorio bajo su control. En el caso de las armas químicas iraquíes, su principal problema sería el grave deterioro de la munición con el paso de los años, que haría peligrosa su manipulación. Además, el agente químico estaría bastante degradado por la acción del tiempo y las condiciones de almacenamiento. Por ejemplo, es frecuente que la munición cargada con iperita encontrada en Irak esté polimerizada, lo que impediría su empleo.

Con respecto a la munición química siria, de más reciente producción, la limitación de uso estaría condicionada por la disponibilidad de vectores de lanzamiento. De nada le serviría al Daesh poseer granadas de mortero o proyectiles de artillería químicos si no dispusiese de los morteros o de los cañones necesarios para su lanzamiento. Por ello, su uso estaría restringido al territorio sirio o sus proximidades, donde la organización terrorista dispone de medios de lanzamiento que pueden adaptarse a esta munición. De hecho, todo apunta a que en los ataques con iperita que tuvieron lugar en Irak y Siria en agosto de 2015, se habría empleado munición de origen sirio. En ambos casos, las escasas consecuencias de los ataques se habrían debido a la poca munición química disponible.

Otra de las posibles opciones sería que el Daesh consiguiese sintetizar sus propios agentes químicos de guerra y cargar las municiones en sus talleres de producción. En este sentido, se conocen los intentos de captar a personal de la Universidad de Mosul con conocimientos de síntesis en química orgánica y de acceder a instalaciones industriales iraquíes con pequeñas cantidades de precursores de iperita. Sin embargo, la producción de armas químicas a gran escala es un proceso complejo que requiere un equipo multidisciplinar de personal con el conocimiento explícito y tácito, es decir, con el know-how adquirido a través de la investigación aplicada. Esto complica a cualquier organización terrorista la opción de la producción propia.

Debido a estas dificultades para acceder a un arma química «clásica», el Daesh ha optado por recurrir a otro tipo de alternativas. Es el caso de los productos químicos industriales tóxicos (TIC) que, aunque son menos tóxicos, resultan de más fácil obtención. Con frecuencia se producen en Irak y Siria atentados con artefactos explosivos improvisados (IED) combinados con bombonas de cloro y otros TIC. A pesar de que estos artefactos causan menos víctimas que los IED convencionales, documentos incautados al Daesh muestran su interés en continuar con su empleo por el importante impacto psicológico que producen. Al mismo tiempo, dejan clara su intención de seguir explorando el acceso a otros agentes químicos más peligrosos.

Por último, es necesario hacer mención a Libia, que también desarrolló un programa de armas químicas. Si bien aquí el Daesh no tiene una presencia tan amplia como en Irak o Siria, sí ha mostrado su interés en afianzarse y expandirse en este país por su posición estratégica en el litoral mediterráneo y a las puertas de Europa. Libia se adhirió a la CAQ en enero de 2004, declarando 25 toneladas de iperita y 1.390 toneladas de precursores. Esta cantidad se incrementó a finales de 2011, tras la caída de Muamar el Gadafi, cuando se descubrieron dos instalaciones no declaradas con cerca de 2 toneladas de iperita cargada en proyectiles de artillería y bombas de aviación. La destrucción de toda la iperita almacenada, verificada por la OPAQ, finalizó a principios de 2014.

Tal y como ocurre en Irak y Siria, también existe la posibilidad de que otros stocks no declarados en Libia, de forma intencionada o no, puedan caer en manos de organizaciones terroristas. Ahora bien, el programa libio tuvo problemas técnicos para estabilizar los agentes químicos que producía, especialmente los agentes neurotóxicos, de los que sólo se tiene constancia del almacenamiento de precursores. Según la doctrina libia de empleo de armas químicas, su producción y carga en municiones se hacía justo antes de su empleo. También la experiencia de la destrucción del armamento químico supervisada por la OPAQ muestra que la iperita de reciente producción se encontraba polimerizada, lo que indicaría problemas de estabilización. El empleo de munición del programa libio estaría, por tanto, limitado por el estado en el que se encontrase.

Al igual que el resto de organizaciones terroristas yihadistas, el Daesh ha mostrado interés por conseguir una capacidad química, consciente del poder que le conferiría. Tras los ataques con iperita en Irak y Siria en agosto de 2015, la organización terrorista ya debe conocer los considerables problemas técnicos y de seguridad que supone transportar y emplear este armamento de forma eficaz. Pero aun siendo conscientes de estas limitaciones y de la escasa probabilidad de éxito, el importante efecto psicológico y mediático que entrañaría incluso el simple intento de atentar con este armamento en Occidente, nos obliga a no despreciar ni minimizar la posibilidad de un escenario de este tipo.